| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "SkIntersections.h" | 7 #include "SkIntersections.h" |
| 8 #include "SkLineParameters.h" | 8 #include "SkLineParameters.h" |
| 9 #include "SkPathOpsConic.h" | 9 #include "SkPathOpsConic.h" |
| 10 #include "SkPathOpsCubic.h" | 10 #include "SkPathOpsCubic.h" |
| (...skipping 56 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 67 double C = 1; | 67 double C = 1; |
| 68 double A = -B; | 68 double A = -B; |
| 69 return (A * t + B) * t + C; | 69 return (A * t + B) * t + C; |
| 70 } | 70 } |
| 71 | 71 |
| 72 bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 72 bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
| 73 return cubic.hullIntersects(*this, isLinear); | 73 return cubic.hullIntersects(*this, isLinear); |
| 74 } | 74 } |
| 75 | 75 |
| 76 SkDPoint SkDConic::ptAtT(double t) const { | 76 SkDPoint SkDConic::ptAtT(double t) const { |
| 77 if (t == 0) { |
| 78 return fPts[0]; |
| 79 } |
| 80 if (t == 1) { |
| 81 return fPts[2]; |
| 82 } |
| 77 double denominator = conic_eval_denominator(fWeight, t); | 83 double denominator = conic_eval_denominator(fWeight, t); |
| 78 SkDPoint result = { | 84 SkDPoint result = { |
| 79 conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, | 85 conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, |
| 80 conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator | 86 conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator |
| 81 }; | 87 }; |
| 82 return result; | 88 return result; |
| 83 } | 89 } |
| 84 | 90 |
| 85 /* see quad subdivide for rationale */ | 91 /* see quad subdivide for rationale */ |
| 86 SkDConic SkDConic::subDivide(double t1, double t2) const { | 92 SkDConic SkDConic::subDivide(double t1, double t2) const { |
| 87 double ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); | 93 double ax, ay, az; |
| 88 double ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); | 94 if (t1 == 0) { |
| 89 double az = conic_eval_denominator(fWeight, t1); | 95 ax = fPts[0].fX; |
| 96 ay = fPts[0].fY; |
| 97 az = 1; |
| 98 } else if (t1 != 1) { |
| 99 ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); |
| 100 ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); |
| 101 az = conic_eval_denominator(fWeight, t1); |
| 102 } else { |
| 103 ax = fPts[2].fX; |
| 104 ay = fPts[2].fY; |
| 105 az = 1; |
| 106 } |
| 90 double midT = (t1 + t2) / 2; | 107 double midT = (t1 + t2) / 2; |
| 91 double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); | 108 double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); |
| 92 double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); | 109 double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); |
| 93 double dz = conic_eval_denominator(fWeight, midT); | 110 double dz = conic_eval_denominator(fWeight, midT); |
| 94 double cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); | 111 double cx, cy, cz; |
| 95 double cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); | 112 if (t2 == 1) { |
| 96 double cz = conic_eval_denominator(fWeight, t2); | 113 cx = fPts[2].fX; |
| 114 cy = fPts[2].fY; |
| 115 cz = 1; |
| 116 } else if (t2 != 0) { |
| 117 cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); |
| 118 cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); |
| 119 cz = conic_eval_denominator(fWeight, t2); |
| 120 } else { |
| 121 cx = fPts[0].fX; |
| 122 cy = fPts[0].fY; |
| 123 cz = 1; |
| 124 } |
| 97 double bx = 2 * dx - (ax + cx) / 2; | 125 double bx = 2 * dx - (ax + cx) / 2; |
| 98 double by = 2 * dy - (ay + cy) / 2; | 126 double by = 2 * dy - (ay + cy) / 2; |
| 99 double bz = 2 * dz - (az + cz) / 2; | 127 double bz = 2 * dz - (az + cz) / 2; |
| 100 double dt = t2 - t1; | 128 double dt = t2 - t1; |
| 101 double dt_1 = 1 - dt; | 129 double dt_1 = 1 - dt; |
| 102 SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1)) | 130 SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1)) |
| 103 / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1)); | 131 / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1)); |
| 104 SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}
}}, w }; | 132 SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}
}}, w }; |
| 105 return dst; | 133 return dst; |
| 106 } | 134 } |
| 107 | 135 |
| 108 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, do
uble t2, | 136 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, do
uble t2, |
| 109 SkScalar* weight) const { | 137 SkScalar* weight) const { |
| 110 SkDConic chopped = this->subDivide(t1, t2); | 138 SkDConic chopped = this->subDivide(t1, t2); |
| 111 *weight = chopped.fWeight; | 139 *weight = chopped.fWeight; |
| 112 return chopped[1]; | 140 return chopped[1]; |
| 113 } | 141 } |
| OLD | NEW |