| Index: src/codec/SkBmpRLECodec.cpp
 | 
| diff --git a/src/codec/SkBmpRLECodec.cpp b/src/codec/SkBmpRLECodec.cpp
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..828871cd547be98ef2b6bc537d2ec5c3b2b9e688
 | 
| --- /dev/null
 | 
| +++ b/src/codec/SkBmpRLECodec.cpp
 | 
| @@ -0,0 +1,430 @@
 | 
| +/*
 | 
| + * Copyright 2015 Google Inc.
 | 
| + *
 | 
| + * Use of this source code is governed by a BSD-style license that can be
 | 
| + * found in the LICENSE file.
 | 
| + */
 | 
| +
 | 
| +#include "SkBmpRLECodec.h"
 | 
| +#include "SkCodecPriv.h"
 | 
| +#include "SkColorPriv.h"
 | 
| +#include "SkScanlineDecoder.h"
 | 
| +#include "SkStream.h"
 | 
| +
 | 
| +/*
 | 
| + * Checks if the conversion between the input image and the requested output
 | 
| + * image has been implemented
 | 
| + */
 | 
| +static bool conversion_possible(const SkImageInfo& dst,
 | 
| +                                const SkImageInfo& src) {
 | 
| +    // Ensure that the profile type is unchanged
 | 
| +    if (dst.profileType() != src.profileType()) {
 | 
| +        return false;
 | 
| +    }
 | 
| +
 | 
| +    // Ensure the alpha type is valid
 | 
| +    if (!valid_alpha(dst.alphaType(), src.alphaType())) {
 | 
| +        return false;
 | 
| +    }
 | 
| +
 | 
| +    // Check for supported color types
 | 
| +    switch (dst.colorType()) {
 | 
| +        // Allow output to kN32 from any type of input
 | 
| +        case kN32_SkColorType:
 | 
| +            return true;
 | 
| +        // Allow output to kIndex_8 from compatible inputs
 | 
| +        case kIndex_8_SkColorType:
 | 
| +            return kIndex_8_SkColorType == src.colorType();
 | 
| +        default:
 | 
| +            return false;
 | 
| +    }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| + * Creates an instance of the decoder
 | 
| + * Called only by NewFromStream
 | 
| + */
 | 
| +SkBmpRLECodec::SkBmpRLECodec(const SkImageInfo& info, SkStream* stream,
 | 
| +                             uint16_t bitsPerPixel, uint32_t numColors,
 | 
| +                             uint32_t bytesPerColor, uint32_t offset,
 | 
| +                             SkBmpCodec::RowOrder rowOrder, size_t RLEBytes)
 | 
| +    : INHERITED(info, stream, bitsPerPixel, rowOrder)
 | 
| +    , fColorTable(NULL)
 | 
| +    , fNumColors(this->computeNumColors(numColors))
 | 
| +    , fBytesPerColor(bytesPerColor)
 | 
| +    , fOffset(offset)
 | 
| +    , fStreamBuffer(SkNEW_ARRAY(uint8_t, RLEBytes))
 | 
| +    , fRLEBytes(RLEBytes)
 | 
| +    , fCurrRLEByte(0)
 | 
| +{}
 | 
| +
 | 
| +/*
 | 
| + * Initiates the bitmap decode
 | 
| + */
 | 
| +SkCodec::Result SkBmpRLECodec::onGetPixels(const SkImageInfo& dstInfo,
 | 
| +                                        void* dst, size_t dstRowBytes,
 | 
| +                                        const Options& opts,
 | 
| +                                        SkPMColor* inputColorPtr,
 | 
| +                                        int* inputColorCount) {
 | 
| +    if (!this->handleRewind(false)) {
 | 
| +        return kCouldNotRewind;
 | 
| +    }
 | 
| +    if (opts.fSubset) {
 | 
| +        // Subsets are not supported.
 | 
| +        return kUnimplemented;
 | 
| +    }
 | 
| +    if (dstInfo.dimensions() != this->getInfo().dimensions()) {
 | 
| +        SkCodecPrintf("Error: scaling not supported.\n");
 | 
| +        return kInvalidScale;
 | 
| +    }
 | 
| +    if (!conversion_possible(dstInfo, this->getInfo())) {
 | 
| +        SkCodecPrintf("Error: cannot convert input type to output type.\n");
 | 
| +        return kInvalidConversion;
 | 
| +    }
 | 
| +
 | 
| +    // Create the color table if necessary and prepare the stream for decode
 | 
| +    // Note that if it is non-NULL, inputColorCount will be modified
 | 
| +    if (!this->createColorTable(inputColorCount)) {
 | 
| +        SkCodecPrintf("Error: could not create color table.\n");
 | 
| +        return kInvalidInput;
 | 
| +    }
 | 
| +
 | 
| +    // Copy the color table to the client if necessary
 | 
| +    copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount);
 | 
| +
 | 
| +    // Initialize a swizzler if necessary
 | 
| +    if (!this->initializeStreamBuffer()) {
 | 
| +        SkCodecPrintf("Error: cannot initialize swizzler.\n");
 | 
| +        return kInvalidConversion;
 | 
| +    }
 | 
| +
 | 
| +    // Perform the decode
 | 
| +    return decode(dstInfo, dst, dstRowBytes, opts);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| + * Process the color table for the bmp input
 | 
| + */
 | 
| + bool SkBmpRLECodec::createColorTable(int* numColors) {
 | 
| +    // Allocate memory for color table
 | 
| +    uint32_t colorBytes = 0;
 | 
| +    SkPMColor colorTable[256];
 | 
| +    if (this->bitsPerPixel() <= 8) {
 | 
| +        // Inform the caller of the number of colors
 | 
| +        uint32_t maxColors = 1 << this->bitsPerPixel();
 | 
| +        if (NULL != numColors) {
 | 
| +            // We set the number of colors to maxColors in order to ensure
 | 
| +            // safe memory accesses.  Otherwise, an invalid pixel could
 | 
| +            // access memory outside of our color table array.
 | 
| +            *numColors = maxColors;
 | 
| +        }
 | 
| +
 | 
| +        // Read the color table from the stream
 | 
| +        colorBytes = fNumColors * fBytesPerColor;
 | 
| +        SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes));
 | 
| +        if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) {
 | 
| +            SkCodecPrintf("Error: unable to read color table.\n");
 | 
| +            return false;
 | 
| +        }
 | 
| +
 | 
| +        // Fill in the color table
 | 
| +        uint32_t i = 0;
 | 
| +        for (; i < fNumColors; i++) {
 | 
| +            uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor);
 | 
| +            uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1);
 | 
| +            uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2);
 | 
| +            colorTable[i] = SkPackARGB32NoCheck(0xFF, red, green, blue);
 | 
| +        }
 | 
| +
 | 
| +        // To avoid segmentation faults on bad pixel data, fill the end of the
 | 
| +        // color table with black.  This is the same the behavior as the
 | 
| +        // chromium decoder.
 | 
| +        for (; i < maxColors; i++) {
 | 
| +            colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
 | 
| +        }
 | 
| +
 | 
| +        // Set the color table
 | 
| +        fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors)));
 | 
| +    }
 | 
| +
 | 
| +    // Check that we have not read past the pixel array offset
 | 
| +    if(fOffset < colorBytes) {
 | 
| +        // This may occur on OS 2.1 and other old versions where the color
 | 
| +        // table defaults to max size, and the bmp tries to use a smaller
 | 
| +        // color table.  This is invalid, and our decision is to indicate
 | 
| +        // an error, rather than try to guess the intended size of the
 | 
| +        // color table.
 | 
| +        SkCodecPrintf("Error: pixel data offset less than color table size.\n");
 | 
| +        return false;
 | 
| +    }
 | 
| +
 | 
| +    // After reading the color table, skip to the start of the pixel array
 | 
| +    if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) {
 | 
| +        SkCodecPrintf("Error: unable to skip to image data.\n");
 | 
| +        return false;
 | 
| +    }
 | 
| +
 | 
| +    // Return true on success
 | 
| +    return true;
 | 
| +}
 | 
| +
 | 
| +bool SkBmpRLECodec::initializeStreamBuffer() {
 | 
| +    // Setup a buffer to contain the full input stream
 | 
| +    size_t totalBytes = this->stream()->read(fStreamBuffer.get(), fRLEBytes);
 | 
| +    if (totalBytes < fRLEBytes) {
 | 
| +        fRLEBytes = totalBytes;
 | 
| +        SkCodecPrintf("Warning: incomplete RLE file.\n");
 | 
| +    }
 | 
| +    if (fRLEBytes == 0) {
 | 
| +        SkCodecPrintf("Error: could not read RLE image data.\n");
 | 
| +        return false;
 | 
| +    }
 | 
| +    return true;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| + * Set an RLE pixel using the color table
 | 
| + */
 | 
| +void SkBmpRLECodec::setPixel(void* dst, size_t dstRowBytes,
 | 
| +                             const SkImageInfo& dstInfo, uint32_t x, uint32_t y,
 | 
| +                             uint8_t index) {
 | 
| +    // Set the row
 | 
| +    int height = dstInfo.height();
 | 
| +    int row;
 | 
| +    if (SkBmpCodec::kBottomUp_RowOrder == this->rowOrder()) {
 | 
| +        row = height - y - 1;
 | 
| +    } else {
 | 
| +        row = y;
 | 
| +    }
 | 
| +
 | 
| +    // Set the pixel based on destination color type
 | 
| +    switch (dstInfo.colorType()) {
 | 
| +        case kN32_SkColorType: {
 | 
| +            SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst,
 | 
| +                    row * (int) dstRowBytes);
 | 
| +            dstRow[x] = fColorTable->operator[](index);
 | 
| +            break;
 | 
| +        }
 | 
| +        default:
 | 
| +            // This case should not be reached.  We should catch an invalid
 | 
| +            // color type when we check that the conversion is possible.
 | 
| +            SkASSERT(false);
 | 
| +            break;
 | 
| +    }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| + * Set an RLE pixel from R, G, B values
 | 
| + */
 | 
| +void SkBmpRLECodec::setRGBPixel(void* dst, size_t dstRowBytes,
 | 
| +                                const SkImageInfo& dstInfo, uint32_t x,
 | 
| +                                uint32_t y, uint8_t red, uint8_t green,
 | 
| +                                uint8_t blue) {
 | 
| +    // Set the row
 | 
| +    int height = dstInfo.height();
 | 
| +    int row;
 | 
| +    if (SkBmpCodec::kBottomUp_RowOrder == this->rowOrder()) {
 | 
| +        row = height - y - 1;
 | 
| +    } else {
 | 
| +        row = y;
 | 
| +    }
 | 
| +
 | 
| +    // Set the pixel based on destination color type
 | 
| +    switch (dstInfo.colorType()) {
 | 
| +        case kN32_SkColorType: {
 | 
| +            SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst,
 | 
| +                    row * (int) dstRowBytes);
 | 
| +            dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue);
 | 
| +            break;
 | 
| +        }
 | 
| +        default:
 | 
| +            // This case should not be reached.  We should catch an invalid
 | 
| +            // color type when we check that the conversion is possible.
 | 
| +            SkASSERT(false);
 | 
| +            break;
 | 
| +    }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| + * Performs the bitmap decoding for RLE input format
 | 
| + * RLE decoding is performed all at once, rather than a one row at a time
 | 
| + */
 | 
| +SkCodec::Result SkBmpRLECodec::decode(const SkImageInfo& dstInfo,
 | 
| +                                      void* dst, size_t dstRowBytes,
 | 
| +                                      const Options& opts) {
 | 
| +    // Set RLE flags
 | 
| +    static const uint8_t RLE_ESCAPE = 0;
 | 
| +    static const uint8_t RLE_EOL = 0;
 | 
| +    static const uint8_t RLE_EOF = 1;
 | 
| +    static const uint8_t RLE_DELTA = 2;
 | 
| +
 | 
| +    // Set constant values
 | 
| +    const int width = dstInfo.width();
 | 
| +    const int height = dstInfo.height();
 | 
| +
 | 
| +    // Destination parameters
 | 
| +    int x = 0;
 | 
| +    int y = 0;
 | 
| +
 | 
| +    // Set the background as transparent.  Then, if the RLE code skips pixels,
 | 
| +    // the skipped pixels will be transparent.
 | 
| +    // Because of the need for transparent pixels, kN32 is the only color
 | 
| +    // type that makes sense for the destination format.
 | 
| +    SkASSERT(kN32_SkColorType == dstInfo.colorType());
 | 
| +    if (kNo_ZeroInitialized == opts.fZeroInitialized) {
 | 
| +        SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL);
 | 
| +    }
 | 
| +
 | 
| +    while (true) {
 | 
| +        // If we have reached a row that is beyond the requested height, we have
 | 
| +        // succeeded.
 | 
| +        if (y >= height) {
 | 
| +            // It would be better to check for the EOF marker before returning
 | 
| +            // success, but we may be performing a scanline decode, which
 | 
| +            // may require us to stop before decoding the full height.
 | 
| +            return kSuccess;
 | 
| +        }
 | 
| +
 | 
| +        // Every entry takes at least two bytes
 | 
| +        if ((int) fRLEBytes - fCurrRLEByte < 2) {
 | 
| +            SkCodecPrintf("Warning: incomplete RLE input.\n");
 | 
| +            return kIncompleteInput;
 | 
| +        }
 | 
| +
 | 
| +        // Read the next two bytes.  These bytes have different meanings
 | 
| +        // depending on their values.  In the first interpretation, the first
 | 
| +        // byte is an escape flag and the second byte indicates what special
 | 
| +        // task to perform.
 | 
| +        const uint8_t flag = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +        const uint8_t task = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +
 | 
| +        // Perform decoding
 | 
| +        if (RLE_ESCAPE == flag) {
 | 
| +            switch (task) {
 | 
| +                case RLE_EOL:
 | 
| +                    x = 0;
 | 
| +                    y++;
 | 
| +                    break;
 | 
| +                case RLE_EOF:
 | 
| +                    return kSuccess;
 | 
| +                case RLE_DELTA: {
 | 
| +                    // Two bytes are needed to specify delta
 | 
| +                    if ((int) fRLEBytes - fCurrRLEByte < 2) {
 | 
| +                        SkCodecPrintf("Warning: incomplete RLE input\n");
 | 
| +                        return kIncompleteInput;
 | 
| +                    }
 | 
| +                    // Modify x and y
 | 
| +                    const uint8_t dx = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                    const uint8_t dy = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                    x += dx;
 | 
| +                    y += dy;
 | 
| +                    if (x > width || y > height) {
 | 
| +                        SkCodecPrintf("Warning: invalid RLE input 1.\n");
 | 
| +                        return kIncompleteInput;
 | 
| +                    }
 | 
| +                    break;
 | 
| +                }
 | 
| +                default: {
 | 
| +                    // If task does not match any of the above signals, it
 | 
| +                    // indicates that we have a sequence of non-RLE pixels.
 | 
| +                    // Furthermore, the value of task is equal to the number
 | 
| +                    // of pixels to interpret.
 | 
| +                    uint8_t numPixels = task;
 | 
| +                    const size_t rowBytes = compute_row_bytes(numPixels,
 | 
| +                            this->bitsPerPixel());
 | 
| +                    // Abort if setting numPixels moves us off the edge of the
 | 
| +                    // image.  Also abort if there are not enough bytes
 | 
| +                    // remaining in the stream to set numPixels.
 | 
| +                    if (x + numPixels > width ||
 | 
| +                            (int) fRLEBytes - fCurrRLEByte < SkAlign2(rowBytes)) {
 | 
| +                        SkCodecPrintf("Warning: invalid RLE input 2.\n");
 | 
| +                        return kIncompleteInput;
 | 
| +                    }
 | 
| +                    // Set numPixels number of pixels
 | 
| +                    while (numPixels > 0) {
 | 
| +                        switch(this->bitsPerPixel()) {
 | 
| +                            case 4: {
 | 
| +                                SkASSERT(fCurrRLEByte < fRLEBytes);
 | 
| +                                uint8_t val = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                                setPixel(dst, dstRowBytes, dstInfo, x++,
 | 
| +                                        y, val >> 4);
 | 
| +                                numPixels--;
 | 
| +                                if (numPixels != 0) {
 | 
| +                                    setPixel(dst, dstRowBytes, dstInfo,
 | 
| +                                            x++, y, val & 0xF);
 | 
| +                                    numPixels--;
 | 
| +                                }
 | 
| +                                break;
 | 
| +                            }
 | 
| +                            case 8:
 | 
| +                                SkASSERT(fCurrRLEByte < fRLEBytes);
 | 
| +                                setPixel(dst, dstRowBytes, dstInfo, x++,
 | 
| +                                        y, fStreamBuffer.get()[fCurrRLEByte++]);
 | 
| +                                numPixels--;
 | 
| +                                break;
 | 
| +                            case 24: {
 | 
| +                                SkASSERT(fCurrRLEByte + 2 < fRLEBytes);
 | 
| +                                uint8_t blue = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                                uint8_t green = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                                uint8_t red = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                                setRGBPixel(dst, dstRowBytes, dstInfo,
 | 
| +                                            x++, y, red, green, blue);
 | 
| +                                numPixels--;
 | 
| +                            }
 | 
| +                            default:
 | 
| +                                SkASSERT(false);
 | 
| +                                return kInvalidInput;
 | 
| +                        }
 | 
| +                    }
 | 
| +                    // Skip a byte if necessary to maintain alignment
 | 
| +                    if (!SkIsAlign2(rowBytes)) {
 | 
| +                        fCurrRLEByte++;
 | 
| +                    }
 | 
| +                    break;
 | 
| +                }
 | 
| +            }
 | 
| +        } else {
 | 
| +            // If the first byte read is not a flag, it indicates the number of
 | 
| +            // pixels to set in RLE mode.
 | 
| +            const uint8_t numPixels = flag;
 | 
| +            const int endX = SkTMin<int>(x + numPixels, width);
 | 
| +
 | 
| +            if (24 == this->bitsPerPixel()) {
 | 
| +                // In RLE24, the second byte read is part of the pixel color.
 | 
| +                // There are two more required bytes to finish encoding the
 | 
| +                // color.
 | 
| +                if ((int) fRLEBytes - fCurrRLEByte < 2) {
 | 
| +                    SkCodecPrintf("Warning: incomplete RLE input\n");
 | 
| +                    return kIncompleteInput;
 | 
| +                }
 | 
| +
 | 
| +                // Fill the pixels up to endX with the specified color
 | 
| +                uint8_t blue = task;
 | 
| +                uint8_t green = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                uint8_t red = fStreamBuffer.get()[fCurrRLEByte++];
 | 
| +                while (x < endX) {
 | 
| +                    setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red,
 | 
| +                            green, blue);
 | 
| +                }
 | 
| +            } else {
 | 
| +                // In RLE8 or RLE4, the second byte read gives the index in the
 | 
| +                // color table to look up the pixel color.
 | 
| +                // RLE8 has one color index that gets repeated
 | 
| +                // RLE4 has two color indexes in the upper and lower 4 bits of
 | 
| +                // the bytes, which are alternated
 | 
| +                uint8_t indices[2] = { task, task };
 | 
| +                if (4 == this->bitsPerPixel()) {
 | 
| +                    indices[0] >>= 4;
 | 
| +                    indices[1] &= 0xf;
 | 
| +                }
 | 
| +
 | 
| +                // Set the indicated number of pixels
 | 
| +                for (int which = 0; x < endX; x++) {
 | 
| +                    setPixel(dst, dstRowBytes, dstInfo, x, y,
 | 
| +                            indices[which]);
 | 
| +                    which = !which;
 | 
| +                }
 | 
| +            }
 | 
| +        }
 | 
| +    }
 | 
| +}
 | 
| 
 |