Chromium Code Reviews| Index: src/codec/SkBmpCodec.cpp |
| diff --git a/src/codec/SkBmpCodec.cpp b/src/codec/SkBmpCodec.cpp |
| index a1f15691a568a1f90bae3705758820d2592451d6..b5035711341c9565f6936d5bf8bd92daf3cd1c4d 100644 |
| --- a/src/codec/SkBmpCodec.cpp |
| +++ b/src/codec/SkBmpCodec.cpp |
| @@ -6,69 +6,27 @@ |
| */ |
| #include "SkBmpCodec.h" |
| +#include "SkBmpMaskCodec.h" |
| +#include "SkBmpRLECodec.h" |
| +#include "SkBmpStandardCodec.h" |
| #include "SkCodecPriv.h" |
| #include "SkColorPriv.h" |
| #include "SkStream.h" |
| /* |
| * |
| - * Checks if the conversion between the input image and the requested output |
| - * image has been implemented |
| - * |
| - */ |
| -static bool conversion_possible(const SkImageInfo& dst, |
| - const SkImageInfo& src) { |
| - // Ensure that the profile type is unchanged |
| - if (dst.profileType() != src.profileType()) { |
| - return false; |
| - } |
| - |
| - // Check for supported alpha types |
| - if (src.alphaType() != dst.alphaType()) { |
| - if (kOpaque_SkAlphaType == src.alphaType()) { |
| - // If the source is opaque, we must decode to opaque |
| - return false; |
| - } |
| - |
| - // The source is not opaque |
| - switch (dst.alphaType()) { |
| - case kPremul_SkAlphaType: |
| - case kUnpremul_SkAlphaType: |
| - // The source is not opaque, so either of these is okay |
| - break; |
| - default: |
| - // We cannot decode a non-opaque image to opaque (or unknown) |
| - return false; |
| - } |
| - } |
| - |
| - // Check for supported color types |
| - switch (dst.colorType()) { |
| - // Allow output to kN32 from any type of input |
| - case kN32_SkColorType: |
| - return true; |
| - // Allow output to kIndex_8 from compatible inputs |
| - case kIndex_8_SkColorType: |
| - return kIndex_8_SkColorType == src.colorType(); |
| - default: |
| - return false; |
| - } |
| -} |
| - |
| -/* |
| - * |
| * Defines the version and type of the second bitmap header |
| * |
| */ |
| -enum BitmapHeaderType { |
| - kInfoV1_BitmapHeaderType, |
| - kInfoV2_BitmapHeaderType, |
| - kInfoV3_BitmapHeaderType, |
| - kInfoV4_BitmapHeaderType, |
| - kInfoV5_BitmapHeaderType, |
| - kOS2V1_BitmapHeaderType, |
| - kOS2VX_BitmapHeaderType, |
| - kUnknown_BitmapHeaderType |
| +enum BmpHeaderType { |
| + kInfoV1_BmpHeaderType, |
| + kInfoV2_BmpHeaderType, |
| + kInfoV3_BmpHeaderType, |
| + kInfoV4_BmpHeaderType, |
| + kInfoV5_BmpHeaderType, |
| + kOS2V1_BmpHeaderType, |
| + kOS2VX_BmpHeaderType, |
| + kUnknown_BmpHeaderType |
| }; |
| /* |
| @@ -76,17 +34,17 @@ enum BitmapHeaderType { |
| * Possible bitmap compression types |
| * |
| */ |
| -enum BitmapCompressionMethod { |
| - kNone_BitmapCompressionMethod = 0, |
| - k8BitRLE_BitmapCompressionMethod = 1, |
| - k4BitRLE_BitmapCompressionMethod = 2, |
| - kBitMasks_BitmapCompressionMethod = 3, |
| - kJpeg_BitmapCompressionMethod = 4, |
| - kPng_BitmapCompressionMethod = 5, |
| - kAlphaBitMasks_BitmapCompressionMethod = 6, |
| - kCMYK_BitmapCompressionMethod = 11, |
| - kCMYK8BitRLE_BitmapCompressionMethod = 12, |
| - kCMYK4BitRLE_BitmapCompressionMethod = 13 |
| +enum BmpCompressionMethod { |
| + kNone_BmpCompressionMethod = 0, |
| + k8BitRLE_BmpCompressionMethod = 1, |
| + k4BitRLE_BmpCompressionMethod = 2, |
| + kBitMasks_BmpCompressionMethod = 3, |
| + kJpeg_BmpCompressionMethod = 4, |
| + kPng_BmpCompressionMethod = 5, |
| + kAlphaBitMasks_BmpCompressionMethod = 6, |
| + kCMYK_BmpCompressionMethod = 11, |
| + kCMYK8BitRLE_BmpCompressionMethod = 12, |
| + kCMYK4BitRLE_BmpCompressionMethod = 13 |
| }; |
| /* |
| @@ -103,33 +61,27 @@ bool SkBmpCodec::IsBmp(SkStream* stream) { |
| } |
| /* |
| - * |
| * Assumes IsBmp was called and returned true |
| * Creates a bmp decoder |
| * Reads enough of the stream to determine the image format |
| - * |
| */ |
| SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
| return SkBmpCodec::NewFromStream(stream, false); |
| } |
| /* |
| - * |
| * Creates a bmp decoder for a bmp embedded in ico |
| * Reads enough of the stream to determine the image format |
| - * |
| */ |
| SkCodec* SkBmpCodec::NewFromIco(SkStream* stream) { |
| return SkBmpCodec::NewFromStream(stream, true); |
| } |
| /* |
| - * |
| * Read enough of the stream to initialize the SkBmpCodec. Returns a bool |
| * representing success or failure. If it returned true, and codecOut was |
| * not NULL, it will be set to a new SkBmpCodec. |
| * Does *not* take ownership of the passed in SkStream. |
| - * |
| */ |
| bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // Header size constants |
| @@ -220,7 +172,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| uint16_t bitsPerPixel; |
| // The compression method for the pixel data |
| - uint32_t compression = kNone_BitmapCompressionMethod; |
| + uint32_t compression = kNone_BmpCompressionMethod; |
| // Number of colors in the color table, defaults to 0 or max (see below) |
| uint32_t numColors = 0; |
| @@ -232,24 +184,24 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| int width, height; |
| // Determine image information depending on second header format |
| - BitmapHeaderType headerType; |
| + BmpHeaderType headerType; |
| if (infoBytes >= kBmpInfoBaseBytes) { |
| // Check the version of the header |
| switch (infoBytes) { |
| case kBmpInfoV1Bytes: |
| - headerType = kInfoV1_BitmapHeaderType; |
| + headerType = kInfoV1_BmpHeaderType; |
| break; |
| case kBmpInfoV2Bytes: |
| - headerType = kInfoV2_BitmapHeaderType; |
| + headerType = kInfoV2_BmpHeaderType; |
| break; |
| case kBmpInfoV3Bytes: |
| - headerType = kInfoV3_BitmapHeaderType; |
| + headerType = kInfoV3_BmpHeaderType; |
| break; |
| case kBmpInfoV4Bytes: |
| - headerType = kInfoV4_BitmapHeaderType; |
| + headerType = kInfoV4_BmpHeaderType; |
| break; |
| case kBmpInfoV5Bytes: |
| - headerType = kInfoV5_BitmapHeaderType; |
| + headerType = kInfoV5_BmpHeaderType; |
| break; |
| case 16: |
| case 20: |
| @@ -262,7 +214,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| case 48: |
| case 60: |
| case kBmpOS2V2Bytes: |
| - headerType = kOS2VX_BitmapHeaderType; |
| + headerType = kOS2VX_BmpHeaderType; |
| break; |
| default: |
| // We do not signal an error here because there is the |
| @@ -271,7 +223,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // build off of the older versions, so we may still be able to |
| // decode the bmp. |
| SkCodecPrintf("Warning: unknown bmp header format.\n"); |
| - headerType = kUnknown_BitmapHeaderType; |
| + headerType = kUnknown_BmpHeaderType; |
| break; |
| } |
| // We check the size of the header before entering the if statement. |
| @@ -296,7 +248,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| bytesPerColor = 4; |
| } else if (infoBytes >= kBmpOS2V1Bytes) { |
| // The OS2V1 is treated separately because it has a unique format |
| - headerType = kOS2V1_BitmapHeaderType; |
| + headerType = kOS2V1_BmpHeaderType; |
| width = (int) get_short(iBuffer.get(), 0); |
| height = (int) get_short(iBuffer.get(), 2); |
| bitsPerPixel = get_short(iBuffer.get(), 6); |
| @@ -331,31 +283,31 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // Determine the input compression format and set bit masks if necessary |
| uint32_t maskBytes = 0; |
| - BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
| + BmpInputFormat inputFormat = kUnknown_BmpInputFormat; |
| switch (compression) { |
| - case kNone_BitmapCompressionMethod: |
| - inputFormat = kStandard_BitmapInputFormat; |
| + case kNone_BmpCompressionMethod: |
| + inputFormat = kStandard_BmpInputFormat; |
| break; |
| - case k8BitRLE_BitmapCompressionMethod: |
| + case k8BitRLE_BmpCompressionMethod: |
| if (bitsPerPixel != 8) { |
| SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
| bitsPerPixel = 8; |
| } |
| - inputFormat = kRLE_BitmapInputFormat; |
| + inputFormat = kRLE_BmpInputFormat; |
| break; |
| - case k4BitRLE_BitmapCompressionMethod: |
| + case k4BitRLE_BmpCompressionMethod: |
| if (bitsPerPixel != 4) { |
| SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
| bitsPerPixel = 4; |
| } |
| - inputFormat = kRLE_BitmapInputFormat; |
| + inputFormat = kRLE_BmpInputFormat; |
| break; |
| - case kAlphaBitMasks_BitmapCompressionMethod: |
| - case kBitMasks_BitmapCompressionMethod: |
| + case kAlphaBitMasks_BmpCompressionMethod: |
| + case kBitMasks_BmpCompressionMethod: |
| // Load the masks |
| - inputFormat = kBitMask_BitmapInputFormat; |
| + inputFormat = kBitMask_BmpInputFormat; |
| switch (headerType) { |
| - case kInfoV1_BitmapHeaderType: { |
| + case kInfoV1_BmpHeaderType: { |
| // The V1 header stores the bit masks after the header |
| SkAutoTDeleteArray<uint8_t> mBuffer( |
| SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
| @@ -370,10 +322,10 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| inputMasks.blue = get_int(mBuffer.get(), 8); |
| break; |
| } |
| - case kInfoV2_BitmapHeaderType: |
| - case kInfoV3_BitmapHeaderType: |
| - case kInfoV4_BitmapHeaderType: |
| - case kInfoV5_BitmapHeaderType: |
| + case kInfoV2_BmpHeaderType: |
| + case kInfoV3_BmpHeaderType: |
| + case kInfoV4_BmpHeaderType: |
| + case kInfoV5_BmpHeaderType: |
| // Header types are matched based on size. If the header |
| // is V2+, we are guaranteed to be able to read at least |
| // this size. |
| @@ -382,7 +334,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| inputMasks.green = get_int(iBuffer.get(), 40); |
| inputMasks.blue = get_int(iBuffer.get(), 44); |
| break; |
| - case kOS2VX_BitmapHeaderType: |
| + case kOS2VX_BmpHeaderType: |
| // TODO: Decide if we intend to support this. |
| // It is unsupported in the previous version and |
| // in chromium. I have not come across a test case |
| @@ -394,21 +346,21 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| return false; |
| } |
| break; |
| - case kJpeg_BitmapCompressionMethod: |
| + case kJpeg_BmpCompressionMethod: |
| if (24 == bitsPerPixel) { |
| - inputFormat = kRLE_BitmapInputFormat; |
| + inputFormat = kRLE_BmpInputFormat; |
| break; |
| } |
| // Fall through |
| - case kPng_BitmapCompressionMethod: |
| + case kPng_BmpCompressionMethod: |
| // TODO: Decide if we intend to support this. |
| // It is unsupported in the previous version and |
| // in chromium. I think it is used mostly for printers. |
| SkCodecPrintf("Error: compression format not supported.\n"); |
| return false; |
| - case kCMYK_BitmapCompressionMethod: |
| - case kCMYK8BitRLE_BitmapCompressionMethod: |
| - case kCMYK4BitRLE_BitmapCompressionMethod: |
| + case kCMYK_BmpCompressionMethod: |
| + case kCMYK8BitRLE_BmpCompressionMethod: |
| + case kCMYK4BitRLE_BmpCompressionMethod: |
| // TODO: Same as above. |
| SkCodecPrintf("Error: CMYK not supported for bitmap decoding.\n"); |
| return false; |
| @@ -427,9 +379,9 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // out to be fully transparent. |
| // As an exception, V3 bmp-in-ico may use an alpha mask. |
| SkAlphaType alphaType = kOpaque_SkAlphaType; |
| - if ((kInfoV3_BitmapHeaderType == headerType && isIco) || |
| - kInfoV4_BitmapHeaderType == headerType || |
| - kInfoV5_BitmapHeaderType == headerType) { |
| + if ((kInfoV3_BmpHeaderType == headerType && isIco) || |
| + kInfoV4_BmpHeaderType == headerType || |
| + kInfoV5_BmpHeaderType == headerType) { |
| // Header types are matched based on size. If the header is |
| // V3+, we are guaranteed to be able to read at least this size. |
| SkASSERT(infoBytesRemaining > 52); |
| @@ -443,7 +395,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // Additionally, 32 bit bmp-in-icos use the alpha channel. |
| // And, RLE inputs may skip pixels, leaving them as transparent. This |
| // is uncommon, but we cannot be certain that an RLE bmp will be opaque. |
| - if ((isIco && 32 == bitsPerPixel) || (kRLE_BitmapInputFormat == inputFormat)) { |
| + if ((isIco && 32 == bitsPerPixel) || (kRLE_BmpInputFormat == inputFormat)) { |
| alphaType = kUnpremul_SkAlphaType; |
| } |
| @@ -458,11 +410,11 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // which does not map well to any Skia color formats. For this reason, |
| // we will always enable mask mode with 16 bits per pixel. |
| case 16: |
| - if (kBitMask_BitmapInputFormat != inputFormat) { |
| + if (kBitMask_BmpInputFormat != inputFormat) { |
| inputMasks.red = 0x7C00; |
| inputMasks.green = 0x03E0; |
| inputMasks.blue = 0x001F; |
| - inputFormat = kBitMask_BitmapInputFormat; |
| + inputFormat = kBitMask_BmpInputFormat; |
| } |
| break; |
| // We want to decode to kIndex_8 for input formats that are already |
| @@ -474,7 +426,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // However, we cannot in RLE format since we may need to leave some |
| // pixels as transparent. Similarly, we also cannot for ICO images |
| // since we may need to apply a transparent mask. |
| - if (kRLE_BitmapInputFormat != inputFormat && !isIco) { |
| + if (kRLE_BmpInputFormat != inputFormat && !isIco) { |
| colorType = kIndex_8_SkColorType; |
| } |
| case 24: |
| @@ -494,7 +446,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| } |
| // Check for a valid number of total bytes when in RLE mode |
| - if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) { |
| + if (totalBytes <= offset && kRLE_BmpInputFormat == inputFormat) { |
| SkCodecPrintf("Error: RLE requires valid input size.\n"); |
| return false; |
| } |
| @@ -508,25 +460,46 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| } |
| if (codecOut) { |
| - // Return the codec |
| - // We will use ImageInfo to store width, height, suggested color type, and |
| - // suggested alpha type. |
| + // Set the image info |
| const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
| colorType, alphaType); |
| - *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
| - inputFormat, masks.detach(), |
| - numColors, bytesPerColor, |
| - offset - bytesRead, rowOrder, |
| - RLEBytes, isIco)); |
| + |
| + // Return the codec |
| + switch (inputFormat) { |
| + case kStandard_BmpInputFormat: |
| + *codecOut = SkNEW_ARGS(SkBmpStandardCodec, ( |
|
scroggo
2015/07/31 15:05:43
nit: I believe we typically do not end a line with
msarett
2015/08/03 22:52:34
Done.
|
| + imageInfo, stream, bitsPerPixel, numColors, |
| + bytesPerColor, offset - bytesRead, rowOrder, isIco)); |
| + break; |
|
scroggo
2015/07/31 15:05:43
nit: Why not just
return true;
(I do not know if
msarett
2015/08/03 22:52:34
Done.
|
| + case kBitMask_BmpInputFormat: |
| + // Skip to the start of the pixel array. |
| + // We can do this here because there if no color table to read |
|
scroggo
2015/07/31 15:05:43
there is* ?
msarett
2015/08/03 22:52:35
Done.
|
| + // in bit mask mode. |
| + if (stream->skip(offset - bytesRead) != offset - bytesRead) { |
| + SkCodecPrintf("Error: unable to skip to image data.\n"); |
| + return false; |
| + } |
| + |
| + *codecOut = SkNEW_ARGS(SkBmpMaskCodec, ( |
| + imageInfo, stream, bitsPerPixel, masks.detach(), |
| + rowOrder)); |
| + break; |
| + case kRLE_BmpInputFormat: |
| + *codecOut = SkNEW_ARGS(SkBmpRLECodec, ( |
| + imageInfo, stream, bitsPerPixel, numColors, |
| + bytesPerColor, offset - bytesRead, rowOrder, RLEBytes)); |
| + break; |
| + default: |
| + SkASSERT(false); |
| + return false; |
| + } |
| } |
| return true; |
| } |
| /* |
| - * |
| * Creates a bmp decoder |
| * Reads enough of the stream to determine the image format |
| - * |
| */ |
| SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) { |
| SkAutoTDelete<SkStream> streamDeleter(stream); |
| @@ -542,694 +515,12 @@ SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) { |
| } |
| /* |
| - * |
| - * Creates an instance of the decoder |
| - * Called only by NewFromStream |
| - * |
| - */ |
| -SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
| - uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
| - SkMasks* masks, uint32_t numColors, |
| - uint32_t bytesPerColor, uint32_t offset, |
| - RowOrder rowOrder, size_t RLEBytes, bool isIco) |
| - : INHERITED(info, stream) |
| - , fBitsPerPixel(bitsPerPixel) |
| - , fInputFormat(inputFormat) |
| - , fMasks(masks) |
| - , fColorTable(NULL) |
| - , fNumColors(numColors) |
| - , fBytesPerColor(bytesPerColor) |
| - , fOffset(offset) |
| - , fRowOrder(rowOrder) |
| - , fRLEBytes(RLEBytes) |
| - , fIsIco(isIco) |
| - |
| -{} |
| - |
| -/* |
| - * |
| - * Initiates the bitmap decode |
| - * |
| + * Correct an invalid bmp decode, where the encoded image is fully transparent, |
| + * but it is probably intended to be opaque. |
| */ |
| -SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
| - void* dst, size_t dstRowBytes, |
| - const Options& opts, |
| - SkPMColor* inputColorPtr, |
| - int* inputColorCount) { |
| - // Check for proper input and output formats |
| - SkCodec::RewindState rewindState = this->rewindIfNeeded(); |
| - if (rewindState == kCouldNotRewind_RewindState) { |
| - return kCouldNotRewind; |
| - } else if (rewindState == kRewound_RewindState) { |
| - if (!ReadHeader(this->stream(), fIsIco, NULL)) { |
| - return kCouldNotRewind; |
| - } |
| - } |
| - if (opts.fSubset) { |
| - // Subsets are not supported. |
| - return kUnimplemented; |
| - } |
| - if (dstInfo.dimensions() != this->getInfo().dimensions()) { |
| - SkCodecPrintf("Error: scaling not supported.\n"); |
| - return kInvalidScale; |
| - } |
| - if (!conversion_possible(dstInfo, this->getInfo())) { |
| - SkCodecPrintf("Error: cannot convert input type to output type.\n"); |
| - return kInvalidConversion; |
| - } |
| - |
| - // Create the color table if necessary and prepare the stream for decode |
| - // Note that if it is non-NULL, inputColorCount will be modified |
| - if (!createColorTable(dstInfo.alphaType(), inputColorCount)) { |
| - SkCodecPrintf("Error: could not create color table.\n"); |
| - return kInvalidInput; |
| - } |
| - |
| - // Copy the color table to the client if necessary |
| - copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount); |
| - |
| - // Perform the decode |
| - switch (fInputFormat) { |
| - case kBitMask_BitmapInputFormat: |
| - return decodeMask(dstInfo, dst, dstRowBytes, opts); |
| - case kRLE_BitmapInputFormat: |
| - return decodeRLE(dstInfo, dst, dstRowBytes, opts); |
| - case kStandard_BitmapInputFormat: |
| - return decode(dstInfo, dst, dstRowBytes, opts); |
| - default: |
| - SkASSERT(false); |
| - return kInvalidInput; |
| - } |
| -} |
| - |
| -/* |
| - * |
| - * Process the color table for the bmp input |
| - * |
| - */ |
| - bool SkBmpCodec::createColorTable(SkAlphaType alphaType, int* numColors) { |
| - // Allocate memory for color table |
| - uint32_t colorBytes = 0; |
| - uint32_t maxColors = 0; |
| - SkPMColor colorTable[256]; |
| - if (fBitsPerPixel <= 8) { |
| - // Zero is a default for maxColors |
| - // Also set fNumColors to maxColors when it is too large |
| - maxColors = 1 << fBitsPerPixel; |
| - if (fNumColors == 0 || fNumColors >= maxColors) { |
| - fNumColors = maxColors; |
| - } |
| - |
| - // Inform the caller of the number of colors |
| - if (NULL != numColors) { |
| - // We set the number of colors to maxColors in order to ensure |
| - // safe memory accesses. Otherwise, an invalid pixel could |
| - // access memory outside of our color table array. |
| - *numColors = maxColors; |
| - } |
| - |
| - // Read the color table from the stream |
| - colorBytes = fNumColors * fBytesPerColor; |
| - SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
| - if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { |
| - SkCodecPrintf("Error: unable to read color table.\n"); |
| - return false; |
| - } |
| - |
| - // Choose the proper packing function |
| - SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); |
| - switch (alphaType) { |
| - case kOpaque_SkAlphaType: |
| - case kUnpremul_SkAlphaType: |
| - packARGB = &SkPackARGB32NoCheck; |
| - break; |
| - case kPremul_SkAlphaType: |
| - packARGB = &SkPreMultiplyARGB; |
| - break; |
| - default: |
| - // This should not be reached because conversion possible |
| - // should fail if the alpha type is not one of the above |
| - // values. |
| - SkASSERT(false); |
| - packARGB = NULL; |
| - break; |
| - } |
| - |
| - // Fill in the color table |
| - uint32_t i = 0; |
| - for (; i < fNumColors; i++) { |
| - uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); |
| - uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); |
| - uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); |
| - uint8_t alpha; |
| - if (kOpaque_SkAlphaType == alphaType || kRLE_BitmapInputFormat == fInputFormat) { |
| - alpha = 0xFF; |
| - } else { |
| - alpha = (fMasks->getAlphaMask() >> 24) & |
| - get_byte(cBuffer.get(), i*fBytesPerColor + 3); |
| - } |
| - colorTable[i] = packARGB(alpha, red, green, blue); |
| - } |
| - |
| - // To avoid segmentation faults on bad pixel data, fill the end of the |
| - // color table with black. This is the same the behavior as the |
| - // chromium decoder. |
| - for (; i < maxColors; i++) { |
| - colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
| - } |
| - |
| - // Set the color table |
| - fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); |
| - } |
| - |
| - // Bmp-in-Ico files do not use an offset to indicate where the pixel data |
| - // begins. Pixel data always begins immediately after the color table. |
| - if (!fIsIco) { |
| - // Check that we have not read past the pixel array offset |
| - if(fOffset < colorBytes) { |
| - // This may occur on OS 2.1 and other old versions where the color |
| - // table defaults to max size, and the bmp tries to use a smaller |
| - // color table. This is invalid, and our decision is to indicate |
| - // an error, rather than try to guess the intended size of the |
| - // color table. |
| - SkCodecPrintf("Error: pixel data offset less than color table size.\n"); |
| - return false; |
| - } |
| - |
| - // After reading the color table, skip to the start of the pixel array |
| - if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { |
| - SkCodecPrintf("Error: unable to skip to image data.\n"); |
| - return false; |
| - } |
| - } |
| - |
| - // Return true on success |
| - return true; |
| -} |
| - |
| -/* |
| - * |
| - * Get the destination row to start filling from |
| - * Used to fill the remainder of the image on incomplete input |
| - * |
| - */ |
| -static inline void* get_dst_start_row(void* dst, size_t dstRowBytes, int32_t y, |
| - SkBmpCodec::RowOrder rowOrder) { |
| - return (SkBmpCodec::kTopDown_RowOrder == rowOrder) ? |
| - SkTAddOffset<void*>(dst, y * dstRowBytes) : dst; |
| -} |
| - |
| -/* |
| - * |
| - * Performs the bitmap decoding for bit masks input format |
| - * |
| - */ |
| -SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
| - void* dst, size_t dstRowBytes, |
| - const Options& opts) { |
| - // Set constant values |
| - const int width = dstInfo.width(); |
| - const int height = dstInfo.height(); |
| - const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
| - |
| - // Allocate a buffer large enough to hold the full image |
| - SkAutoTDeleteArray<uint8_t> |
| - srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes)); |
| - uint8_t* srcRow = srcBuffer.get(); |
| - |
| - // Create the swizzler |
| - SkAutoTDelete<SkMaskSwizzler> maskSwizzler( |
| - SkMaskSwizzler::CreateMaskSwizzler(dstInfo, fMasks, fBitsPerPixel)); |
| - |
| - // Iterate over rows of the image |
| - bool transparent = true; |
| - for (int y = 0; y < height; y++) { |
| - // Read a row of the input |
| - if (stream()->read(srcRow, rowBytes) != rowBytes) { |
| - SkCodecPrintf("Warning: incomplete input stream.\n"); |
| - // Fill the destination image on failure |
| - SkPMColor fillColor = dstInfo.alphaType() == kOpaque_SkAlphaType ? |
| - SK_ColorBLACK : SK_ColorTRANSPARENT; |
| - if (kNo_ZeroInitialized == opts.fZeroInitialized || 0 != fillColor) { |
| - void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
| - SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, fillColor, |
| - NULL); |
| - } |
| - return kIncompleteInput; |
| - } |
| - |
| - // Decode the row in destination format |
| - int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
| - void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
| - SkSwizzler::ResultAlpha r = maskSwizzler->swizzle(dstRow, srcRow); |
| - transparent &= SkSwizzler::IsTransparent(r); |
| - |
| - // Move to the next row |
| - srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
| - } |
| - |
| - // Some fully transparent bmp images are intended to be opaque. Here, we |
| - // correct for this possibility. |
| - if (transparent) { |
| - const SkImageInfo& opaqueInfo = |
| - dstInfo.makeAlphaType(kOpaque_SkAlphaType); |
| - SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler( |
| - SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, fMasks, fBitsPerPixel)); |
| - srcRow = srcBuffer.get(); |
| - for (int y = 0; y < height; y++) { |
| - // Decode the row in opaque format |
| - int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
| - void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
| - opaqueSwizzler->swizzle(dstRow, srcRow); |
| - |
| - // Move to the next row |
| - srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
| - } |
| - } |
| - |
| - // Finished decoding the entire image |
| - return kSuccess; |
| -} |
| - |
| -/* |
| - * |
| - * Set an RLE pixel using the color table |
| - * |
| - */ |
| -void SkBmpCodec::setRLEPixel(void* dst, size_t dstRowBytes, |
| - const SkImageInfo& dstInfo, uint32_t x, uint32_t y, |
| - uint8_t index) { |
| - // Set the row |
| - int height = dstInfo.height(); |
| - int row; |
| - if (kBottomUp_RowOrder == fRowOrder) { |
| - row = height - y - 1; |
| - } else { |
| - row = y; |
| - } |
| - |
| - // Set the pixel based on destination color type |
| - switch (dstInfo.colorType()) { |
| - case kN32_SkColorType: { |
| - SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
| - row * (int) dstRowBytes); |
| - dstRow[x] = fColorTable->operator[](index); |
| - break; |
| - } |
| - default: |
| - // This case should not be reached. We should catch an invalid |
| - // color type when we check that the conversion is possible. |
| - SkASSERT(false); |
| - break; |
| - } |
| -} |
| - |
| -/* |
| - * |
| - * Set an RLE pixel from R, G, B values |
| - * |
| - */ |
| -void SkBmpCodec::setRLE24Pixel(void* dst, size_t dstRowBytes, |
| - const SkImageInfo& dstInfo, uint32_t x, |
| - uint32_t y, uint8_t red, uint8_t green, |
| - uint8_t blue) { |
| - // Set the row |
| - int height = dstInfo.height(); |
| - int row; |
| - if (kBottomUp_RowOrder == fRowOrder) { |
| - row = height - y - 1; |
| - } else { |
| - row = y; |
| - } |
| - |
| - // Set the pixel based on destination color type |
| - switch (dstInfo.colorType()) { |
| - case kN32_SkColorType: { |
| - SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
| - row * (int) dstRowBytes); |
| - dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); |
| - break; |
| - } |
| - default: |
| - // This case should not be reached. We should catch an invalid |
| - // color type when we check that the conversion is possible. |
| - SkASSERT(false); |
| - break; |
| - } |
| -} |
| - |
| -/* |
| - * |
| - * Performs the bitmap decoding for RLE input format |
| - * RLE decoding is performed all at once, rather than a one row at a time |
| - * |
| - */ |
| -SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
| - void* dst, size_t dstRowBytes, |
| - const Options& opts) { |
| - // Set RLE flags |
| - static const uint8_t RLE_ESCAPE = 0; |
| - static const uint8_t RLE_EOL = 0; |
| - static const uint8_t RLE_EOF = 1; |
| - static const uint8_t RLE_DELTA = 2; |
| - |
| - // Set constant values |
| - const int width = dstInfo.width(); |
| - const int height = dstInfo.height(); |
| - |
| - // Input buffer parameters |
| - uint32_t currByte = 0; |
| - SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); |
| - size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); |
| - if (totalBytes < fRLEBytes) { |
| - SkCodecPrintf("Warning: incomplete RLE file.\n"); |
| - } else if (totalBytes <= 0) { |
| - SkCodecPrintf("Error: could not read RLE image data.\n"); |
| - return kInvalidInput; |
| - } |
| - |
| - // Destination parameters |
| - int x = 0; |
| - int y = 0; |
| - |
| - // Set the background as transparent. Then, if the RLE code skips pixels, |
| - // the skipped pixels will be transparent. |
| - // Because of the need for transparent pixels, kN32 is the only color |
| - // type that makes sense for the destination format. |
| - SkASSERT(kN32_SkColorType == dstInfo.colorType()); |
| - if (kNo_ZeroInitialized == opts.fZeroInitialized) { |
| - SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL); |
| - } |
| - |
| - while (true) { |
| - // Every entry takes at least two bytes |
| - if ((int) totalBytes - currByte < 2) { |
| - SkCodecPrintf("Warning: incomplete RLE input.\n"); |
| - return kIncompleteInput; |
| - } |
| - |
| - // Read the next two bytes. These bytes have different meanings |
| - // depending on their values. In the first interpretation, the first |
| - // byte is an escape flag and the second byte indicates what special |
| - // task to perform. |
| - const uint8_t flag = buffer.get()[currByte++]; |
| - const uint8_t task = buffer.get()[currByte++]; |
| - |
| - // If we have reached a row that is beyond the image size, and the RLE |
| - // code does not indicate end of file, abort and signal a warning. |
| - if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
| - SkCodecPrintf("Warning: invalid RLE input.\n"); |
| - return kIncompleteInput; |
| - } |
| - |
| - // Perform decoding |
| - if (RLE_ESCAPE == flag) { |
| - switch (task) { |
| - case RLE_EOL: |
| - x = 0; |
| - y++; |
| - break; |
| - case RLE_EOF: |
| - return kSuccess; |
| - case RLE_DELTA: { |
| - // Two bytes are needed to specify delta |
| - if ((int) totalBytes - currByte < 2) { |
| - SkCodecPrintf("Warning: incomplete RLE input\n"); |
| - return kIncompleteInput; |
| - } |
| - // Modify x and y |
| - const uint8_t dx = buffer.get()[currByte++]; |
| - const uint8_t dy = buffer.get()[currByte++]; |
| - x += dx; |
| - y += dy; |
| - if (x > width || y > height) { |
| - SkCodecPrintf("Warning: invalid RLE input.\n"); |
| - return kIncompleteInput; |
| - } |
| - break; |
| - } |
| - default: { |
| - // If task does not match any of the above signals, it |
| - // indicates that we have a sequence of non-RLE pixels. |
| - // Furthermore, the value of task is equal to the number |
| - // of pixels to interpret. |
| - uint8_t numPixels = task; |
| - const size_t rowBytes = compute_row_bytes(numPixels, |
| - fBitsPerPixel); |
| - // Abort if setting numPixels moves us off the edge of the |
| - // image. Also abort if there are not enough bytes |
| - // remaining in the stream to set numPixels. |
| - if (x + numPixels > width || |
| - (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
| - SkCodecPrintf("Warning: invalid RLE input.\n"); |
| - return kIncompleteInput; |
| - } |
| - // Set numPixels number of pixels |
| - while (numPixels > 0) { |
| - switch(fBitsPerPixel) { |
| - case 4: { |
| - SkASSERT(currByte < totalBytes); |
| - uint8_t val = buffer.get()[currByte++]; |
| - setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
| - y, val >> 4); |
| - numPixels--; |
| - if (numPixels != 0) { |
| - setRLEPixel(dst, dstRowBytes, dstInfo, |
| - x++, y, val & 0xF); |
| - numPixels--; |
| - } |
| - break; |
| - } |
| - case 8: |
| - SkASSERT(currByte < totalBytes); |
| - setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
| - y, buffer.get()[currByte++]); |
| - numPixels--; |
| - break; |
| - case 24: { |
| - SkASSERT(currByte + 2 < totalBytes); |
| - uint8_t blue = buffer.get()[currByte++]; |
| - uint8_t green = buffer.get()[currByte++]; |
| - uint8_t red = buffer.get()[currByte++]; |
| - setRLE24Pixel(dst, dstRowBytes, dstInfo, |
| - x++, y, red, green, blue); |
| - numPixels--; |
| - } |
| - default: |
| - SkASSERT(false); |
| - return kInvalidInput; |
| - } |
| - } |
| - // Skip a byte if necessary to maintain alignment |
| - if (!SkIsAlign2(rowBytes)) { |
| - currByte++; |
| - } |
| - break; |
| - } |
| - } |
| - } else { |
| - // If the first byte read is not a flag, it indicates the number of |
| - // pixels to set in RLE mode. |
| - const uint8_t numPixels = flag; |
| - const int endX = SkTMin<int>(x + numPixels, width); |
| - |
| - if (24 == fBitsPerPixel) { |
| - // In RLE24, the second byte read is part of the pixel color. |
| - // There are two more required bytes to finish encoding the |
| - // color. |
| - if ((int) totalBytes - currByte < 2) { |
| - SkCodecPrintf("Warning: incomplete RLE input\n"); |
| - return kIncompleteInput; |
| - } |
| - |
| - // Fill the pixels up to endX with the specified color |
| - uint8_t blue = task; |
| - uint8_t green = buffer.get()[currByte++]; |
| - uint8_t red = buffer.get()[currByte++]; |
| - while (x < endX) { |
| - setRLE24Pixel(dst, dstRowBytes, dstInfo, x++, y, red, |
| - green, blue); |
| - } |
| - } else { |
| - // In RLE8 or RLE4, the second byte read gives the index in the |
| - // color table to look up the pixel color. |
| - // RLE8 has one color index that gets repeated |
| - // RLE4 has two color indexes in the upper and lower 4 bits of |
| - // the bytes, which are alternated |
| - uint8_t indices[2] = { task, task }; |
| - if (4 == fBitsPerPixel) { |
| - indices[0] >>= 4; |
| - indices[1] &= 0xf; |
| - } |
| - |
| - // Set the indicated number of pixels |
| - for (int which = 0; x < endX; x++) { |
| - setRLEPixel(dst, dstRowBytes, dstInfo, x, y, |
| - indices[which]); |
| - which = !which; |
| - } |
| - } |
| - } |
| - } |
| -} |
| - |
| -/* |
| - * |
| - * Performs the bitmap decoding for standard input format |
| - * |
| - */ |
| -SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
| - void* dst, size_t dstRowBytes, |
| - const Options& opts) { |
| - // Set constant values |
| - const int width = dstInfo.width(); |
| - const int height = dstInfo.height(); |
| - const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
| - |
| - // Get swizzler configuration and choose the fill value for failures. We will use |
| - // zero as the default palette index, black for opaque images, and transparent for |
| - // non-opaque images. |
| - SkSwizzler::SrcConfig config; |
| - uint32_t fillColorOrIndex; |
| - bool zeroFill = true; |
| - switch (fBitsPerPixel) { |
| - case 1: |
| - config = SkSwizzler::kIndex1; |
| - fillColorOrIndex = 0; |
| - break; |
| - case 2: |
| - config = SkSwizzler::kIndex2; |
| - fillColorOrIndex = 0; |
| - break; |
| - case 4: |
| - config = SkSwizzler::kIndex4; |
| - fillColorOrIndex = 0; |
| - break; |
| - case 8: |
| - config = SkSwizzler::kIndex; |
| - fillColorOrIndex = 0; |
| - break; |
| - case 24: |
| - config = SkSwizzler::kBGR; |
| - fillColorOrIndex = SK_ColorBLACK; |
| - zeroFill = false; |
| - break; |
| - case 32: |
| - if (kOpaque_SkAlphaType == dstInfo.alphaType()) { |
| - config = SkSwizzler::kBGRX; |
| - fillColorOrIndex = SK_ColorBLACK; |
| - zeroFill = false; |
| - } else { |
| - config = SkSwizzler::kBGRA; |
| - fillColorOrIndex = SK_ColorTRANSPARENT; |
| - } |
| - break; |
| - default: |
| - SkASSERT(false); |
| - return kInvalidInput; |
| - } |
| - |
| - // Get a pointer to the color table if it exists |
| - const SkPMColor* colorPtr = NULL != fColorTable.get() ? fColorTable->readColors() : NULL; |
| - |
| - // Create swizzler |
| - SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config, |
| - colorPtr, dstInfo, kNo_ZeroInitialized)); |
| - |
| - // Allocate space for a row buffer and a source for the swizzler |
| - SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
| - |
| - // Iterate over rows of the image |
| - // FIXME: bool transparent = true; |
| - for (int y = 0; y < height; y++) { |
| - // Read a row of the input |
| - if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
| - SkCodecPrintf("Warning: incomplete input stream.\n"); |
| - // Fill the destination image on failure |
| - if (kNo_ZeroInitialized == opts.fZeroInitialized || !zeroFill) { |
| - void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
| - SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, |
| - fillColorOrIndex, colorPtr); |
| - } |
| - return kIncompleteInput; |
| - } |
| - |
| - // Decode the row in destination format |
| - uint32_t row; |
| - if (kTopDown_RowOrder == fRowOrder) { |
| - row = y; |
| - } else { |
| - row = height - 1 - y; |
| - } |
| - |
| - void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
| - swizzler->swizzle(dstRow, srcBuffer.get()); |
| - // FIXME: SkSwizzler::ResultAlpha r = |
| - // swizzler->swizzle(dstRow, srcBuffer.get()); |
| - // FIXME: transparent &= SkSwizzler::IsTransparent(r); |
| - } |
| - |
| - // FIXME: This code exists to match the behavior in the chromium decoder |
| - // and to follow the bmp specification as it relates to alpha masks. It is |
| - // commented out because we have yet to discover a test image that provides |
| - // an alpha mask and uses this decode mode. |
| - |
| - // Now we adjust the output image with some additional behavior that |
| - // SkSwizzler does not support. Firstly, all bmp images that contain |
| - // alpha are masked by the alpha mask. Secondly, many fully transparent |
| - // bmp images are intended to be opaque. Here, we make those corrections |
| - // in the kN32 case. |
| - /* |
| - SkPMColor* dstRow = (SkPMColor*) dst; |
| - if (SkSwizzler::kBGRA == config) { |
| - for (int y = 0; y < height; y++) { |
| - for (int x = 0; x < width; x++) { |
| - if (transparent) { |
| - dstRow[x] |= 0xFF000000; |
| - } else { |
| - dstRow[x] &= alphaMask; |
| - } |
| - dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
| - } |
| - } |
| - } |
| - */ |
| - |
| - // Finally, apply the AND mask for bmp-in-ico images |
| - if (fIsIco) { |
| - // The AND mask is always 1 bit per pixel |
| - const size_t rowBytes = SkAlign4(compute_row_bytes(width, 1)); |
| - |
| - SkPMColor* dstPtr = (SkPMColor*) dst; |
| - for (int y = 0; y < height; y++) { |
| - // The srcBuffer will at least be large enough |
| - if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
| - SkCodecPrintf("Warning: incomplete AND mask for bmp-in-ico.\n"); |
| - return kIncompleteInput; |
| - } |
| - |
| - int row; |
| - if (kBottomUp_RowOrder == fRowOrder) { |
| - row = height - y - 1; |
| - } else { |
| - row = y; |
| - } |
| - |
| - SkPMColor* dstRow = |
| - SkTAddOffset<SkPMColor>(dstPtr, row * dstRowBytes); |
| - |
| - for (int x = 0; x < width; x++) { |
| - int quotient; |
| - int modulus; |
| - SkTDivMod(x, 8, "ient, &modulus); |
| - uint32_t shift = 7 - modulus; |
| - uint32_t alphaBit = |
| - (srcBuffer.get()[quotient] >> shift) & 0x1; |
| - dstRow[x] &= alphaBit - 1; |
| - } |
| - } |
| - } |
| - |
| - // Finished decoding the entire image |
| - return kSuccess; |
| +SkCodec::Result SkBmpCodec::FixTransparentDecode(void* dst, size_t dstRowBytes, |
| + SkPMColor* colorPtr, int* colorCountPtr, SkStream* stream) { |
| + SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream)); |
| + return codec->getPixels(codec->getInfo().makeAlphaType(kOpaque_SkAlphaType), |
| + dst, dstRowBytes, NULL, colorPtr, colorCountPtr); |
| } |