OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkBmpRLECodec.h" | |
9 #include "SkCodecPriv.h" | |
10 #include "SkColorPriv.h" | |
11 #include "SkScanlineDecoder.h" | |
12 #include "SkStream.h" | |
13 | |
14 /* | |
15 * Checks if the conversion between the input image and the requested output | |
16 * image has been implemented | |
17 */ | |
18 static bool conversion_possible(const SkImageInfo& dst, | |
19 const SkImageInfo& src) { | |
20 // Ensure that the profile type is unchanged | |
21 if (dst.profileType() != src.profileType()) { | |
22 return false; | |
23 } | |
24 | |
25 // Ensure the alpha type is valid | |
26 if (!valid_alpha(dst.alphaType(), src.alphaType())) { | |
27 return false; | |
28 } | |
29 | |
30 // Check for supported color types | |
31 switch (dst.colorType()) { | |
32 // Allow output to kN32 from any type of input | |
33 case kN32_SkColorType: | |
34 return true; | |
35 // Allow output to kIndex_8 from compatible inputs | |
36 case kIndex_8_SkColorType: | |
37 return kIndex_8_SkColorType == src.colorType(); | |
38 default: | |
39 return false; | |
40 } | |
41 } | |
42 | |
43 /* | |
44 * Creates an instance of the decoder | |
45 * Called only by NewFromStream | |
46 */ | |
47 SkBmpRLECodec::SkBmpRLECodec(const SkImageInfo& info, SkStream* stream, | |
48 uint16_t bitsPerPixel, uint32_t numColors, | |
49 uint32_t bytesPerColor, uint32_t offset, | |
50 SkBmpCodec::RowOrder rowOrder, size_t RLEBytes) | |
51 : INHERITED(info, stream, bitsPerPixel, rowOrder) | |
52 , fColorTable(NULL) | |
53 , fNumColors(numColors) | |
54 , fBytesPerColor(bytesPerColor) | |
55 , fOffset(offset) | |
56 , fStreamBuffer(SkNEW_ARRAY(uint8_t, RLEBytes)) | |
57 , fRLEBytes(RLEBytes) | |
58 , fCurrRLEByte(0) | |
59 {} | |
60 | |
61 /* | |
62 * Initiates the bitmap decode | |
63 */ | |
64 SkCodec::Result SkBmpRLECodec::onGetPixels(const SkImageInfo& dstInfo, | |
65 void* dst, size_t dstRowBytes, | |
66 const Options& opts, | |
67 SkPMColor* inputColorPtr, | |
68 int* inputColorCount) { | |
69 if (!this->handleRewind(false)) { | |
70 SkCodecPrintf("Error: could not rewind image stream.\n"); | |
scroggo
2015/08/04 16:16:46
Do you think this is necessary? It seems like retu
msarett
2015/08/04 23:14:45
Not necessary
| |
71 return kCouldNotRewind; | |
72 } | |
73 if (opts.fSubset) { | |
74 // Subsets are not supported. | |
75 return kUnimplemented; | |
76 } | |
77 if (dstInfo.dimensions() != this->getInfo().dimensions()) { | |
78 SkCodecPrintf("Error: scaling not supported.\n"); | |
79 return kInvalidScale; | |
80 } | |
81 if (!conversion_possible(dstInfo, this->getInfo())) { | |
82 SkCodecPrintf("Error: cannot convert input type to output type.\n"); | |
83 return kInvalidConversion; | |
84 } | |
85 | |
86 // Create the color table if necessary and prepare the stream for decode | |
87 // Note that if it is non-NULL, inputColorCount will be modified | |
88 if (!this->createColorTable(dstInfo.alphaType(), inputColorCount)) { | |
89 SkCodecPrintf("Error: could not create color table.\n"); | |
90 return kInvalidInput; | |
91 } | |
92 | |
93 // Copy the color table to the client if necessary | |
94 copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount); | |
95 | |
96 // Initialize a swizzler if necessary | |
97 if (!this->initializeStreamBuffer()) { | |
98 SkCodecPrintf("Error: cannot initialize swizzler.\n"); | |
99 return kInvalidConversion; | |
100 } | |
101 | |
102 // Perform the decode | |
103 return decode(dstInfo, dst, dstRowBytes, opts); | |
104 } | |
105 | |
106 /* | |
107 * Process the color table for the bmp input | |
108 */ | |
109 bool SkBmpRLECodec::createColorTable(SkAlphaType alphaType, int* numColors) { | |
110 // Allocate memory for color table | |
111 uint32_t colorBytes = 0; | |
112 uint32_t maxColors = 0; | |
113 SkPMColor colorTable[256]; | |
114 if (this->bitsPerPixel() <= 8) { | |
115 // Zero is a default for maxColors | |
116 // Also set fNumColors to maxColors when it is too large | |
117 maxColors = 1 << this->bitsPerPixel(); | |
118 if (fNumColors == 0 || fNumColors >= maxColors) { | |
119 fNumColors = maxColors; | |
120 } | |
121 | |
122 // Inform the caller of the number of colors | |
123 if (NULL != numColors) { | |
124 // We set the number of colors to maxColors in order to ensure | |
125 // safe memory accesses. Otherwise, an invalid pixel could | |
126 // access memory outside of our color table array. | |
127 *numColors = maxColors; | |
128 } | |
129 | |
130 // Read the color table from the stream | |
131 colorBytes = fNumColors * fBytesPerColor; | |
132 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
133 if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { | |
134 SkCodecPrintf("Error: unable to read color table.\n"); | |
135 return false; | |
136 } | |
137 | |
138 // Fill in the color table | |
139 uint32_t i = 0; | |
140 for (; i < fNumColors; i++) { | |
141 uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); | |
142 uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); | |
143 uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); | |
144 colorTable[i] = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
145 } | |
146 | |
147 // To avoid segmentation faults on bad pixel data, fill the end of the | |
148 // color table with black. This is the same the behavior as the | |
149 // chromium decoder. | |
150 for (; i < maxColors; i++) { | |
151 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
152 } | |
153 | |
154 // Set the color table | |
155 fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); | |
156 } | |
157 | |
158 // Check that we have not read past the pixel array offset | |
159 if(fOffset < colorBytes) { | |
160 // This may occur on OS 2.1 and other old versions where the color | |
161 // table defaults to max size, and the bmp tries to use a smaller | |
162 // color table. This is invalid, and our decision is to indicate | |
163 // an error, rather than try to guess the intended size of the | |
164 // color table. | |
165 SkCodecPrintf("Error: pixel data offset less than color table size.\n"); | |
166 return false; | |
167 } | |
168 | |
169 // After reading the color table, skip to the start of the pixel array | |
170 if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { | |
171 SkCodecPrintf("Error: unable to skip to image data.\n"); | |
172 return false; | |
173 } | |
174 | |
175 // Return true on success | |
176 return true; | |
177 } | |
178 | |
179 bool SkBmpRLECodec::initializeStreamBuffer() { | |
180 // Setup a buffer to contain the full input stream | |
181 size_t totalBytes = this->stream()->read(fStreamBuffer.get(), fRLEBytes); | |
182 if (totalBytes < fRLEBytes) { | |
183 fRLEBytes = totalBytes; | |
184 SkCodecPrintf("Warning: incomplete RLE file.\n"); | |
185 } | |
186 if (fRLEBytes == 0) { | |
187 SkCodecPrintf("Error: could not read RLE image data.\n"); | |
188 return false; | |
189 } | |
190 return true; | |
191 } | |
192 | |
193 /* | |
194 * Set an RLE pixel using the color table | |
195 */ | |
196 void SkBmpRLECodec::setPixel(void* dst, size_t dstRowBytes, | |
197 const SkImageInfo& dstInfo, uint32_t x, uint32_t y, | |
198 uint8_t index) { | |
199 // Set the row | |
200 int height = dstInfo.height(); | |
201 int row; | |
202 if (SkBmpCodec::kBottomUp_RowOrder == this->rowOrder()) { | |
203 row = height - y - 1; | |
204 } else { | |
205 row = y; | |
206 } | |
207 | |
208 // Set the pixel based on destination color type | |
209 switch (dstInfo.colorType()) { | |
210 case kN32_SkColorType: { | |
211 SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, | |
212 row * (int) dstRowBytes); | |
213 dstRow[x] = fColorTable->operator[](index); | |
214 break; | |
215 } | |
216 default: | |
217 // This case should not be reached. We should catch an invalid | |
218 // color type when we check that the conversion is possible. | |
219 SkASSERT(false); | |
220 break; | |
221 } | |
222 } | |
223 | |
224 /* | |
225 * Set an RLE pixel from R, G, B values | |
226 */ | |
227 void SkBmpRLECodec::setRGBPixel(void* dst, size_t dstRowBytes, | |
228 const SkImageInfo& dstInfo, uint32_t x, | |
229 uint32_t y, uint8_t red, uint8_t green, | |
230 uint8_t blue) { | |
231 // Set the row | |
232 int height = dstInfo.height(); | |
233 int row; | |
234 if (SkBmpCodec::kBottomUp_RowOrder == this->rowOrder()) { | |
235 row = height - y - 1; | |
236 } else { | |
237 row = y; | |
238 } | |
239 | |
240 // Set the pixel based on destination color type | |
241 switch (dstInfo.colorType()) { | |
242 case kN32_SkColorType: { | |
243 SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, | |
244 row * (int) dstRowBytes); | |
245 dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
246 break; | |
247 } | |
248 default: | |
249 // This case should not be reached. We should catch an invalid | |
250 // color type when we check that the conversion is possible. | |
251 SkASSERT(false); | |
252 break; | |
253 } | |
254 } | |
255 | |
256 /* | |
257 * Performs the bitmap decoding for RLE input format | |
258 * RLE decoding is performed all at once, rather than a one row at a time | |
259 */ | |
260 SkCodec::Result SkBmpRLECodec::decode(const SkImageInfo& dstInfo, | |
261 void* dst, size_t dstRowBytes, | |
262 const Options& opts) { | |
263 // Set RLE flags | |
264 static const uint8_t RLE_ESCAPE = 0; | |
265 static const uint8_t RLE_EOL = 0; | |
266 static const uint8_t RLE_EOF = 1; | |
267 static const uint8_t RLE_DELTA = 2; | |
268 | |
269 // Set constant values | |
270 const int width = dstInfo.width(); | |
271 const int height = dstInfo.height(); | |
272 | |
273 // Destination parameters | |
274 int x = 0; | |
275 int y = 0; | |
276 | |
277 // Set the background as transparent. Then, if the RLE code skips pixels, | |
278 // the skipped pixels will be transparent. | |
279 // Because of the need for transparent pixels, kN32 is the only color | |
280 // type that makes sense for the destination format. | |
281 SkASSERT(kN32_SkColorType == dstInfo.colorType()); | |
282 if (kNo_ZeroInitialized == opts.fZeroInitialized) { | |
283 SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL); | |
284 } | |
285 | |
286 while (true) { | |
287 // If we have reached a row that is beyond the requested height, we have | |
288 // succeeded. | |
289 if (y >= height) { | |
290 // It would be better to check for the EOF marker before returning | |
291 // success, but we may be performing a scanline decode, which | |
292 // may require us to stop before decoding the full height. | |
293 return kSuccess; | |
294 } | |
295 | |
296 // Every entry takes at least two bytes | |
297 if ((int) fRLEBytes - fCurrRLEByte < 2) { | |
298 SkCodecPrintf("Warning: incomplete RLE input.\n"); | |
299 return kIncompleteInput; | |
300 } | |
301 | |
302 // Read the next two bytes. These bytes have different meanings | |
303 // depending on their values. In the first interpretation, the first | |
304 // byte is an escape flag and the second byte indicates what special | |
305 // task to perform. | |
306 const uint8_t flag = fStreamBuffer.get()[fCurrRLEByte++]; | |
307 const uint8_t task = fStreamBuffer.get()[fCurrRLEByte++]; | |
308 | |
309 // Perform decoding | |
310 if (RLE_ESCAPE == flag) { | |
311 switch (task) { | |
312 case RLE_EOL: | |
313 x = 0; | |
314 y++; | |
315 break; | |
316 case RLE_EOF: | |
317 return kSuccess; | |
318 case RLE_DELTA: { | |
319 // Two bytes are needed to specify delta | |
320 if ((int) fRLEBytes - fCurrRLEByte < 2) { | |
321 SkCodecPrintf("Warning: incomplete RLE input\n"); | |
322 return kIncompleteInput; | |
323 } | |
324 // Modify x and y | |
325 const uint8_t dx = fStreamBuffer.get()[fCurrRLEByte++]; | |
326 const uint8_t dy = fStreamBuffer.get()[fCurrRLEByte++]; | |
327 x += dx; | |
328 y += dy; | |
329 if (x > width || y > height) { | |
330 SkCodecPrintf("Warning: invalid RLE input 1.\n"); | |
331 return kIncompleteInput; | |
332 } | |
333 break; | |
334 } | |
335 default: { | |
336 // If task does not match any of the above signals, it | |
337 // indicates that we have a sequence of non-RLE pixels. | |
338 // Furthermore, the value of task is equal to the number | |
339 // of pixels to interpret. | |
340 uint8_t numPixels = task; | |
341 const size_t rowBytes = compute_row_bytes(numPixels, | |
342 this->bitsPerPixel()); | |
343 // Abort if setting numPixels moves us off the edge of the | |
344 // image. Also abort if there are not enough bytes | |
345 // remaining in the stream to set numPixels. | |
346 if (x + numPixels > width || | |
347 (int) fRLEBytes - fCurrRLEByte < SkAlign2(rowBytes)) { | |
348 SkCodecPrintf("Warning: invalid RLE input 2.\n"); | |
349 return kIncompleteInput; | |
350 } | |
351 // Set numPixels number of pixels | |
352 while (numPixels > 0) { | |
353 switch(this->bitsPerPixel()) { | |
354 case 4: { | |
355 SkASSERT(fCurrRLEByte < fRLEBytes); | |
356 uint8_t val = fStreamBuffer.get()[fCurrRLEByte++ ]; | |
357 setPixel(dst, dstRowBytes, dstInfo, x++, | |
358 y, val >> 4); | |
359 numPixels--; | |
360 if (numPixels != 0) { | |
361 setPixel(dst, dstRowBytes, dstInfo, | |
362 x++, y, val & 0xF); | |
363 numPixels--; | |
364 } | |
365 break; | |
366 } | |
367 case 8: | |
368 SkASSERT(fCurrRLEByte < fRLEBytes); | |
369 setPixel(dst, dstRowBytes, dstInfo, x++, | |
370 y, fStreamBuffer.get()[fCurrRLEByte++]); | |
371 numPixels--; | |
372 break; | |
373 case 24: { | |
374 SkASSERT(fCurrRLEByte + 2 < fRLEBytes); | |
375 uint8_t blue = fStreamBuffer.get()[fCurrRLEByte+ +]; | |
376 uint8_t green = fStreamBuffer.get()[fCurrRLEByte ++]; | |
377 uint8_t red = fStreamBuffer.get()[fCurrRLEByte++ ]; | |
378 setRGBPixel(dst, dstRowBytes, dstInfo, | |
379 x++, y, red, green, blue); | |
380 numPixels--; | |
381 } | |
382 default: | |
383 SkASSERT(false); | |
384 return kInvalidInput; | |
385 } | |
386 } | |
387 // Skip a byte if necessary to maintain alignment | |
388 if (!SkIsAlign2(rowBytes)) { | |
389 fCurrRLEByte++; | |
390 } | |
391 break; | |
392 } | |
393 } | |
394 } else { | |
395 // If the first byte read is not a flag, it indicates the number of | |
396 // pixels to set in RLE mode. | |
397 const uint8_t numPixels = flag; | |
398 const int endX = SkTMin<int>(x + numPixels, width); | |
399 | |
400 if (24 == this->bitsPerPixel()) { | |
401 // In RLE24, the second byte read is part of the pixel color. | |
402 // There are two more required bytes to finish encoding the | |
403 // color. | |
404 if ((int) fRLEBytes - fCurrRLEByte < 2) { | |
405 SkCodecPrintf("Warning: incomplete RLE input\n"); | |
406 return kIncompleteInput; | |
407 } | |
408 | |
409 // Fill the pixels up to endX with the specified color | |
410 uint8_t blue = task; | |
411 uint8_t green = fStreamBuffer.get()[fCurrRLEByte++]; | |
412 uint8_t red = fStreamBuffer.get()[fCurrRLEByte++]; | |
413 while (x < endX) { | |
414 setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, | |
415 green, blue); | |
416 } | |
417 } else { | |
418 // In RLE8 or RLE4, the second byte read gives the index in the | |
419 // color table to look up the pixel color. | |
420 // RLE8 has one color index that gets repeated | |
421 // RLE4 has two color indexes in the upper and lower 4 bits of | |
422 // the bytes, which are alternated | |
423 uint8_t indices[2] = { task, task }; | |
424 if (4 == this->bitsPerPixel()) { | |
425 indices[0] >>= 4; | |
426 indices[1] &= 0xf; | |
427 } | |
428 | |
429 // Set the indicated number of pixels | |
430 for (int which = 0; x < endX; x++) { | |
431 setPixel(dst, dstRowBytes, dstInfo, x, y, | |
432 indices[which]); | |
433 which = !which; | |
434 } | |
435 } | |
436 } | |
437 } | |
438 } | |
OLD | NEW |