Index: src/codec/SkBmpCodec.cpp |
diff --git a/src/codec/SkBmpCodec.cpp b/src/codec/SkBmpCodec.cpp |
index a1f15691a568a1f90bae3705758820d2592451d6..4383382d8a60a729686be58c2e34f4705ebf8d83 100644 |
--- a/src/codec/SkBmpCodec.cpp |
+++ b/src/codec/SkBmpCodec.cpp |
@@ -6,93 +6,55 @@ |
*/ |
#include "SkBmpCodec.h" |
+#include "SkBmpMaskCodec.h" |
+#include "SkBmpRLECodec.h" |
+#include "SkBmpStandardCodec.h" |
#include "SkCodecPriv.h" |
#include "SkColorPriv.h" |
#include "SkStream.h" |
/* |
- * |
- * Checks if the conversion between the input image and the requested output |
- * image has been implemented |
- * |
+ * Defines the version and type of the second bitmap header |
*/ |
-static bool conversion_possible(const SkImageInfo& dst, |
- const SkImageInfo& src) { |
- // Ensure that the profile type is unchanged |
- if (dst.profileType() != src.profileType()) { |
- return false; |
- } |
- |
- // Check for supported alpha types |
- if (src.alphaType() != dst.alphaType()) { |
- if (kOpaque_SkAlphaType == src.alphaType()) { |
- // If the source is opaque, we must decode to opaque |
- return false; |
- } |
- |
- // The source is not opaque |
- switch (dst.alphaType()) { |
- case kPremul_SkAlphaType: |
- case kUnpremul_SkAlphaType: |
- // The source is not opaque, so either of these is okay |
- break; |
- default: |
- // We cannot decode a non-opaque image to opaque (or unknown) |
- return false; |
- } |
- } |
- |
- // Check for supported color types |
- switch (dst.colorType()) { |
- // Allow output to kN32 from any type of input |
- case kN32_SkColorType: |
- return true; |
- // Allow output to kIndex_8 from compatible inputs |
- case kIndex_8_SkColorType: |
- return kIndex_8_SkColorType == src.colorType(); |
- default: |
- return false; |
- } |
-} |
+enum BmpHeaderType { |
+ kInfoV1_BmpHeaderType, |
+ kInfoV2_BmpHeaderType, |
+ kInfoV3_BmpHeaderType, |
+ kInfoV4_BmpHeaderType, |
+ kInfoV5_BmpHeaderType, |
+ kOS2V1_BmpHeaderType, |
+ kOS2VX_BmpHeaderType, |
+ kUnknown_BmpHeaderType |
+}; |
/* |
- * |
- * Defines the version and type of the second bitmap header |
- * |
+ * Possible bitmap compression types |
*/ |
-enum BitmapHeaderType { |
- kInfoV1_BitmapHeaderType, |
- kInfoV2_BitmapHeaderType, |
- kInfoV3_BitmapHeaderType, |
- kInfoV4_BitmapHeaderType, |
- kInfoV5_BitmapHeaderType, |
- kOS2V1_BitmapHeaderType, |
- kOS2VX_BitmapHeaderType, |
- kUnknown_BitmapHeaderType |
+enum BmpCompressionMethod { |
+ kNone_BmpCompressionMethod = 0, |
+ k8BitRLE_BmpCompressionMethod = 1, |
+ k4BitRLE_BmpCompressionMethod = 2, |
+ kBitMasks_BmpCompressionMethod = 3, |
+ kJpeg_BmpCompressionMethod = 4, |
+ kPng_BmpCompressionMethod = 5, |
+ kAlphaBitMasks_BmpCompressionMethod = 6, |
+ kCMYK_BmpCompressionMethod = 11, |
+ kCMYK8BitRLE_BmpCompressionMethod = 12, |
+ kCMYK4BitRLE_BmpCompressionMethod = 13 |
}; |
/* |
- * |
- * Possible bitmap compression types |
- * |
+ * Used to define the input format of the bmp |
*/ |
-enum BitmapCompressionMethod { |
- kNone_BitmapCompressionMethod = 0, |
- k8BitRLE_BitmapCompressionMethod = 1, |
- k4BitRLE_BitmapCompressionMethod = 2, |
- kBitMasks_BitmapCompressionMethod = 3, |
- kJpeg_BitmapCompressionMethod = 4, |
- kPng_BitmapCompressionMethod = 5, |
- kAlphaBitMasks_BitmapCompressionMethod = 6, |
- kCMYK_BitmapCompressionMethod = 11, |
- kCMYK8BitRLE_BitmapCompressionMethod = 12, |
- kCMYK4BitRLE_BitmapCompressionMethod = 13 |
+enum BmpInputFormat { |
+ kStandard_BmpInputFormat, |
+ kRLE_BmpInputFormat, |
+ kBitMask_BmpInputFormat, |
+ kUnknown_BmpInputFormat |
}; |
/* |
- * |
* Checks the start of the stream to see if the image is a bitmap |
- * |
*/ |
bool SkBmpCodec::IsBmp(SkStream* stream) { |
// TODO: Support "IC", "PT", "CI", "CP", "BA" |
@@ -103,35 +65,29 @@ bool SkBmpCodec::IsBmp(SkStream* stream) { |
} |
/* |
- * |
* Assumes IsBmp was called and returned true |
* Creates a bmp decoder |
* Reads enough of the stream to determine the image format |
- * |
*/ |
SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
return SkBmpCodec::NewFromStream(stream, false); |
} |
/* |
- * |
* Creates a bmp decoder for a bmp embedded in ico |
* Reads enough of the stream to determine the image format |
- * |
*/ |
SkCodec* SkBmpCodec::NewFromIco(SkStream* stream) { |
return SkBmpCodec::NewFromStream(stream, true); |
} |
/* |
- * |
* Read enough of the stream to initialize the SkBmpCodec. Returns a bool |
* representing success or failure. If it returned true, and codecOut was |
* not NULL, it will be set to a new SkBmpCodec. |
* Does *not* take ownership of the passed in SkStream. |
- * |
*/ |
-bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
+bool SkBmpCodec::ReadHeader(SkStream* stream, bool inIco, SkCodec** codecOut) { |
// Header size constants |
static const uint32_t kBmpHeaderBytes = 14; |
static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
@@ -155,7 +111,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
uint32_t infoBytes; |
// Bmps embedded in Icos skip the first Bmp header |
- if (!isIco) { |
+ if (!inIco) { |
// Read the first header and the size of the second header |
SkAutoTDeleteArray<uint8_t> hBuffer( |
SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
@@ -220,7 +176,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
uint16_t bitsPerPixel; |
// The compression method for the pixel data |
- uint32_t compression = kNone_BitmapCompressionMethod; |
+ uint32_t compression = kNone_BmpCompressionMethod; |
// Number of colors in the color table, defaults to 0 or max (see below) |
uint32_t numColors = 0; |
@@ -232,24 +188,24 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
int width, height; |
// Determine image information depending on second header format |
- BitmapHeaderType headerType; |
+ BmpHeaderType headerType; |
if (infoBytes >= kBmpInfoBaseBytes) { |
// Check the version of the header |
switch (infoBytes) { |
case kBmpInfoV1Bytes: |
- headerType = kInfoV1_BitmapHeaderType; |
+ headerType = kInfoV1_BmpHeaderType; |
break; |
case kBmpInfoV2Bytes: |
- headerType = kInfoV2_BitmapHeaderType; |
+ headerType = kInfoV2_BmpHeaderType; |
break; |
case kBmpInfoV3Bytes: |
- headerType = kInfoV3_BitmapHeaderType; |
+ headerType = kInfoV3_BmpHeaderType; |
break; |
case kBmpInfoV4Bytes: |
- headerType = kInfoV4_BitmapHeaderType; |
+ headerType = kInfoV4_BmpHeaderType; |
break; |
case kBmpInfoV5Bytes: |
- headerType = kInfoV5_BitmapHeaderType; |
+ headerType = kInfoV5_BmpHeaderType; |
break; |
case 16: |
case 20: |
@@ -262,7 +218,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
case 48: |
case 60: |
case kBmpOS2V2Bytes: |
- headerType = kOS2VX_BitmapHeaderType; |
+ headerType = kOS2VX_BmpHeaderType; |
break; |
default: |
// We do not signal an error here because there is the |
@@ -271,7 +227,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
// build off of the older versions, so we may still be able to |
// decode the bmp. |
SkCodecPrintf("Warning: unknown bmp header format.\n"); |
- headerType = kUnknown_BitmapHeaderType; |
+ headerType = kUnknown_BmpHeaderType; |
break; |
} |
// We check the size of the header before entering the if statement. |
@@ -296,7 +252,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
bytesPerColor = 4; |
} else if (infoBytes >= kBmpOS2V1Bytes) { |
// The OS2V1 is treated separately because it has a unique format |
- headerType = kOS2V1_BitmapHeaderType; |
+ headerType = kOS2V1_BmpHeaderType; |
width = (int) get_short(iBuffer.get(), 0); |
height = (int) get_short(iBuffer.get(), 2); |
bitsPerPixel = get_short(iBuffer.get(), 6); |
@@ -315,7 +271,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
} |
// The height field for bmp in ico is double the actual height because they |
// contain an XOR mask followed by an AND mask |
- if (isIco) { |
+ if (inIco) { |
height /= 2; |
} |
if (width <= 0 || height <= 0) { |
@@ -331,31 +287,31 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
// Determine the input compression format and set bit masks if necessary |
uint32_t maskBytes = 0; |
- BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
+ BmpInputFormat inputFormat = kUnknown_BmpInputFormat; |
switch (compression) { |
- case kNone_BitmapCompressionMethod: |
- inputFormat = kStandard_BitmapInputFormat; |
+ case kNone_BmpCompressionMethod: |
+ inputFormat = kStandard_BmpInputFormat; |
break; |
- case k8BitRLE_BitmapCompressionMethod: |
+ case k8BitRLE_BmpCompressionMethod: |
if (bitsPerPixel != 8) { |
SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
bitsPerPixel = 8; |
} |
- inputFormat = kRLE_BitmapInputFormat; |
+ inputFormat = kRLE_BmpInputFormat; |
break; |
- case k4BitRLE_BitmapCompressionMethod: |
+ case k4BitRLE_BmpCompressionMethod: |
if (bitsPerPixel != 4) { |
SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
bitsPerPixel = 4; |
} |
- inputFormat = kRLE_BitmapInputFormat; |
+ inputFormat = kRLE_BmpInputFormat; |
break; |
- case kAlphaBitMasks_BitmapCompressionMethod: |
- case kBitMasks_BitmapCompressionMethod: |
+ case kAlphaBitMasks_BmpCompressionMethod: |
+ case kBitMasks_BmpCompressionMethod: |
// Load the masks |
- inputFormat = kBitMask_BitmapInputFormat; |
+ inputFormat = kBitMask_BmpInputFormat; |
switch (headerType) { |
- case kInfoV1_BitmapHeaderType: { |
+ case kInfoV1_BmpHeaderType: { |
// The V1 header stores the bit masks after the header |
SkAutoTDeleteArray<uint8_t> mBuffer( |
SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
@@ -370,10 +326,10 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
inputMasks.blue = get_int(mBuffer.get(), 8); |
break; |
} |
- case kInfoV2_BitmapHeaderType: |
- case kInfoV3_BitmapHeaderType: |
- case kInfoV4_BitmapHeaderType: |
- case kInfoV5_BitmapHeaderType: |
+ case kInfoV2_BmpHeaderType: |
+ case kInfoV3_BmpHeaderType: |
+ case kInfoV4_BmpHeaderType: |
+ case kInfoV5_BmpHeaderType: |
// Header types are matched based on size. If the header |
// is V2+, we are guaranteed to be able to read at least |
// this size. |
@@ -382,7 +338,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
inputMasks.green = get_int(iBuffer.get(), 40); |
inputMasks.blue = get_int(iBuffer.get(), 44); |
break; |
- case kOS2VX_BitmapHeaderType: |
+ case kOS2VX_BmpHeaderType: |
// TODO: Decide if we intend to support this. |
// It is unsupported in the previous version and |
// in chromium. I have not come across a test case |
@@ -394,21 +350,21 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
return false; |
} |
break; |
- case kJpeg_BitmapCompressionMethod: |
+ case kJpeg_BmpCompressionMethod: |
if (24 == bitsPerPixel) { |
- inputFormat = kRLE_BitmapInputFormat; |
+ inputFormat = kRLE_BmpInputFormat; |
break; |
} |
// Fall through |
- case kPng_BitmapCompressionMethod: |
+ case kPng_BmpCompressionMethod: |
// TODO: Decide if we intend to support this. |
// It is unsupported in the previous version and |
// in chromium. I think it is used mostly for printers. |
SkCodecPrintf("Error: compression format not supported.\n"); |
return false; |
- case kCMYK_BitmapCompressionMethod: |
- case kCMYK8BitRLE_BitmapCompressionMethod: |
- case kCMYK4BitRLE_BitmapCompressionMethod: |
+ case kCMYK_BmpCompressionMethod: |
+ case kCMYK8BitRLE_BmpCompressionMethod: |
+ case kCMYK4BitRLE_BmpCompressionMethod: |
// TODO: Same as above. |
SkCodecPrintf("Error: CMYK not supported for bitmap decoding.\n"); |
return false; |
@@ -427,9 +383,9 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
// out to be fully transparent. |
// As an exception, V3 bmp-in-ico may use an alpha mask. |
SkAlphaType alphaType = kOpaque_SkAlphaType; |
- if ((kInfoV3_BitmapHeaderType == headerType && isIco) || |
- kInfoV4_BitmapHeaderType == headerType || |
- kInfoV5_BitmapHeaderType == headerType) { |
+ if ((kInfoV3_BmpHeaderType == headerType && inIco) || |
+ kInfoV4_BmpHeaderType == headerType || |
+ kInfoV5_BmpHeaderType == headerType) { |
// Header types are matched based on size. If the header is |
// V3+, we are guaranteed to be able to read at least this size. |
SkASSERT(infoBytesRemaining > 52); |
@@ -443,7 +399,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
// Additionally, 32 bit bmp-in-icos use the alpha channel. |
// And, RLE inputs may skip pixels, leaving them as transparent. This |
// is uncommon, but we cannot be certain that an RLE bmp will be opaque. |
- if ((isIco && 32 == bitsPerPixel) || (kRLE_BitmapInputFormat == inputFormat)) { |
+ if ((inIco && 32 == bitsPerPixel) || (kRLE_BmpInputFormat == inputFormat)) { |
alphaType = kUnpremul_SkAlphaType; |
} |
@@ -458,11 +414,11 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
// which does not map well to any Skia color formats. For this reason, |
// we will always enable mask mode with 16 bits per pixel. |
case 16: |
- if (kBitMask_BitmapInputFormat != inputFormat) { |
+ if (kBitMask_BmpInputFormat != inputFormat) { |
inputMasks.red = 0x7C00; |
inputMasks.green = 0x03E0; |
inputMasks.blue = 0x001F; |
- inputFormat = kBitMask_BitmapInputFormat; |
+ inputFormat = kBitMask_BmpInputFormat; |
} |
break; |
// We want to decode to kIndex_8 for input formats that are already |
@@ -474,7 +430,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
// However, we cannot in RLE format since we may need to leave some |
// pixels as transparent. Similarly, we also cannot for ICO images |
// since we may need to apply a transparent mask. |
- if (kRLE_BitmapInputFormat != inputFormat && !isIco) { |
+ if (kRLE_BmpInputFormat != inputFormat && !inIco) { |
colorType = kIndex_8_SkColorType; |
} |
case 24: |
@@ -494,7 +450,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
} |
// Check for a valid number of total bytes when in RLE mode |
- if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) { |
+ if (totalBytes <= offset && kRLE_BmpInputFormat == inputFormat) { |
SkCodecPrintf("Error: RLE requires valid input size.\n"); |
return false; |
} |
@@ -502,36 +458,65 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
// Calculate the number of bytes read so far |
const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes; |
- if (!isIco && offset < bytesRead) { |
+ if (!inIco && offset < bytesRead) { |
SkCodecPrintf("Error: pixel data offset less than header size.\n"); |
return false; |
} |
if (codecOut) { |
- // Return the codec |
- // We will use ImageInfo to store width, height, suggested color type, and |
- // suggested alpha type. |
+ // Set the image info |
const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
colorType, alphaType); |
- *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
- inputFormat, masks.detach(), |
- numColors, bytesPerColor, |
- offset - bytesRead, rowOrder, |
- RLEBytes, isIco)); |
+ |
+ // Return the codec |
+ switch (inputFormat) { |
+ case kStandard_BmpInputFormat: |
+ *codecOut = SkNEW_ARGS(SkBmpStandardCodec, (imageInfo, stream, |
+ bitsPerPixel, numColors, bytesPerColor, |
+ offset - bytesRead, rowOrder, inIco)); |
+ return true; |
+ case kBitMask_BmpInputFormat: |
+ // Bmp-in-Ico must be standard mode |
+ if (inIco) { |
+ return false; |
+ } |
+ // Skip to the start of the pixel array. |
+ // We can do this here because there is no color table to read |
+ // in bit mask mode. |
+ if (stream->skip(offset - bytesRead) != offset - bytesRead) { |
+ SkCodecPrintf("Error: unable to skip to image data.\n"); |
+ return false; |
+ } |
+ |
+ *codecOut = SkNEW_ARGS(SkBmpMaskCodec, (imageInfo, stream, |
+ bitsPerPixel, masks.detach(), rowOrder)); |
+ return true; |
+ case kRLE_BmpInputFormat: |
+ // Bmp-in-Ico must be standard mode |
+ if (inIco) { |
+ return false; |
+ } |
+ *codecOut = SkNEW_ARGS(SkBmpRLECodec, ( |
+ imageInfo, stream, bitsPerPixel, numColors, |
+ bytesPerColor, offset - bytesRead, rowOrder, RLEBytes)); |
+ return true; |
+ default: |
+ SkASSERT(false); |
+ return false; |
+ } |
} |
+ |
return true; |
} |
/* |
- * |
* Creates a bmp decoder |
* Reads enough of the stream to determine the image format |
- * |
*/ |
-SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) { |
+SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool inIco) { |
SkAutoTDelete<SkStream> streamDeleter(stream); |
SkCodec* codec = NULL; |
- if (ReadHeader(stream, isIco, &codec)) { |
+ if (ReadHeader(stream, inIco, &codec)) { |
// codec has taken ownership of stream, so we do not need to |
// delete it. |
SkASSERT(codec); |
@@ -541,695 +526,48 @@ SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) { |
return NULL; |
} |
-/* |
- * |
- * Creates an instance of the decoder |
- * Called only by NewFromStream |
- * |
- */ |
SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
- uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
- SkMasks* masks, uint32_t numColors, |
- uint32_t bytesPerColor, uint32_t offset, |
- RowOrder rowOrder, size_t RLEBytes, bool isIco) |
+ uint16_t bitsPerPixel, RowOrder rowOrder) |
: INHERITED(info, stream) |
, fBitsPerPixel(bitsPerPixel) |
- , fInputFormat(inputFormat) |
- , fMasks(masks) |
- , fColorTable(NULL) |
- , fNumColors(numColors) |
- , fBytesPerColor(bytesPerColor) |
- , fOffset(offset) |
, fRowOrder(rowOrder) |
- , fRLEBytes(RLEBytes) |
- , fIsIco(isIco) |
- |
{} |
/* |
- * |
- * Initiates the bitmap decode |
- * |
+ * Rewinds the image stream if necessary |
*/ |
-SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts, |
- SkPMColor* inputColorPtr, |
- int* inputColorCount) { |
- // Check for proper input and output formats |
+bool SkBmpCodec::handleRewind(bool inIco) { |
SkCodec::RewindState rewindState = this->rewindIfNeeded(); |
if (rewindState == kCouldNotRewind_RewindState) { |
- return kCouldNotRewind; |
+ return false; |
} else if (rewindState == kRewound_RewindState) { |
- if (!ReadHeader(this->stream(), fIsIco, NULL)) { |
- return kCouldNotRewind; |
- } |
- } |
- if (opts.fSubset) { |
- // Subsets are not supported. |
- return kUnimplemented; |
- } |
- if (dstInfo.dimensions() != this->getInfo().dimensions()) { |
- SkCodecPrintf("Error: scaling not supported.\n"); |
- return kInvalidScale; |
- } |
- if (!conversion_possible(dstInfo, this->getInfo())) { |
- SkCodecPrintf("Error: cannot convert input type to output type.\n"); |
- return kInvalidConversion; |
- } |
- |
- // Create the color table if necessary and prepare the stream for decode |
- // Note that if it is non-NULL, inputColorCount will be modified |
- if (!createColorTable(dstInfo.alphaType(), inputColorCount)) { |
- SkCodecPrintf("Error: could not create color table.\n"); |
- return kInvalidInput; |
- } |
- |
- // Copy the color table to the client if necessary |
- copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount); |
- |
- // Perform the decode |
- switch (fInputFormat) { |
- case kBitMask_BitmapInputFormat: |
- return decodeMask(dstInfo, dst, dstRowBytes, opts); |
- case kRLE_BitmapInputFormat: |
- return decodeRLE(dstInfo, dst, dstRowBytes, opts); |
- case kStandard_BitmapInputFormat: |
- return decode(dstInfo, dst, dstRowBytes, opts); |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
-} |
- |
-/* |
- * |
- * Process the color table for the bmp input |
- * |
- */ |
- bool SkBmpCodec::createColorTable(SkAlphaType alphaType, int* numColors) { |
- // Allocate memory for color table |
- uint32_t colorBytes = 0; |
- uint32_t maxColors = 0; |
- SkPMColor colorTable[256]; |
- if (fBitsPerPixel <= 8) { |
- // Zero is a default for maxColors |
- // Also set fNumColors to maxColors when it is too large |
- maxColors = 1 << fBitsPerPixel; |
- if (fNumColors == 0 || fNumColors >= maxColors) { |
- fNumColors = maxColors; |
- } |
- |
- // Inform the caller of the number of colors |
- if (NULL != numColors) { |
- // We set the number of colors to maxColors in order to ensure |
- // safe memory accesses. Otherwise, an invalid pixel could |
- // access memory outside of our color table array. |
- *numColors = maxColors; |
- } |
- |
- // Read the color table from the stream |
- colorBytes = fNumColors * fBytesPerColor; |
- SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
- if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { |
- SkCodecPrintf("Error: unable to read color table.\n"); |
+ if (!SkBmpCodec::ReadHeader(this->stream(), inIco, NULL)) { |
return false; |
} |
- |
- // Choose the proper packing function |
- SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); |
- switch (alphaType) { |
- case kOpaque_SkAlphaType: |
- case kUnpremul_SkAlphaType: |
- packARGB = &SkPackARGB32NoCheck; |
- break; |
- case kPremul_SkAlphaType: |
- packARGB = &SkPreMultiplyARGB; |
- break; |
- default: |
- // This should not be reached because conversion possible |
- // should fail if the alpha type is not one of the above |
- // values. |
- SkASSERT(false); |
- packARGB = NULL; |
- break; |
- } |
- |
- // Fill in the color table |
- uint32_t i = 0; |
- for (; i < fNumColors; i++) { |
- uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); |
- uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); |
- uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); |
- uint8_t alpha; |
- if (kOpaque_SkAlphaType == alphaType || kRLE_BitmapInputFormat == fInputFormat) { |
- alpha = 0xFF; |
- } else { |
- alpha = (fMasks->getAlphaMask() >> 24) & |
- get_byte(cBuffer.get(), i*fBytesPerColor + 3); |
- } |
- colorTable[i] = packARGB(alpha, red, green, blue); |
- } |
- |
- // To avoid segmentation faults on bad pixel data, fill the end of the |
- // color table with black. This is the same the behavior as the |
- // chromium decoder. |
- for (; i < maxColors; i++) { |
- colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
- } |
- |
- // Set the color table |
- fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); |
} |
- |
- // Bmp-in-Ico files do not use an offset to indicate where the pixel data |
- // begins. Pixel data always begins immediately after the color table. |
- if (!fIsIco) { |
- // Check that we have not read past the pixel array offset |
- if(fOffset < colorBytes) { |
- // This may occur on OS 2.1 and other old versions where the color |
- // table defaults to max size, and the bmp tries to use a smaller |
- // color table. This is invalid, and our decision is to indicate |
- // an error, rather than try to guess the intended size of the |
- // color table. |
- SkCodecPrintf("Error: pixel data offset less than color table size.\n"); |
- return false; |
- } |
- |
- // After reading the color table, skip to the start of the pixel array |
- if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { |
- SkCodecPrintf("Error: unable to skip to image data.\n"); |
- return false; |
- } |
- } |
- |
- // Return true on success |
return true; |
} |
/* |
- * |
* Get the destination row to start filling from |
- * Used to fill the remainder of the image on incomplete input |
- * |
+ * Used to fill the remainder of the image on incomplete input for bmps |
+ * This is tricky since bmps may be kTopDown or kBottomUp. For kTopDown, |
+ * we start filling from where we left off, but for kBottomUp we start |
+ * filling at the top of the image. |
*/ |
-static inline void* get_dst_start_row(void* dst, size_t dstRowBytes, int32_t y, |
- SkBmpCodec::RowOrder rowOrder) { |
- return (SkBmpCodec::kTopDown_RowOrder == rowOrder) ? |
- SkTAddOffset<void*>(dst, y * dstRowBytes) : dst; |
+void* SkBmpCodec::getDstStartRow(void* dst, size_t dstRowBytes, int32_t y) const { |
+ return (kTopDown_RowOrder == fRowOrder) ? SkTAddOffset<void*>(dst, y * dstRowBytes) : dst; |
} |
/* |
- * |
- * Performs the bitmap decoding for bit masks input format |
- * |
+ * Compute the number of colors in the color table |
*/ |
-SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts) { |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
- |
- // Allocate a buffer large enough to hold the full image |
- SkAutoTDeleteArray<uint8_t> |
- srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes)); |
- uint8_t* srcRow = srcBuffer.get(); |
- |
- // Create the swizzler |
- SkAutoTDelete<SkMaskSwizzler> maskSwizzler( |
- SkMaskSwizzler::CreateMaskSwizzler(dstInfo, fMasks, fBitsPerPixel)); |
- |
- // Iterate over rows of the image |
- bool transparent = true; |
- for (int y = 0; y < height; y++) { |
- // Read a row of the input |
- if (stream()->read(srcRow, rowBytes) != rowBytes) { |
- SkCodecPrintf("Warning: incomplete input stream.\n"); |
- // Fill the destination image on failure |
- SkPMColor fillColor = dstInfo.alphaType() == kOpaque_SkAlphaType ? |
- SK_ColorBLACK : SK_ColorTRANSPARENT; |
- if (kNo_ZeroInitialized == opts.fZeroInitialized || 0 != fillColor) { |
- void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
- SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, fillColor, |
- NULL); |
- } |
- return kIncompleteInput; |
- } |
- |
- // Decode the row in destination format |
- int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
- void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
- SkSwizzler::ResultAlpha r = maskSwizzler->swizzle(dstRow, srcRow); |
- transparent &= SkSwizzler::IsTransparent(r); |
- |
- // Move to the next row |
- srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
- } |
- |
- // Some fully transparent bmp images are intended to be opaque. Here, we |
- // correct for this possibility. |
- if (transparent) { |
- const SkImageInfo& opaqueInfo = |
- dstInfo.makeAlphaType(kOpaque_SkAlphaType); |
- SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler( |
- SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, fMasks, fBitsPerPixel)); |
- srcRow = srcBuffer.get(); |
- for (int y = 0; y < height; y++) { |
- // Decode the row in opaque format |
- int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
- void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
- opaqueSwizzler->swizzle(dstRow, srcRow); |
- |
- // Move to the next row |
- srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
- } |
- } |
- |
- // Finished decoding the entire image |
- return kSuccess; |
-} |
- |
-/* |
- * |
- * Set an RLE pixel using the color table |
- * |
- */ |
-void SkBmpCodec::setRLEPixel(void* dst, size_t dstRowBytes, |
- const SkImageInfo& dstInfo, uint32_t x, uint32_t y, |
- uint8_t index) { |
- // Set the row |
- int height = dstInfo.height(); |
- int row; |
- if (kBottomUp_RowOrder == fRowOrder) { |
- row = height - y - 1; |
- } else { |
- row = y; |
- } |
- |
- // Set the pixel based on destination color type |
- switch (dstInfo.colorType()) { |
- case kN32_SkColorType: { |
- SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
- row * (int) dstRowBytes); |
- dstRow[x] = fColorTable->operator[](index); |
- break; |
- } |
- default: |
- // This case should not be reached. We should catch an invalid |
- // color type when we check that the conversion is possible. |
- SkASSERT(false); |
- break; |
- } |
-} |
- |
-/* |
- * |
- * Set an RLE pixel from R, G, B values |
- * |
- */ |
-void SkBmpCodec::setRLE24Pixel(void* dst, size_t dstRowBytes, |
- const SkImageInfo& dstInfo, uint32_t x, |
- uint32_t y, uint8_t red, uint8_t green, |
- uint8_t blue) { |
- // Set the row |
- int height = dstInfo.height(); |
- int row; |
- if (kBottomUp_RowOrder == fRowOrder) { |
- row = height - y - 1; |
- } else { |
- row = y; |
- } |
- |
- // Set the pixel based on destination color type |
- switch (dstInfo.colorType()) { |
- case kN32_SkColorType: { |
- SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
- row * (int) dstRowBytes); |
- dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); |
- break; |
- } |
- default: |
- // This case should not be reached. We should catch an invalid |
- // color type when we check that the conversion is possible. |
- SkASSERT(false); |
- break; |
- } |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for RLE input format |
- * RLE decoding is performed all at once, rather than a one row at a time |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts) { |
- // Set RLE flags |
- static const uint8_t RLE_ESCAPE = 0; |
- static const uint8_t RLE_EOL = 0; |
- static const uint8_t RLE_EOF = 1; |
- static const uint8_t RLE_DELTA = 2; |
- |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- |
- // Input buffer parameters |
- uint32_t currByte = 0; |
- SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); |
- size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); |
- if (totalBytes < fRLEBytes) { |
- SkCodecPrintf("Warning: incomplete RLE file.\n"); |
- } else if (totalBytes <= 0) { |
- SkCodecPrintf("Error: could not read RLE image data.\n"); |
- return kInvalidInput; |
- } |
- |
- // Destination parameters |
- int x = 0; |
- int y = 0; |
- |
- // Set the background as transparent. Then, if the RLE code skips pixels, |
- // the skipped pixels will be transparent. |
- // Because of the need for transparent pixels, kN32 is the only color |
- // type that makes sense for the destination format. |
- SkASSERT(kN32_SkColorType == dstInfo.colorType()); |
- if (kNo_ZeroInitialized == opts.fZeroInitialized) { |
- SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL); |
- } |
- |
- while (true) { |
- // Every entry takes at least two bytes |
- if ((int) totalBytes - currByte < 2) { |
- SkCodecPrintf("Warning: incomplete RLE input.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Read the next two bytes. These bytes have different meanings |
- // depending on their values. In the first interpretation, the first |
- // byte is an escape flag and the second byte indicates what special |
- // task to perform. |
- const uint8_t flag = buffer.get()[currByte++]; |
- const uint8_t task = buffer.get()[currByte++]; |
- |
- // If we have reached a row that is beyond the image size, and the RLE |
- // code does not indicate end of file, abort and signal a warning. |
- if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
- SkCodecPrintf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- |
- // Perform decoding |
- if (RLE_ESCAPE == flag) { |
- switch (task) { |
- case RLE_EOL: |
- x = 0; |
- y++; |
- break; |
- case RLE_EOF: |
- return kSuccess; |
- case RLE_DELTA: { |
- // Two bytes are needed to specify delta |
- if ((int) totalBytes - currByte < 2) { |
- SkCodecPrintf("Warning: incomplete RLE input\n"); |
- return kIncompleteInput; |
- } |
- // Modify x and y |
- const uint8_t dx = buffer.get()[currByte++]; |
- const uint8_t dy = buffer.get()[currByte++]; |
- x += dx; |
- y += dy; |
- if (x > width || y > height) { |
- SkCodecPrintf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- break; |
- } |
- default: { |
- // If task does not match any of the above signals, it |
- // indicates that we have a sequence of non-RLE pixels. |
- // Furthermore, the value of task is equal to the number |
- // of pixels to interpret. |
- uint8_t numPixels = task; |
- const size_t rowBytes = compute_row_bytes(numPixels, |
- fBitsPerPixel); |
- // Abort if setting numPixels moves us off the edge of the |
- // image. Also abort if there are not enough bytes |
- // remaining in the stream to set numPixels. |
- if (x + numPixels > width || |
- (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
- SkCodecPrintf("Warning: invalid RLE input.\n"); |
- return kIncompleteInput; |
- } |
- // Set numPixels number of pixels |
- while (numPixels > 0) { |
- switch(fBitsPerPixel) { |
- case 4: { |
- SkASSERT(currByte < totalBytes); |
- uint8_t val = buffer.get()[currByte++]; |
- setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
- y, val >> 4); |
- numPixels--; |
- if (numPixels != 0) { |
- setRLEPixel(dst, dstRowBytes, dstInfo, |
- x++, y, val & 0xF); |
- numPixels--; |
- } |
- break; |
- } |
- case 8: |
- SkASSERT(currByte < totalBytes); |
- setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
- y, buffer.get()[currByte++]); |
- numPixels--; |
- break; |
- case 24: { |
- SkASSERT(currByte + 2 < totalBytes); |
- uint8_t blue = buffer.get()[currByte++]; |
- uint8_t green = buffer.get()[currByte++]; |
- uint8_t red = buffer.get()[currByte++]; |
- setRLE24Pixel(dst, dstRowBytes, dstInfo, |
- x++, y, red, green, blue); |
- numPixels--; |
- } |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
- } |
- // Skip a byte if necessary to maintain alignment |
- if (!SkIsAlign2(rowBytes)) { |
- currByte++; |
- } |
- break; |
- } |
- } |
- } else { |
- // If the first byte read is not a flag, it indicates the number of |
- // pixels to set in RLE mode. |
- const uint8_t numPixels = flag; |
- const int endX = SkTMin<int>(x + numPixels, width); |
- |
- if (24 == fBitsPerPixel) { |
- // In RLE24, the second byte read is part of the pixel color. |
- // There are two more required bytes to finish encoding the |
- // color. |
- if ((int) totalBytes - currByte < 2) { |
- SkCodecPrintf("Warning: incomplete RLE input\n"); |
- return kIncompleteInput; |
- } |
- |
- // Fill the pixels up to endX with the specified color |
- uint8_t blue = task; |
- uint8_t green = buffer.get()[currByte++]; |
- uint8_t red = buffer.get()[currByte++]; |
- while (x < endX) { |
- setRLE24Pixel(dst, dstRowBytes, dstInfo, x++, y, red, |
- green, blue); |
- } |
- } else { |
- // In RLE8 or RLE4, the second byte read gives the index in the |
- // color table to look up the pixel color. |
- // RLE8 has one color index that gets repeated |
- // RLE4 has two color indexes in the upper and lower 4 bits of |
- // the bytes, which are alternated |
- uint8_t indices[2] = { task, task }; |
- if (4 == fBitsPerPixel) { |
- indices[0] >>= 4; |
- indices[1] &= 0xf; |
- } |
- |
- // Set the indicated number of pixels |
- for (int which = 0; x < endX; x++) { |
- setRLEPixel(dst, dstRowBytes, dstInfo, x, y, |
- indices[which]); |
- which = !which; |
- } |
- } |
- } |
- } |
-} |
- |
-/* |
- * |
- * Performs the bitmap decoding for standard input format |
- * |
- */ |
-SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
- void* dst, size_t dstRowBytes, |
- const Options& opts) { |
- // Set constant values |
- const int width = dstInfo.width(); |
- const int height = dstInfo.height(); |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
- |
- // Get swizzler configuration and choose the fill value for failures. We will use |
- // zero as the default palette index, black for opaque images, and transparent for |
- // non-opaque images. |
- SkSwizzler::SrcConfig config; |
- uint32_t fillColorOrIndex; |
- bool zeroFill = true; |
- switch (fBitsPerPixel) { |
- case 1: |
- config = SkSwizzler::kIndex1; |
- fillColorOrIndex = 0; |
- break; |
- case 2: |
- config = SkSwizzler::kIndex2; |
- fillColorOrIndex = 0; |
- break; |
- case 4: |
- config = SkSwizzler::kIndex4; |
- fillColorOrIndex = 0; |
- break; |
- case 8: |
- config = SkSwizzler::kIndex; |
- fillColorOrIndex = 0; |
- break; |
- case 24: |
- config = SkSwizzler::kBGR; |
- fillColorOrIndex = SK_ColorBLACK; |
- zeroFill = false; |
- break; |
- case 32: |
- if (kOpaque_SkAlphaType == dstInfo.alphaType()) { |
- config = SkSwizzler::kBGRX; |
- fillColorOrIndex = SK_ColorBLACK; |
- zeroFill = false; |
- } else { |
- config = SkSwizzler::kBGRA; |
- fillColorOrIndex = SK_ColorTRANSPARENT; |
- } |
- break; |
- default: |
- SkASSERT(false); |
- return kInvalidInput; |
- } |
- |
- // Get a pointer to the color table if it exists |
- const SkPMColor* colorPtr = NULL != fColorTable.get() ? fColorTable->readColors() : NULL; |
- |
- // Create swizzler |
- SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config, |
- colorPtr, dstInfo, kNo_ZeroInitialized)); |
- |
- // Allocate space for a row buffer and a source for the swizzler |
- SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
- |
- // Iterate over rows of the image |
- // FIXME: bool transparent = true; |
- for (int y = 0; y < height; y++) { |
- // Read a row of the input |
- if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
- SkCodecPrintf("Warning: incomplete input stream.\n"); |
- // Fill the destination image on failure |
- if (kNo_ZeroInitialized == opts.fZeroInitialized || !zeroFill) { |
- void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
- SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, |
- fillColorOrIndex, colorPtr); |
- } |
- return kIncompleteInput; |
- } |
- |
- // Decode the row in destination format |
- uint32_t row; |
- if (kTopDown_RowOrder == fRowOrder) { |
- row = y; |
- } else { |
- row = height - 1 - y; |
- } |
- |
- void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row); |
- swizzler->swizzle(dstRow, srcBuffer.get()); |
- // FIXME: SkSwizzler::ResultAlpha r = |
- // swizzler->swizzle(dstRow, srcBuffer.get()); |
- // FIXME: transparent &= SkSwizzler::IsTransparent(r); |
- } |
- |
- // FIXME: This code exists to match the behavior in the chromium decoder |
- // and to follow the bmp specification as it relates to alpha masks. It is |
- // commented out because we have yet to discover a test image that provides |
- // an alpha mask and uses this decode mode. |
- |
- // Now we adjust the output image with some additional behavior that |
- // SkSwizzler does not support. Firstly, all bmp images that contain |
- // alpha are masked by the alpha mask. Secondly, many fully transparent |
- // bmp images are intended to be opaque. Here, we make those corrections |
- // in the kN32 case. |
- /* |
- SkPMColor* dstRow = (SkPMColor*) dst; |
- if (SkSwizzler::kBGRA == config) { |
- for (int y = 0; y < height; y++) { |
- for (int x = 0; x < width; x++) { |
- if (transparent) { |
- dstRow[x] |= 0xFF000000; |
- } else { |
- dstRow[x] &= alphaMask; |
- } |
- dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
- } |
- } |
- } |
- */ |
- |
- // Finally, apply the AND mask for bmp-in-ico images |
- if (fIsIco) { |
- // The AND mask is always 1 bit per pixel |
- const size_t rowBytes = SkAlign4(compute_row_bytes(width, 1)); |
- |
- SkPMColor* dstPtr = (SkPMColor*) dst; |
- for (int y = 0; y < height; y++) { |
- // The srcBuffer will at least be large enough |
- if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
- SkCodecPrintf("Warning: incomplete AND mask for bmp-in-ico.\n"); |
- return kIncompleteInput; |
- } |
- |
- int row; |
- if (kBottomUp_RowOrder == fRowOrder) { |
- row = height - y - 1; |
- } else { |
- row = y; |
- } |
- |
- SkPMColor* dstRow = |
- SkTAddOffset<SkPMColor>(dstPtr, row * dstRowBytes); |
- |
- for (int x = 0; x < width; x++) { |
- int quotient; |
- int modulus; |
- SkTDivMod(x, 8, "ient, &modulus); |
- uint32_t shift = 7 - modulus; |
- uint32_t alphaBit = |
- (srcBuffer.get()[quotient] >> shift) & 0x1; |
- dstRow[x] &= alphaBit - 1; |
- } |
- } |
- } |
- |
- // Finished decoding the entire image |
- return kSuccess; |
+uint32_t SkBmpCodec::computeNumColors(uint32_t numColors) { |
+ // Zero is a default for maxColors |
+ // Also set fNumColors to maxColors when it is too large |
+ uint32_t maxColors = 1 << fBitsPerPixel; |
+ if (numColors == 0 || numColors >= maxColors) { |
+ return maxColors; |
+ } |
+ return numColors; |
} |