| Index: src/codec/SkBmpCodec.cpp
|
| diff --git a/src/codec/SkBmpCodec.cpp b/src/codec/SkBmpCodec.cpp
|
| index a1f15691a568a1f90bae3705758820d2592451d6..4383382d8a60a729686be58c2e34f4705ebf8d83 100644
|
| --- a/src/codec/SkBmpCodec.cpp
|
| +++ b/src/codec/SkBmpCodec.cpp
|
| @@ -6,93 +6,55 @@
|
| */
|
|
|
| #include "SkBmpCodec.h"
|
| +#include "SkBmpMaskCodec.h"
|
| +#include "SkBmpRLECodec.h"
|
| +#include "SkBmpStandardCodec.h"
|
| #include "SkCodecPriv.h"
|
| #include "SkColorPriv.h"
|
| #include "SkStream.h"
|
|
|
| /*
|
| - *
|
| - * Checks if the conversion between the input image and the requested output
|
| - * image has been implemented
|
| - *
|
| + * Defines the version and type of the second bitmap header
|
| */
|
| -static bool conversion_possible(const SkImageInfo& dst,
|
| - const SkImageInfo& src) {
|
| - // Ensure that the profile type is unchanged
|
| - if (dst.profileType() != src.profileType()) {
|
| - return false;
|
| - }
|
| -
|
| - // Check for supported alpha types
|
| - if (src.alphaType() != dst.alphaType()) {
|
| - if (kOpaque_SkAlphaType == src.alphaType()) {
|
| - // If the source is opaque, we must decode to opaque
|
| - return false;
|
| - }
|
| -
|
| - // The source is not opaque
|
| - switch (dst.alphaType()) {
|
| - case kPremul_SkAlphaType:
|
| - case kUnpremul_SkAlphaType:
|
| - // The source is not opaque, so either of these is okay
|
| - break;
|
| - default:
|
| - // We cannot decode a non-opaque image to opaque (or unknown)
|
| - return false;
|
| - }
|
| - }
|
| -
|
| - // Check for supported color types
|
| - switch (dst.colorType()) {
|
| - // Allow output to kN32 from any type of input
|
| - case kN32_SkColorType:
|
| - return true;
|
| - // Allow output to kIndex_8 from compatible inputs
|
| - case kIndex_8_SkColorType:
|
| - return kIndex_8_SkColorType == src.colorType();
|
| - default:
|
| - return false;
|
| - }
|
| -}
|
| +enum BmpHeaderType {
|
| + kInfoV1_BmpHeaderType,
|
| + kInfoV2_BmpHeaderType,
|
| + kInfoV3_BmpHeaderType,
|
| + kInfoV4_BmpHeaderType,
|
| + kInfoV5_BmpHeaderType,
|
| + kOS2V1_BmpHeaderType,
|
| + kOS2VX_BmpHeaderType,
|
| + kUnknown_BmpHeaderType
|
| +};
|
|
|
| /*
|
| - *
|
| - * Defines the version and type of the second bitmap header
|
| - *
|
| + * Possible bitmap compression types
|
| */
|
| -enum BitmapHeaderType {
|
| - kInfoV1_BitmapHeaderType,
|
| - kInfoV2_BitmapHeaderType,
|
| - kInfoV3_BitmapHeaderType,
|
| - kInfoV4_BitmapHeaderType,
|
| - kInfoV5_BitmapHeaderType,
|
| - kOS2V1_BitmapHeaderType,
|
| - kOS2VX_BitmapHeaderType,
|
| - kUnknown_BitmapHeaderType
|
| +enum BmpCompressionMethod {
|
| + kNone_BmpCompressionMethod = 0,
|
| + k8BitRLE_BmpCompressionMethod = 1,
|
| + k4BitRLE_BmpCompressionMethod = 2,
|
| + kBitMasks_BmpCompressionMethod = 3,
|
| + kJpeg_BmpCompressionMethod = 4,
|
| + kPng_BmpCompressionMethod = 5,
|
| + kAlphaBitMasks_BmpCompressionMethod = 6,
|
| + kCMYK_BmpCompressionMethod = 11,
|
| + kCMYK8BitRLE_BmpCompressionMethod = 12,
|
| + kCMYK4BitRLE_BmpCompressionMethod = 13
|
| };
|
|
|
| /*
|
| - *
|
| - * Possible bitmap compression types
|
| - *
|
| + * Used to define the input format of the bmp
|
| */
|
| -enum BitmapCompressionMethod {
|
| - kNone_BitmapCompressionMethod = 0,
|
| - k8BitRLE_BitmapCompressionMethod = 1,
|
| - k4BitRLE_BitmapCompressionMethod = 2,
|
| - kBitMasks_BitmapCompressionMethod = 3,
|
| - kJpeg_BitmapCompressionMethod = 4,
|
| - kPng_BitmapCompressionMethod = 5,
|
| - kAlphaBitMasks_BitmapCompressionMethod = 6,
|
| - kCMYK_BitmapCompressionMethod = 11,
|
| - kCMYK8BitRLE_BitmapCompressionMethod = 12,
|
| - kCMYK4BitRLE_BitmapCompressionMethod = 13
|
| +enum BmpInputFormat {
|
| + kStandard_BmpInputFormat,
|
| + kRLE_BmpInputFormat,
|
| + kBitMask_BmpInputFormat,
|
| + kUnknown_BmpInputFormat
|
| };
|
|
|
| /*
|
| - *
|
| * Checks the start of the stream to see if the image is a bitmap
|
| - *
|
| */
|
| bool SkBmpCodec::IsBmp(SkStream* stream) {
|
| // TODO: Support "IC", "PT", "CI", "CP", "BA"
|
| @@ -103,35 +65,29 @@ bool SkBmpCodec::IsBmp(SkStream* stream) {
|
| }
|
|
|
| /*
|
| - *
|
| * Assumes IsBmp was called and returned true
|
| * Creates a bmp decoder
|
| * Reads enough of the stream to determine the image format
|
| - *
|
| */
|
| SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) {
|
| return SkBmpCodec::NewFromStream(stream, false);
|
| }
|
|
|
| /*
|
| - *
|
| * Creates a bmp decoder for a bmp embedded in ico
|
| * Reads enough of the stream to determine the image format
|
| - *
|
| */
|
| SkCodec* SkBmpCodec::NewFromIco(SkStream* stream) {
|
| return SkBmpCodec::NewFromStream(stream, true);
|
| }
|
|
|
| /*
|
| - *
|
| * Read enough of the stream to initialize the SkBmpCodec. Returns a bool
|
| * representing success or failure. If it returned true, and codecOut was
|
| * not NULL, it will be set to a new SkBmpCodec.
|
| * Does *not* take ownership of the passed in SkStream.
|
| - *
|
| */
|
| -bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| +bool SkBmpCodec::ReadHeader(SkStream* stream, bool inIco, SkCodec** codecOut) {
|
| // Header size constants
|
| static const uint32_t kBmpHeaderBytes = 14;
|
| static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4;
|
| @@ -155,7 +111,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| uint32_t infoBytes;
|
|
|
| // Bmps embedded in Icos skip the first Bmp header
|
| - if (!isIco) {
|
| + if (!inIco) {
|
| // Read the first header and the size of the second header
|
| SkAutoTDeleteArray<uint8_t> hBuffer(
|
| SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour));
|
| @@ -220,7 +176,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| uint16_t bitsPerPixel;
|
|
|
| // The compression method for the pixel data
|
| - uint32_t compression = kNone_BitmapCompressionMethod;
|
| + uint32_t compression = kNone_BmpCompressionMethod;
|
|
|
| // Number of colors in the color table, defaults to 0 or max (see below)
|
| uint32_t numColors = 0;
|
| @@ -232,24 +188,24 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| int width, height;
|
|
|
| // Determine image information depending on second header format
|
| - BitmapHeaderType headerType;
|
| + BmpHeaderType headerType;
|
| if (infoBytes >= kBmpInfoBaseBytes) {
|
| // Check the version of the header
|
| switch (infoBytes) {
|
| case kBmpInfoV1Bytes:
|
| - headerType = kInfoV1_BitmapHeaderType;
|
| + headerType = kInfoV1_BmpHeaderType;
|
| break;
|
| case kBmpInfoV2Bytes:
|
| - headerType = kInfoV2_BitmapHeaderType;
|
| + headerType = kInfoV2_BmpHeaderType;
|
| break;
|
| case kBmpInfoV3Bytes:
|
| - headerType = kInfoV3_BitmapHeaderType;
|
| + headerType = kInfoV3_BmpHeaderType;
|
| break;
|
| case kBmpInfoV4Bytes:
|
| - headerType = kInfoV4_BitmapHeaderType;
|
| + headerType = kInfoV4_BmpHeaderType;
|
| break;
|
| case kBmpInfoV5Bytes:
|
| - headerType = kInfoV5_BitmapHeaderType;
|
| + headerType = kInfoV5_BmpHeaderType;
|
| break;
|
| case 16:
|
| case 20:
|
| @@ -262,7 +218,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| case 48:
|
| case 60:
|
| case kBmpOS2V2Bytes:
|
| - headerType = kOS2VX_BitmapHeaderType;
|
| + headerType = kOS2VX_BmpHeaderType;
|
| break;
|
| default:
|
| // We do not signal an error here because there is the
|
| @@ -271,7 +227,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| // build off of the older versions, so we may still be able to
|
| // decode the bmp.
|
| SkCodecPrintf("Warning: unknown bmp header format.\n");
|
| - headerType = kUnknown_BitmapHeaderType;
|
| + headerType = kUnknown_BmpHeaderType;
|
| break;
|
| }
|
| // We check the size of the header before entering the if statement.
|
| @@ -296,7 +252,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| bytesPerColor = 4;
|
| } else if (infoBytes >= kBmpOS2V1Bytes) {
|
| // The OS2V1 is treated separately because it has a unique format
|
| - headerType = kOS2V1_BitmapHeaderType;
|
| + headerType = kOS2V1_BmpHeaderType;
|
| width = (int) get_short(iBuffer.get(), 0);
|
| height = (int) get_short(iBuffer.get(), 2);
|
| bitsPerPixel = get_short(iBuffer.get(), 6);
|
| @@ -315,7 +271,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| }
|
| // The height field for bmp in ico is double the actual height because they
|
| // contain an XOR mask followed by an AND mask
|
| - if (isIco) {
|
| + if (inIco) {
|
| height /= 2;
|
| }
|
| if (width <= 0 || height <= 0) {
|
| @@ -331,31 +287,31 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
|
|
| // Determine the input compression format and set bit masks if necessary
|
| uint32_t maskBytes = 0;
|
| - BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat;
|
| + BmpInputFormat inputFormat = kUnknown_BmpInputFormat;
|
| switch (compression) {
|
| - case kNone_BitmapCompressionMethod:
|
| - inputFormat = kStandard_BitmapInputFormat;
|
| + case kNone_BmpCompressionMethod:
|
| + inputFormat = kStandard_BmpInputFormat;
|
| break;
|
| - case k8BitRLE_BitmapCompressionMethod:
|
| + case k8BitRLE_BmpCompressionMethod:
|
| if (bitsPerPixel != 8) {
|
| SkCodecPrintf("Warning: correcting invalid bitmap format.\n");
|
| bitsPerPixel = 8;
|
| }
|
| - inputFormat = kRLE_BitmapInputFormat;
|
| + inputFormat = kRLE_BmpInputFormat;
|
| break;
|
| - case k4BitRLE_BitmapCompressionMethod:
|
| + case k4BitRLE_BmpCompressionMethod:
|
| if (bitsPerPixel != 4) {
|
| SkCodecPrintf("Warning: correcting invalid bitmap format.\n");
|
| bitsPerPixel = 4;
|
| }
|
| - inputFormat = kRLE_BitmapInputFormat;
|
| + inputFormat = kRLE_BmpInputFormat;
|
| break;
|
| - case kAlphaBitMasks_BitmapCompressionMethod:
|
| - case kBitMasks_BitmapCompressionMethod:
|
| + case kAlphaBitMasks_BmpCompressionMethod:
|
| + case kBitMasks_BmpCompressionMethod:
|
| // Load the masks
|
| - inputFormat = kBitMask_BitmapInputFormat;
|
| + inputFormat = kBitMask_BmpInputFormat;
|
| switch (headerType) {
|
| - case kInfoV1_BitmapHeaderType: {
|
| + case kInfoV1_BmpHeaderType: {
|
| // The V1 header stores the bit masks after the header
|
| SkAutoTDeleteArray<uint8_t> mBuffer(
|
| SkNEW_ARRAY(uint8_t, kBmpMaskBytes));
|
| @@ -370,10 +326,10 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| inputMasks.blue = get_int(mBuffer.get(), 8);
|
| break;
|
| }
|
| - case kInfoV2_BitmapHeaderType:
|
| - case kInfoV3_BitmapHeaderType:
|
| - case kInfoV4_BitmapHeaderType:
|
| - case kInfoV5_BitmapHeaderType:
|
| + case kInfoV2_BmpHeaderType:
|
| + case kInfoV3_BmpHeaderType:
|
| + case kInfoV4_BmpHeaderType:
|
| + case kInfoV5_BmpHeaderType:
|
| // Header types are matched based on size. If the header
|
| // is V2+, we are guaranteed to be able to read at least
|
| // this size.
|
| @@ -382,7 +338,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| inputMasks.green = get_int(iBuffer.get(), 40);
|
| inputMasks.blue = get_int(iBuffer.get(), 44);
|
| break;
|
| - case kOS2VX_BitmapHeaderType:
|
| + case kOS2VX_BmpHeaderType:
|
| // TODO: Decide if we intend to support this.
|
| // It is unsupported in the previous version and
|
| // in chromium. I have not come across a test case
|
| @@ -394,21 +350,21 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| return false;
|
| }
|
| break;
|
| - case kJpeg_BitmapCompressionMethod:
|
| + case kJpeg_BmpCompressionMethod:
|
| if (24 == bitsPerPixel) {
|
| - inputFormat = kRLE_BitmapInputFormat;
|
| + inputFormat = kRLE_BmpInputFormat;
|
| break;
|
| }
|
| // Fall through
|
| - case kPng_BitmapCompressionMethod:
|
| + case kPng_BmpCompressionMethod:
|
| // TODO: Decide if we intend to support this.
|
| // It is unsupported in the previous version and
|
| // in chromium. I think it is used mostly for printers.
|
| SkCodecPrintf("Error: compression format not supported.\n");
|
| return false;
|
| - case kCMYK_BitmapCompressionMethod:
|
| - case kCMYK8BitRLE_BitmapCompressionMethod:
|
| - case kCMYK4BitRLE_BitmapCompressionMethod:
|
| + case kCMYK_BmpCompressionMethod:
|
| + case kCMYK8BitRLE_BmpCompressionMethod:
|
| + case kCMYK4BitRLE_BmpCompressionMethod:
|
| // TODO: Same as above.
|
| SkCodecPrintf("Error: CMYK not supported for bitmap decoding.\n");
|
| return false;
|
| @@ -427,9 +383,9 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| // out to be fully transparent.
|
| // As an exception, V3 bmp-in-ico may use an alpha mask.
|
| SkAlphaType alphaType = kOpaque_SkAlphaType;
|
| - if ((kInfoV3_BitmapHeaderType == headerType && isIco) ||
|
| - kInfoV4_BitmapHeaderType == headerType ||
|
| - kInfoV5_BitmapHeaderType == headerType) {
|
| + if ((kInfoV3_BmpHeaderType == headerType && inIco) ||
|
| + kInfoV4_BmpHeaderType == headerType ||
|
| + kInfoV5_BmpHeaderType == headerType) {
|
| // Header types are matched based on size. If the header is
|
| // V3+, we are guaranteed to be able to read at least this size.
|
| SkASSERT(infoBytesRemaining > 52);
|
| @@ -443,7 +399,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| // Additionally, 32 bit bmp-in-icos use the alpha channel.
|
| // And, RLE inputs may skip pixels, leaving them as transparent. This
|
| // is uncommon, but we cannot be certain that an RLE bmp will be opaque.
|
| - if ((isIco && 32 == bitsPerPixel) || (kRLE_BitmapInputFormat == inputFormat)) {
|
| + if ((inIco && 32 == bitsPerPixel) || (kRLE_BmpInputFormat == inputFormat)) {
|
| alphaType = kUnpremul_SkAlphaType;
|
| }
|
|
|
| @@ -458,11 +414,11 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| // which does not map well to any Skia color formats. For this reason,
|
| // we will always enable mask mode with 16 bits per pixel.
|
| case 16:
|
| - if (kBitMask_BitmapInputFormat != inputFormat) {
|
| + if (kBitMask_BmpInputFormat != inputFormat) {
|
| inputMasks.red = 0x7C00;
|
| inputMasks.green = 0x03E0;
|
| inputMasks.blue = 0x001F;
|
| - inputFormat = kBitMask_BitmapInputFormat;
|
| + inputFormat = kBitMask_BmpInputFormat;
|
| }
|
| break;
|
| // We want to decode to kIndex_8 for input formats that are already
|
| @@ -474,7 +430,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| // However, we cannot in RLE format since we may need to leave some
|
| // pixels as transparent. Similarly, we also cannot for ICO images
|
| // since we may need to apply a transparent mask.
|
| - if (kRLE_BitmapInputFormat != inputFormat && !isIco) {
|
| + if (kRLE_BmpInputFormat != inputFormat && !inIco) {
|
| colorType = kIndex_8_SkColorType;
|
| }
|
| case 24:
|
| @@ -494,7 +450,7 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
| }
|
|
|
| // Check for a valid number of total bytes when in RLE mode
|
| - if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) {
|
| + if (totalBytes <= offset && kRLE_BmpInputFormat == inputFormat) {
|
| SkCodecPrintf("Error: RLE requires valid input size.\n");
|
| return false;
|
| }
|
| @@ -502,36 +458,65 @@ bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) {
|
|
|
| // Calculate the number of bytes read so far
|
| const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes;
|
| - if (!isIco && offset < bytesRead) {
|
| + if (!inIco && offset < bytesRead) {
|
| SkCodecPrintf("Error: pixel data offset less than header size.\n");
|
| return false;
|
| }
|
|
|
| if (codecOut) {
|
| - // Return the codec
|
| - // We will use ImageInfo to store width, height, suggested color type, and
|
| - // suggested alpha type.
|
| + // Set the image info
|
| const SkImageInfo& imageInfo = SkImageInfo::Make(width, height,
|
| colorType, alphaType);
|
| - *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel,
|
| - inputFormat, masks.detach(),
|
| - numColors, bytesPerColor,
|
| - offset - bytesRead, rowOrder,
|
| - RLEBytes, isIco));
|
| +
|
| + // Return the codec
|
| + switch (inputFormat) {
|
| + case kStandard_BmpInputFormat:
|
| + *codecOut = SkNEW_ARGS(SkBmpStandardCodec, (imageInfo, stream,
|
| + bitsPerPixel, numColors, bytesPerColor,
|
| + offset - bytesRead, rowOrder, inIco));
|
| + return true;
|
| + case kBitMask_BmpInputFormat:
|
| + // Bmp-in-Ico must be standard mode
|
| + if (inIco) {
|
| + return false;
|
| + }
|
| + // Skip to the start of the pixel array.
|
| + // We can do this here because there is no color table to read
|
| + // in bit mask mode.
|
| + if (stream->skip(offset - bytesRead) != offset - bytesRead) {
|
| + SkCodecPrintf("Error: unable to skip to image data.\n");
|
| + return false;
|
| + }
|
| +
|
| + *codecOut = SkNEW_ARGS(SkBmpMaskCodec, (imageInfo, stream,
|
| + bitsPerPixel, masks.detach(), rowOrder));
|
| + return true;
|
| + case kRLE_BmpInputFormat:
|
| + // Bmp-in-Ico must be standard mode
|
| + if (inIco) {
|
| + return false;
|
| + }
|
| + *codecOut = SkNEW_ARGS(SkBmpRLECodec, (
|
| + imageInfo, stream, bitsPerPixel, numColors,
|
| + bytesPerColor, offset - bytesRead, rowOrder, RLEBytes));
|
| + return true;
|
| + default:
|
| + SkASSERT(false);
|
| + return false;
|
| + }
|
| }
|
| +
|
| return true;
|
| }
|
|
|
| /*
|
| - *
|
| * Creates a bmp decoder
|
| * Reads enough of the stream to determine the image format
|
| - *
|
| */
|
| -SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) {
|
| +SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool inIco) {
|
| SkAutoTDelete<SkStream> streamDeleter(stream);
|
| SkCodec* codec = NULL;
|
| - if (ReadHeader(stream, isIco, &codec)) {
|
| + if (ReadHeader(stream, inIco, &codec)) {
|
| // codec has taken ownership of stream, so we do not need to
|
| // delete it.
|
| SkASSERT(codec);
|
| @@ -541,695 +526,48 @@ SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) {
|
| return NULL;
|
| }
|
|
|
| -/*
|
| - *
|
| - * Creates an instance of the decoder
|
| - * Called only by NewFromStream
|
| - *
|
| - */
|
| SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream,
|
| - uint16_t bitsPerPixel, BitmapInputFormat inputFormat,
|
| - SkMasks* masks, uint32_t numColors,
|
| - uint32_t bytesPerColor, uint32_t offset,
|
| - RowOrder rowOrder, size_t RLEBytes, bool isIco)
|
| + uint16_t bitsPerPixel, RowOrder rowOrder)
|
| : INHERITED(info, stream)
|
| , fBitsPerPixel(bitsPerPixel)
|
| - , fInputFormat(inputFormat)
|
| - , fMasks(masks)
|
| - , fColorTable(NULL)
|
| - , fNumColors(numColors)
|
| - , fBytesPerColor(bytesPerColor)
|
| - , fOffset(offset)
|
| , fRowOrder(rowOrder)
|
| - , fRLEBytes(RLEBytes)
|
| - , fIsIco(isIco)
|
| -
|
| {}
|
|
|
| /*
|
| - *
|
| - * Initiates the bitmap decode
|
| - *
|
| + * Rewinds the image stream if necessary
|
| */
|
| -SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo,
|
| - void* dst, size_t dstRowBytes,
|
| - const Options& opts,
|
| - SkPMColor* inputColorPtr,
|
| - int* inputColorCount) {
|
| - // Check for proper input and output formats
|
| +bool SkBmpCodec::handleRewind(bool inIco) {
|
| SkCodec::RewindState rewindState = this->rewindIfNeeded();
|
| if (rewindState == kCouldNotRewind_RewindState) {
|
| - return kCouldNotRewind;
|
| + return false;
|
| } else if (rewindState == kRewound_RewindState) {
|
| - if (!ReadHeader(this->stream(), fIsIco, NULL)) {
|
| - return kCouldNotRewind;
|
| - }
|
| - }
|
| - if (opts.fSubset) {
|
| - // Subsets are not supported.
|
| - return kUnimplemented;
|
| - }
|
| - if (dstInfo.dimensions() != this->getInfo().dimensions()) {
|
| - SkCodecPrintf("Error: scaling not supported.\n");
|
| - return kInvalidScale;
|
| - }
|
| - if (!conversion_possible(dstInfo, this->getInfo())) {
|
| - SkCodecPrintf("Error: cannot convert input type to output type.\n");
|
| - return kInvalidConversion;
|
| - }
|
| -
|
| - // Create the color table if necessary and prepare the stream for decode
|
| - // Note that if it is non-NULL, inputColorCount will be modified
|
| - if (!createColorTable(dstInfo.alphaType(), inputColorCount)) {
|
| - SkCodecPrintf("Error: could not create color table.\n");
|
| - return kInvalidInput;
|
| - }
|
| -
|
| - // Copy the color table to the client if necessary
|
| - copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount);
|
| -
|
| - // Perform the decode
|
| - switch (fInputFormat) {
|
| - case kBitMask_BitmapInputFormat:
|
| - return decodeMask(dstInfo, dst, dstRowBytes, opts);
|
| - case kRLE_BitmapInputFormat:
|
| - return decodeRLE(dstInfo, dst, dstRowBytes, opts);
|
| - case kStandard_BitmapInputFormat:
|
| - return decode(dstInfo, dst, dstRowBytes, opts);
|
| - default:
|
| - SkASSERT(false);
|
| - return kInvalidInput;
|
| - }
|
| -}
|
| -
|
| -/*
|
| - *
|
| - * Process the color table for the bmp input
|
| - *
|
| - */
|
| - bool SkBmpCodec::createColorTable(SkAlphaType alphaType, int* numColors) {
|
| - // Allocate memory for color table
|
| - uint32_t colorBytes = 0;
|
| - uint32_t maxColors = 0;
|
| - SkPMColor colorTable[256];
|
| - if (fBitsPerPixel <= 8) {
|
| - // Zero is a default for maxColors
|
| - // Also set fNumColors to maxColors when it is too large
|
| - maxColors = 1 << fBitsPerPixel;
|
| - if (fNumColors == 0 || fNumColors >= maxColors) {
|
| - fNumColors = maxColors;
|
| - }
|
| -
|
| - // Inform the caller of the number of colors
|
| - if (NULL != numColors) {
|
| - // We set the number of colors to maxColors in order to ensure
|
| - // safe memory accesses. Otherwise, an invalid pixel could
|
| - // access memory outside of our color table array.
|
| - *numColors = maxColors;
|
| - }
|
| -
|
| - // Read the color table from the stream
|
| - colorBytes = fNumColors * fBytesPerColor;
|
| - SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes));
|
| - if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) {
|
| - SkCodecPrintf("Error: unable to read color table.\n");
|
| + if (!SkBmpCodec::ReadHeader(this->stream(), inIco, NULL)) {
|
| return false;
|
| }
|
| -
|
| - // Choose the proper packing function
|
| - SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t);
|
| - switch (alphaType) {
|
| - case kOpaque_SkAlphaType:
|
| - case kUnpremul_SkAlphaType:
|
| - packARGB = &SkPackARGB32NoCheck;
|
| - break;
|
| - case kPremul_SkAlphaType:
|
| - packARGB = &SkPreMultiplyARGB;
|
| - break;
|
| - default:
|
| - // This should not be reached because conversion possible
|
| - // should fail if the alpha type is not one of the above
|
| - // values.
|
| - SkASSERT(false);
|
| - packARGB = NULL;
|
| - break;
|
| - }
|
| -
|
| - // Fill in the color table
|
| - uint32_t i = 0;
|
| - for (; i < fNumColors; i++) {
|
| - uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor);
|
| - uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1);
|
| - uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2);
|
| - uint8_t alpha;
|
| - if (kOpaque_SkAlphaType == alphaType || kRLE_BitmapInputFormat == fInputFormat) {
|
| - alpha = 0xFF;
|
| - } else {
|
| - alpha = (fMasks->getAlphaMask() >> 24) &
|
| - get_byte(cBuffer.get(), i*fBytesPerColor + 3);
|
| - }
|
| - colorTable[i] = packARGB(alpha, red, green, blue);
|
| - }
|
| -
|
| - // To avoid segmentation faults on bad pixel data, fill the end of the
|
| - // color table with black. This is the same the behavior as the
|
| - // chromium decoder.
|
| - for (; i < maxColors; i++) {
|
| - colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
|
| - }
|
| -
|
| - // Set the color table
|
| - fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors)));
|
| }
|
| -
|
| - // Bmp-in-Ico files do not use an offset to indicate where the pixel data
|
| - // begins. Pixel data always begins immediately after the color table.
|
| - if (!fIsIco) {
|
| - // Check that we have not read past the pixel array offset
|
| - if(fOffset < colorBytes) {
|
| - // This may occur on OS 2.1 and other old versions where the color
|
| - // table defaults to max size, and the bmp tries to use a smaller
|
| - // color table. This is invalid, and our decision is to indicate
|
| - // an error, rather than try to guess the intended size of the
|
| - // color table.
|
| - SkCodecPrintf("Error: pixel data offset less than color table size.\n");
|
| - return false;
|
| - }
|
| -
|
| - // After reading the color table, skip to the start of the pixel array
|
| - if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) {
|
| - SkCodecPrintf("Error: unable to skip to image data.\n");
|
| - return false;
|
| - }
|
| - }
|
| -
|
| - // Return true on success
|
| return true;
|
| }
|
|
|
| /*
|
| - *
|
| * Get the destination row to start filling from
|
| - * Used to fill the remainder of the image on incomplete input
|
| - *
|
| + * Used to fill the remainder of the image on incomplete input for bmps
|
| + * This is tricky since bmps may be kTopDown or kBottomUp. For kTopDown,
|
| + * we start filling from where we left off, but for kBottomUp we start
|
| + * filling at the top of the image.
|
| */
|
| -static inline void* get_dst_start_row(void* dst, size_t dstRowBytes, int32_t y,
|
| - SkBmpCodec::RowOrder rowOrder) {
|
| - return (SkBmpCodec::kTopDown_RowOrder == rowOrder) ?
|
| - SkTAddOffset<void*>(dst, y * dstRowBytes) : dst;
|
| +void* SkBmpCodec::getDstStartRow(void* dst, size_t dstRowBytes, int32_t y) const {
|
| + return (kTopDown_RowOrder == fRowOrder) ? SkTAddOffset<void*>(dst, y * dstRowBytes) : dst;
|
| }
|
|
|
| /*
|
| - *
|
| - * Performs the bitmap decoding for bit masks input format
|
| - *
|
| + * Compute the number of colors in the color table
|
| */
|
| -SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo,
|
| - void* dst, size_t dstRowBytes,
|
| - const Options& opts) {
|
| - // Set constant values
|
| - const int width = dstInfo.width();
|
| - const int height = dstInfo.height();
|
| - const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
|
| -
|
| - // Allocate a buffer large enough to hold the full image
|
| - SkAutoTDeleteArray<uint8_t>
|
| - srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes));
|
| - uint8_t* srcRow = srcBuffer.get();
|
| -
|
| - // Create the swizzler
|
| - SkAutoTDelete<SkMaskSwizzler> maskSwizzler(
|
| - SkMaskSwizzler::CreateMaskSwizzler(dstInfo, fMasks, fBitsPerPixel));
|
| -
|
| - // Iterate over rows of the image
|
| - bool transparent = true;
|
| - for (int y = 0; y < height; y++) {
|
| - // Read a row of the input
|
| - if (stream()->read(srcRow, rowBytes) != rowBytes) {
|
| - SkCodecPrintf("Warning: incomplete input stream.\n");
|
| - // Fill the destination image on failure
|
| - SkPMColor fillColor = dstInfo.alphaType() == kOpaque_SkAlphaType ?
|
| - SK_ColorBLACK : SK_ColorTRANSPARENT;
|
| - if (kNo_ZeroInitialized == opts.fZeroInitialized || 0 != fillColor) {
|
| - void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder);
|
| - SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, fillColor,
|
| - NULL);
|
| - }
|
| - return kIncompleteInput;
|
| - }
|
| -
|
| - // Decode the row in destination format
|
| - int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y;
|
| - void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row);
|
| - SkSwizzler::ResultAlpha r = maskSwizzler->swizzle(dstRow, srcRow);
|
| - transparent &= SkSwizzler::IsTransparent(r);
|
| -
|
| - // Move to the next row
|
| - srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes);
|
| - }
|
| -
|
| - // Some fully transparent bmp images are intended to be opaque. Here, we
|
| - // correct for this possibility.
|
| - if (transparent) {
|
| - const SkImageInfo& opaqueInfo =
|
| - dstInfo.makeAlphaType(kOpaque_SkAlphaType);
|
| - SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler(
|
| - SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, fMasks, fBitsPerPixel));
|
| - srcRow = srcBuffer.get();
|
| - for (int y = 0; y < height; y++) {
|
| - // Decode the row in opaque format
|
| - int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y;
|
| - void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row);
|
| - opaqueSwizzler->swizzle(dstRow, srcRow);
|
| -
|
| - // Move to the next row
|
| - srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes);
|
| - }
|
| - }
|
| -
|
| - // Finished decoding the entire image
|
| - return kSuccess;
|
| -}
|
| -
|
| -/*
|
| - *
|
| - * Set an RLE pixel using the color table
|
| - *
|
| - */
|
| -void SkBmpCodec::setRLEPixel(void* dst, size_t dstRowBytes,
|
| - const SkImageInfo& dstInfo, uint32_t x, uint32_t y,
|
| - uint8_t index) {
|
| - // Set the row
|
| - int height = dstInfo.height();
|
| - int row;
|
| - if (kBottomUp_RowOrder == fRowOrder) {
|
| - row = height - y - 1;
|
| - } else {
|
| - row = y;
|
| - }
|
| -
|
| - // Set the pixel based on destination color type
|
| - switch (dstInfo.colorType()) {
|
| - case kN32_SkColorType: {
|
| - SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst,
|
| - row * (int) dstRowBytes);
|
| - dstRow[x] = fColorTable->operator[](index);
|
| - break;
|
| - }
|
| - default:
|
| - // This case should not be reached. We should catch an invalid
|
| - // color type when we check that the conversion is possible.
|
| - SkASSERT(false);
|
| - break;
|
| - }
|
| -}
|
| -
|
| -/*
|
| - *
|
| - * Set an RLE pixel from R, G, B values
|
| - *
|
| - */
|
| -void SkBmpCodec::setRLE24Pixel(void* dst, size_t dstRowBytes,
|
| - const SkImageInfo& dstInfo, uint32_t x,
|
| - uint32_t y, uint8_t red, uint8_t green,
|
| - uint8_t blue) {
|
| - // Set the row
|
| - int height = dstInfo.height();
|
| - int row;
|
| - if (kBottomUp_RowOrder == fRowOrder) {
|
| - row = height - y - 1;
|
| - } else {
|
| - row = y;
|
| - }
|
| -
|
| - // Set the pixel based on destination color type
|
| - switch (dstInfo.colorType()) {
|
| - case kN32_SkColorType: {
|
| - SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst,
|
| - row * (int) dstRowBytes);
|
| - dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue);
|
| - break;
|
| - }
|
| - default:
|
| - // This case should not be reached. We should catch an invalid
|
| - // color type when we check that the conversion is possible.
|
| - SkASSERT(false);
|
| - break;
|
| - }
|
| -}
|
| -
|
| -/*
|
| - *
|
| - * Performs the bitmap decoding for RLE input format
|
| - * RLE decoding is performed all at once, rather than a one row at a time
|
| - *
|
| - */
|
| -SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo,
|
| - void* dst, size_t dstRowBytes,
|
| - const Options& opts) {
|
| - // Set RLE flags
|
| - static const uint8_t RLE_ESCAPE = 0;
|
| - static const uint8_t RLE_EOL = 0;
|
| - static const uint8_t RLE_EOF = 1;
|
| - static const uint8_t RLE_DELTA = 2;
|
| -
|
| - // Set constant values
|
| - const int width = dstInfo.width();
|
| - const int height = dstInfo.height();
|
| -
|
| - // Input buffer parameters
|
| - uint32_t currByte = 0;
|
| - SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes));
|
| - size_t totalBytes = stream()->read(buffer.get(), fRLEBytes);
|
| - if (totalBytes < fRLEBytes) {
|
| - SkCodecPrintf("Warning: incomplete RLE file.\n");
|
| - } else if (totalBytes <= 0) {
|
| - SkCodecPrintf("Error: could not read RLE image data.\n");
|
| - return kInvalidInput;
|
| - }
|
| -
|
| - // Destination parameters
|
| - int x = 0;
|
| - int y = 0;
|
| -
|
| - // Set the background as transparent. Then, if the RLE code skips pixels,
|
| - // the skipped pixels will be transparent.
|
| - // Because of the need for transparent pixels, kN32 is the only color
|
| - // type that makes sense for the destination format.
|
| - SkASSERT(kN32_SkColorType == dstInfo.colorType());
|
| - if (kNo_ZeroInitialized == opts.fZeroInitialized) {
|
| - SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL);
|
| - }
|
| -
|
| - while (true) {
|
| - // Every entry takes at least two bytes
|
| - if ((int) totalBytes - currByte < 2) {
|
| - SkCodecPrintf("Warning: incomplete RLE input.\n");
|
| - return kIncompleteInput;
|
| - }
|
| -
|
| - // Read the next two bytes. These bytes have different meanings
|
| - // depending on their values. In the first interpretation, the first
|
| - // byte is an escape flag and the second byte indicates what special
|
| - // task to perform.
|
| - const uint8_t flag = buffer.get()[currByte++];
|
| - const uint8_t task = buffer.get()[currByte++];
|
| -
|
| - // If we have reached a row that is beyond the image size, and the RLE
|
| - // code does not indicate end of file, abort and signal a warning.
|
| - if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) {
|
| - SkCodecPrintf("Warning: invalid RLE input.\n");
|
| - return kIncompleteInput;
|
| - }
|
| -
|
| - // Perform decoding
|
| - if (RLE_ESCAPE == flag) {
|
| - switch (task) {
|
| - case RLE_EOL:
|
| - x = 0;
|
| - y++;
|
| - break;
|
| - case RLE_EOF:
|
| - return kSuccess;
|
| - case RLE_DELTA: {
|
| - // Two bytes are needed to specify delta
|
| - if ((int) totalBytes - currByte < 2) {
|
| - SkCodecPrintf("Warning: incomplete RLE input\n");
|
| - return kIncompleteInput;
|
| - }
|
| - // Modify x and y
|
| - const uint8_t dx = buffer.get()[currByte++];
|
| - const uint8_t dy = buffer.get()[currByte++];
|
| - x += dx;
|
| - y += dy;
|
| - if (x > width || y > height) {
|
| - SkCodecPrintf("Warning: invalid RLE input.\n");
|
| - return kIncompleteInput;
|
| - }
|
| - break;
|
| - }
|
| - default: {
|
| - // If task does not match any of the above signals, it
|
| - // indicates that we have a sequence of non-RLE pixels.
|
| - // Furthermore, the value of task is equal to the number
|
| - // of pixels to interpret.
|
| - uint8_t numPixels = task;
|
| - const size_t rowBytes = compute_row_bytes(numPixels,
|
| - fBitsPerPixel);
|
| - // Abort if setting numPixels moves us off the edge of the
|
| - // image. Also abort if there are not enough bytes
|
| - // remaining in the stream to set numPixels.
|
| - if (x + numPixels > width ||
|
| - (int) totalBytes - currByte < SkAlign2(rowBytes)) {
|
| - SkCodecPrintf("Warning: invalid RLE input.\n");
|
| - return kIncompleteInput;
|
| - }
|
| - // Set numPixels number of pixels
|
| - while (numPixels > 0) {
|
| - switch(fBitsPerPixel) {
|
| - case 4: {
|
| - SkASSERT(currByte < totalBytes);
|
| - uint8_t val = buffer.get()[currByte++];
|
| - setRLEPixel(dst, dstRowBytes, dstInfo, x++,
|
| - y, val >> 4);
|
| - numPixels--;
|
| - if (numPixels != 0) {
|
| - setRLEPixel(dst, dstRowBytes, dstInfo,
|
| - x++, y, val & 0xF);
|
| - numPixels--;
|
| - }
|
| - break;
|
| - }
|
| - case 8:
|
| - SkASSERT(currByte < totalBytes);
|
| - setRLEPixel(dst, dstRowBytes, dstInfo, x++,
|
| - y, buffer.get()[currByte++]);
|
| - numPixels--;
|
| - break;
|
| - case 24: {
|
| - SkASSERT(currByte + 2 < totalBytes);
|
| - uint8_t blue = buffer.get()[currByte++];
|
| - uint8_t green = buffer.get()[currByte++];
|
| - uint8_t red = buffer.get()[currByte++];
|
| - setRLE24Pixel(dst, dstRowBytes, dstInfo,
|
| - x++, y, red, green, blue);
|
| - numPixels--;
|
| - }
|
| - default:
|
| - SkASSERT(false);
|
| - return kInvalidInput;
|
| - }
|
| - }
|
| - // Skip a byte if necessary to maintain alignment
|
| - if (!SkIsAlign2(rowBytes)) {
|
| - currByte++;
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - } else {
|
| - // If the first byte read is not a flag, it indicates the number of
|
| - // pixels to set in RLE mode.
|
| - const uint8_t numPixels = flag;
|
| - const int endX = SkTMin<int>(x + numPixels, width);
|
| -
|
| - if (24 == fBitsPerPixel) {
|
| - // In RLE24, the second byte read is part of the pixel color.
|
| - // There are two more required bytes to finish encoding the
|
| - // color.
|
| - if ((int) totalBytes - currByte < 2) {
|
| - SkCodecPrintf("Warning: incomplete RLE input\n");
|
| - return kIncompleteInput;
|
| - }
|
| -
|
| - // Fill the pixels up to endX with the specified color
|
| - uint8_t blue = task;
|
| - uint8_t green = buffer.get()[currByte++];
|
| - uint8_t red = buffer.get()[currByte++];
|
| - while (x < endX) {
|
| - setRLE24Pixel(dst, dstRowBytes, dstInfo, x++, y, red,
|
| - green, blue);
|
| - }
|
| - } else {
|
| - // In RLE8 or RLE4, the second byte read gives the index in the
|
| - // color table to look up the pixel color.
|
| - // RLE8 has one color index that gets repeated
|
| - // RLE4 has two color indexes in the upper and lower 4 bits of
|
| - // the bytes, which are alternated
|
| - uint8_t indices[2] = { task, task };
|
| - if (4 == fBitsPerPixel) {
|
| - indices[0] >>= 4;
|
| - indices[1] &= 0xf;
|
| - }
|
| -
|
| - // Set the indicated number of pixels
|
| - for (int which = 0; x < endX; x++) {
|
| - setRLEPixel(dst, dstRowBytes, dstInfo, x, y,
|
| - indices[which]);
|
| - which = !which;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| - *
|
| - * Performs the bitmap decoding for standard input format
|
| - *
|
| - */
|
| -SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo,
|
| - void* dst, size_t dstRowBytes,
|
| - const Options& opts) {
|
| - // Set constant values
|
| - const int width = dstInfo.width();
|
| - const int height = dstInfo.height();
|
| - const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
|
| -
|
| - // Get swizzler configuration and choose the fill value for failures. We will use
|
| - // zero as the default palette index, black for opaque images, and transparent for
|
| - // non-opaque images.
|
| - SkSwizzler::SrcConfig config;
|
| - uint32_t fillColorOrIndex;
|
| - bool zeroFill = true;
|
| - switch (fBitsPerPixel) {
|
| - case 1:
|
| - config = SkSwizzler::kIndex1;
|
| - fillColorOrIndex = 0;
|
| - break;
|
| - case 2:
|
| - config = SkSwizzler::kIndex2;
|
| - fillColorOrIndex = 0;
|
| - break;
|
| - case 4:
|
| - config = SkSwizzler::kIndex4;
|
| - fillColorOrIndex = 0;
|
| - break;
|
| - case 8:
|
| - config = SkSwizzler::kIndex;
|
| - fillColorOrIndex = 0;
|
| - break;
|
| - case 24:
|
| - config = SkSwizzler::kBGR;
|
| - fillColorOrIndex = SK_ColorBLACK;
|
| - zeroFill = false;
|
| - break;
|
| - case 32:
|
| - if (kOpaque_SkAlphaType == dstInfo.alphaType()) {
|
| - config = SkSwizzler::kBGRX;
|
| - fillColorOrIndex = SK_ColorBLACK;
|
| - zeroFill = false;
|
| - } else {
|
| - config = SkSwizzler::kBGRA;
|
| - fillColorOrIndex = SK_ColorTRANSPARENT;
|
| - }
|
| - break;
|
| - default:
|
| - SkASSERT(false);
|
| - return kInvalidInput;
|
| - }
|
| -
|
| - // Get a pointer to the color table if it exists
|
| - const SkPMColor* colorPtr = NULL != fColorTable.get() ? fColorTable->readColors() : NULL;
|
| -
|
| - // Create swizzler
|
| - SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config,
|
| - colorPtr, dstInfo, kNo_ZeroInitialized));
|
| -
|
| - // Allocate space for a row buffer and a source for the swizzler
|
| - SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
|
| -
|
| - // Iterate over rows of the image
|
| - // FIXME: bool transparent = true;
|
| - for (int y = 0; y < height; y++) {
|
| - // Read a row of the input
|
| - if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
|
| - SkCodecPrintf("Warning: incomplete input stream.\n");
|
| - // Fill the destination image on failure
|
| - if (kNo_ZeroInitialized == opts.fZeroInitialized || !zeroFill) {
|
| - void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder);
|
| - SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y,
|
| - fillColorOrIndex, colorPtr);
|
| - }
|
| - return kIncompleteInput;
|
| - }
|
| -
|
| - // Decode the row in destination format
|
| - uint32_t row;
|
| - if (kTopDown_RowOrder == fRowOrder) {
|
| - row = y;
|
| - } else {
|
| - row = height - 1 - y;
|
| - }
|
| -
|
| - void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * row);
|
| - swizzler->swizzle(dstRow, srcBuffer.get());
|
| - // FIXME: SkSwizzler::ResultAlpha r =
|
| - // swizzler->swizzle(dstRow, srcBuffer.get());
|
| - // FIXME: transparent &= SkSwizzler::IsTransparent(r);
|
| - }
|
| -
|
| - // FIXME: This code exists to match the behavior in the chromium decoder
|
| - // and to follow the bmp specification as it relates to alpha masks. It is
|
| - // commented out because we have yet to discover a test image that provides
|
| - // an alpha mask and uses this decode mode.
|
| -
|
| - // Now we adjust the output image with some additional behavior that
|
| - // SkSwizzler does not support. Firstly, all bmp images that contain
|
| - // alpha are masked by the alpha mask. Secondly, many fully transparent
|
| - // bmp images are intended to be opaque. Here, we make those corrections
|
| - // in the kN32 case.
|
| - /*
|
| - SkPMColor* dstRow = (SkPMColor*) dst;
|
| - if (SkSwizzler::kBGRA == config) {
|
| - for (int y = 0; y < height; y++) {
|
| - for (int x = 0; x < width; x++) {
|
| - if (transparent) {
|
| - dstRow[x] |= 0xFF000000;
|
| - } else {
|
| - dstRow[x] &= alphaMask;
|
| - }
|
| - dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
|
| - }
|
| - }
|
| - }
|
| - */
|
| -
|
| - // Finally, apply the AND mask for bmp-in-ico images
|
| - if (fIsIco) {
|
| - // The AND mask is always 1 bit per pixel
|
| - const size_t rowBytes = SkAlign4(compute_row_bytes(width, 1));
|
| -
|
| - SkPMColor* dstPtr = (SkPMColor*) dst;
|
| - for (int y = 0; y < height; y++) {
|
| - // The srcBuffer will at least be large enough
|
| - if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
|
| - SkCodecPrintf("Warning: incomplete AND mask for bmp-in-ico.\n");
|
| - return kIncompleteInput;
|
| - }
|
| -
|
| - int row;
|
| - if (kBottomUp_RowOrder == fRowOrder) {
|
| - row = height - y - 1;
|
| - } else {
|
| - row = y;
|
| - }
|
| -
|
| - SkPMColor* dstRow =
|
| - SkTAddOffset<SkPMColor>(dstPtr, row * dstRowBytes);
|
| -
|
| - for (int x = 0; x < width; x++) {
|
| - int quotient;
|
| - int modulus;
|
| - SkTDivMod(x, 8, "ient, &modulus);
|
| - uint32_t shift = 7 - modulus;
|
| - uint32_t alphaBit =
|
| - (srcBuffer.get()[quotient] >> shift) & 0x1;
|
| - dstRow[x] &= alphaBit - 1;
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Finished decoding the entire image
|
| - return kSuccess;
|
| +uint32_t SkBmpCodec::computeNumColors(uint32_t numColors) {
|
| + // Zero is a default for maxColors
|
| + // Also set fNumColors to maxColors when it is too large
|
| + uint32_t maxColors = 1 << fBitsPerPixel;
|
| + if (numColors == 0 || numColors >= maxColors) {
|
| + return maxColors;
|
| + }
|
| + return numColors;
|
| }
|
|
|