OLD | NEW |
(Empty) | |
| 1 <html> |
| 2 <title> |
| 3 PyASN1 programmer's manual |
| 4 </title> |
| 5 <head> |
| 6 </head> |
| 7 <body> |
| 8 <center> |
| 9 <table width=60%> |
| 10 <tr> |
| 11 <td> |
| 12 |
| 13 <h3> |
| 14 PyASN1 programmer's manual |
| 15 </h3> |
| 16 |
| 17 <p align=right> |
| 18 <i>written by <a href=mailto:ilya@glas.net>Ilya Etingof</a>, 2011-2012</i> |
| 19 </p> |
| 20 |
| 21 <p> |
| 22 Free and open-source pyasn1 library makes it easier for programmers and |
| 23 network engineers to develop, debug and experiment with ASN.1-based protocols |
| 24 using Python programming language as a tool. |
| 25 </p> |
| 26 |
| 27 <p> |
| 28 Abstract Syntax Notation One |
| 29 (<a href=http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_1x>ASN.1</a>) |
| 30 is a set of |
| 31 <a href=http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-X.693-0207w.z
ip> |
| 32 ITU standards</a> concered with provisioning instrumentation for developing |
| 33 data exchange protocols in a robust, clear and interoperabable way for |
| 34 various IT systems and applications. Most of the efforts are targeting the |
| 35 following areas: |
| 36 <ul> |
| 37 <li>Data structures: the standard introduces a collection of basic data types |
| 38 (similar to integers, bits, strings, arrays and records in a programming |
| 39 language) that can be used for defining complex, possibly nested data |
| 40 structures representing domain-specific data units. |
| 41 <li>Serialization protocols: domain-specific data units expressed in ASN.1 |
| 42 types could be converted into a series of octets for storage or transmission |
| 43 over the wire and then recovered back into their structured form on the |
| 44 receiving end. This process is immune to various hardware and software |
| 45 related dependencies. |
| 46 <li>Data description language: could be used to describe particular set of |
| 47 domain-specific data structures and their relationships. Such a description |
| 48 could be passed to an ASN.1 compiler for automated generation of program |
| 49 code that represents ASN.1 data structures in language-native environment |
| 50 and handles data serialization issues. |
| 51 </ul> |
| 52 </p> |
| 53 |
| 54 <p> |
| 55 This tutorial and algorithms, implemented by pyasn1 library, are |
| 56 largely based on the information read in the book |
| 57 <a href="http://www.oss.com/asn1/dubuisson.html"> |
| 58 ASN.1 - Communication between heterogeneous systems</a> |
| 59 by Olivier Dubuisson. Another relevant resource is |
| 60 <a href=ftp://ftp.rsasecurity.com/pub/pkcs/ascii/layman.asc> |
| 61 A Layman's Guide to a Subset of ASN.1, BER, and DER</a> by Burton S. Kaliski. |
| 62 It's advised to refer to these books for more in-depth knowledge on the |
| 63 subject of ASN.1. |
| 64 </p> |
| 65 |
| 66 <p> |
| 67 As of this writing, pyasn1 library implements most of standard ASN.1 data |
| 68 structures in a rather detailed and feature-rich manner. Another highly |
| 69 important capability of the library is its data serialization facilities. |
| 70 The last component of the standard - ASN.1 compiler is planned for |
| 71 implementation in the future. |
| 72 </p> |
| 73 |
| 74 </p> |
| 75 The pyasn1 library was designed to follow the pre-1995 ASN.1 specification |
| 76 (also known as X.208). Later, post 1995, revision (X.680) introduced |
| 77 significant changes most of which have not yet been supported by pyasn1. |
| 78 </p> |
| 79 |
| 80 <h3> |
| 81 Table of contents |
| 82 </h3> |
| 83 |
| 84 <p> |
| 85 <ul> |
| 86 <li><a href="#1">1. Data model for ASN.1 types</a> |
| 87 <li><a href="#1.1">1.1 Scalar types</a> |
| 88 <li><a href="#1.1.1">1.1.1 Boolean type</a> |
| 89 <li><a href="#1.1.2">1.1.2 Null type</a> |
| 90 <li><a href="#1.1.3">1.1.3 Integer type</a> |
| 91 <li><a href="#1.1.4">1.1.4 Enumerated type</a> |
| 92 <li><a href="#1.1.5">1.1.5 Real type</a> |
| 93 <li><a href="#1.1.6">1.1.6 Bit string type</a> |
| 94 <li><a href="#1.1.7">1.1.7 OctetString type</a> |
| 95 <li><a href="#1.1.8">1.1.8 ObjectIdentifier type</a> |
| 96 <li><a href="#1.1.9">1.1.9 Character string types</a> |
| 97 <li><a href="#1.1.10">1.1.10 Useful types</a> |
| 98 <li><a href="#1.2">1.2 Tagging</a> |
| 99 <li><a href="#1.3">1.3 Constructed types</a> |
| 100 <li><a href="#1.3.1">1.3.1 Sequence and Set types</a> |
| 101 <li><a href="#1.3.2">1.3.2 SequenceOf and SetOf types</a> |
| 102 <li><a href="#1.3.3">1.3.3 Choice type</a> |
| 103 <li><a href="#1.3.4">1.3.4 Any type</a> |
| 104 <li><a href="#1.4">1.4 Subtype constraints</a> |
| 105 <li><a href="#1.4.1">1.4.1 Single value constraint</a> |
| 106 <li><a href="#1.4.2">1.4.2 Value range constraint</a> |
| 107 <li><a href="#1.4.3">1.4.3 Size constraint</a> |
| 108 <li><a href="#1.4.4">1.4.4 Alphabet constraint</a> |
| 109 <li><a href="#1.4.5">1.4.5 Constraint combinations</a> |
| 110 <li><a href="#1.5">1.5 Types relationships</a> |
| 111 <li><a href="#2">2. Codecs</a> |
| 112 <li><a href="#2.1">2.1 Encoders</a> |
| 113 <li><a href="#2.2">2.2 Decoders</a> |
| 114 <li><a href="#2.2.1">2.2.1 Decoding untagged types</a> |
| 115 <li><a href="#2.2.2">2.2.2 Ignoring unknown types</a> |
| 116 <li><a href="#3">3. Feedback and getting help</a> |
| 117 </ul> |
| 118 |
| 119 |
| 120 <a name="1"></a> |
| 121 <h3> |
| 122 1. Data model for ASN.1 types |
| 123 </h3> |
| 124 |
| 125 <p> |
| 126 All ASN.1 types could be categorized into two groups: scalar (also called |
| 127 simple or primitive) and constructed. The first group is populated by |
| 128 well-known types like Integer or String. Members of constructed group |
| 129 hold other types (simple or constructed) as their inner components, thus |
| 130 they are semantically close to a programming language records or lists. |
| 131 </p> |
| 132 |
| 133 <p> |
| 134 In pyasn1, all ASN.1 types and values are implemented as Python objects. |
| 135 The same pyasn1 object can represent either ASN.1 type and/or value |
| 136 depending of the presense of value initializer on object instantiation. |
| 137 We will further refer to these as <i>pyasn1 type object</i> versus <i>pyasn1 |
| 138 value object</i>. |
| 139 </p> |
| 140 |
| 141 <p> |
| 142 Primitive ASN.1 types are implemented as immutable scalar objects. There values |
| 143 could be used just like corresponding native Python values (integers, |
| 144 strings/bytes etc) and freely mixed with them in expressions. |
| 145 </p> |
| 146 |
| 147 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 148 <pre> |
| 149 >>> from pyasn1.type import univ |
| 150 >>> asn1IntegerValue = univ.Integer(12) |
| 151 >>> asn1IntegerValue - 2 |
| 152 10 |
| 153 >>> univ.OctetString('abc') == 'abc' |
| 154 True # Python 2 |
| 155 >>> univ.OctetString(b'abc') == b'abc' |
| 156 True # Python 3 |
| 157 </pre> |
| 158 </td></tr></table> |
| 159 |
| 160 <p> |
| 161 It would be an error to perform an operation on a pyasn1 type object |
| 162 as it holds no value to deal with: |
| 163 </p> |
| 164 |
| 165 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 166 <pre> |
| 167 >>> from pyasn1.type import univ |
| 168 >>> asn1IntegerType = univ.Integer() |
| 169 >>> asn1IntegerType - 2 |
| 170 ... |
| 171 pyasn1.error.PyAsn1Error: No value for __coerce__() |
| 172 </pre> |
| 173 </td></tr></table> |
| 174 |
| 175 <a name="1.1"></a> |
| 176 <h4> |
| 177 1.1 Scalar types |
| 178 </h4> |
| 179 |
| 180 <p> |
| 181 In the sub-sections that follow we will explain pyasn1 mapping to those |
| 182 primitive ASN.1 types. Both, ASN.1 notation and corresponding pyasn1 |
| 183 syntax will be given in each case. |
| 184 </p> |
| 185 |
| 186 <a name="1.1.1"></a> |
| 187 <h4> |
| 188 1.1.1 Boolean type |
| 189 </h4> |
| 190 |
| 191 <p> |
| 192 This is the simplest type those values could be either True or False. |
| 193 </p> |
| 194 |
| 195 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 196 <pre> |
| 197 ;; type specification |
| 198 FunFactorPresent ::= BOOLEAN |
| 199 |
| 200 ;; values declaration and assignment |
| 201 pythonFunFactor FunFactorPresent ::= TRUE |
| 202 cobolFunFactor FunFactorPresent :: FALSE |
| 203 </pre> |
| 204 </td></tr></table> |
| 205 |
| 206 <p> |
| 207 And here's pyasn1 version of it: |
| 208 </p> |
| 209 |
| 210 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 211 <pre> |
| 212 >>> from pyasn1.type import univ |
| 213 >>> class FunFactorPresent(univ.Boolean): pass |
| 214 ... |
| 215 >>> pythonFunFactor = FunFactorPresent(True) |
| 216 >>> cobolFunFactor = FunFactorPresent(False) |
| 217 >>> pythonFunFactor |
| 218 FunFactorPresent('True(1)') |
| 219 >>> cobolFunFactor |
| 220 FunFactorPresent('False(0)') |
| 221 >>> pythonFunFactor == cobolFunFactor |
| 222 False |
| 223 >>> |
| 224 </pre> |
| 225 </td></tr></table> |
| 226 |
| 227 <a name="1.1.2"></a> |
| 228 <h4> |
| 229 1.1.2 Null type |
| 230 </h4> |
| 231 |
| 232 <p> |
| 233 The NULL type is sometimes used to express the absense of any information. |
| 234 </p> |
| 235 |
| 236 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 237 <pre> |
| 238 ;; type specification |
| 239 Vote ::= CHOICE { |
| 240 agreed BOOLEAN, |
| 241 skip NULL |
| 242 } |
| 243 </td></tr></table> |
| 244 |
| 245 ;; value declaration and assignment |
| 246 myVote Vote ::= skip:NULL |
| 247 </pre> |
| 248 |
| 249 <p> |
| 250 We will explain the CHOICE type later in this paper, meanwhile the NULL |
| 251 type: |
| 252 </p> |
| 253 |
| 254 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 255 <pre> |
| 256 >>> from pyasn1.type import univ |
| 257 >>> skip = univ.Null() |
| 258 >>> skip |
| 259 Null('') |
| 260 >>> |
| 261 </pre> |
| 262 </td></tr></table> |
| 263 |
| 264 <a name="1.1.3"></a> |
| 265 <h4> |
| 266 1.1.3 Integer type |
| 267 </h4> |
| 268 |
| 269 <p> |
| 270 ASN.1 defines the values of Integer type as negative or positive of whatever |
| 271 length. This definition plays nicely with Python as the latter places no |
| 272 limit on Integers. However, some ASN.1 implementations may impose certain |
| 273 limits of integer value ranges. Keep that in mind when designing new |
| 274 data structures. |
| 275 </p> |
| 276 |
| 277 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 278 <pre> |
| 279 ;; values specification |
| 280 age-of-universe INTEGER ::= 13750000000 |
| 281 mean-martian-surface-temperature INTEGER ::= -63 |
| 282 </pre> |
| 283 </td></tr></table> |
| 284 |
| 285 <p> |
| 286 A rather strigntforward mapping into pyasn1: |
| 287 </p> |
| 288 |
| 289 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 290 <pre> |
| 291 >>> from pyasn1.type import univ |
| 292 >>> ageOfUniverse = univ.Integer(13750000000) |
| 293 >>> ageOfUniverse |
| 294 Integer(13750000000) |
| 295 >>> |
| 296 >>> meanMartianSurfaceTemperature = univ.Integer(-63) |
| 297 >>> meanMartianSurfaceTemperature |
| 298 Integer(-63) |
| 299 >>> |
| 300 </pre> |
| 301 </td></tr></table> |
| 302 |
| 303 <p> |
| 304 ASN.1 allows to assign human-friendly names to particular values of |
| 305 an INTEGER type. |
| 306 </p> |
| 307 |
| 308 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 309 <pre> |
| 310 Temperature ::= INTEGER { |
| 311 freezing(0), |
| 312 boiling(100) |
| 313 } |
| 314 </pre> |
| 315 </td></tr></table> |
| 316 |
| 317 <p> |
| 318 The Temperature type expressed in pyasn1: |
| 319 </p> |
| 320 |
| 321 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 322 <pre> |
| 323 >>> from pyasn1.type import univ, namedval |
| 324 >>> class Temperature(univ.Integer): |
| 325 ... namedValues = namedval.NamedValues(('freezing', 0), ('boiling', 100)) |
| 326 ... |
| 327 >>> t = Temperature(0) |
| 328 >>> t |
| 329 Temperature('freezing(0)') |
| 330 >>> t + 1 |
| 331 Temperature(1) |
| 332 >>> t + 100 |
| 333 Temperature('boiling(100)') |
| 334 >>> t = Temperature('boiling') |
| 335 >>> t |
| 336 Temperature('boiling(100)') |
| 337 >>> Temperature('boiling') / 2 |
| 338 Temperature(50) |
| 339 >>> -1 < Temperature('freezing') |
| 340 True |
| 341 >>> 47 > Temperature('boiling') |
| 342 False |
| 343 >>> |
| 344 </pre> |
| 345 </td></tr></table> |
| 346 |
| 347 <p> |
| 348 These values labels have no effect on Integer type operations, any value |
| 349 still could be assigned to a type (information on value constraints will |
| 350 follow further in this paper). |
| 351 </p> |
| 352 |
| 353 <a name="1.1.4"></a> |
| 354 <h4> |
| 355 1.1.4 Enumerated type |
| 356 </h4> |
| 357 |
| 358 <p> |
| 359 ASN.1 Enumerated type differs from an Integer type in a number of ways. |
| 360 Most important is that its instance can only hold a value that belongs |
| 361 to a set of values specified on type declaration. |
| 362 </p> |
| 363 |
| 364 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 365 <pre> |
| 366 error-status ::= ENUMERATED { |
| 367 no-error(0), |
| 368 authentication-error(10), |
| 369 authorization-error(20), |
| 370 general-failure(51) |
| 371 } |
| 372 </pre> |
| 373 </td></tr></table> |
| 374 |
| 375 <p> |
| 376 When constructing Enumerated type we will use two pyasn1 features: values |
| 377 labels (as mentioned above) and value constraint (will be described in |
| 378 more details later on). |
| 379 </p> |
| 380 |
| 381 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 382 <pre> |
| 383 >>> from pyasn1.type import univ, namedval, constraint |
| 384 >>> class ErrorStatus(univ.Enumerated): |
| 385 ... namedValues = namedval.NamedValues( |
| 386 ... ('no-error', 0), |
| 387 ... ('authentication-error', 10), |
| 388 ... ('authorization-error', 20), |
| 389 ... ('general-failure', 51) |
| 390 ... ) |
| 391 ... subtypeSpec = univ.Enumerated.subtypeSpec + \ |
| 392 ... constraint.SingleValueConstraint(0, 10, 20, 51) |
| 393 ... |
| 394 >>> errorStatus = univ.ErrorStatus('no-error') |
| 395 >>> errorStatus |
| 396 ErrorStatus('no-error(0)') |
| 397 >>> errorStatus == univ.ErrorStatus('general-failure') |
| 398 False |
| 399 >>> univ.ErrorStatus('non-existing-state') |
| 400 Traceback (most recent call last): |
| 401 ... |
| 402 pyasn1.error.PyAsn1Error: Can't coerce non-existing-state into integer |
| 403 >>> |
| 404 </pre> |
| 405 </td></tr></table> |
| 406 |
| 407 <p> |
| 408 Particular integer values associated with Enumerated value states |
| 409 have no meaning. They should not be used as such or in any kind of |
| 410 math operation. Those integer values are only used by codecs to |
| 411 transfer state from one entity to another. |
| 412 </p> |
| 413 |
| 414 <a name="1.1.5"></a> |
| 415 <h4> |
| 416 1.1.5 Real type |
| 417 </h4> |
| 418 |
| 419 <p> |
| 420 Values of the Real type are a three-component tuple of mantissa, base and |
| 421 exponent. All three are integers. |
| 422 </p> |
| 423 |
| 424 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 425 <pre> |
| 426 pi ::= REAL { mantissa 314159, base 10, exponent -5 } |
| 427 </pre> |
| 428 </td></tr></table> |
| 429 |
| 430 <p> |
| 431 Corresponding pyasn1 objects can be initialized with either a three-component |
| 432 tuple or a Python float. Infinite values could be expressed in a way, |
| 433 compatible with Python float type. |
| 434 |
| 435 </p> |
| 436 |
| 437 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 438 <pre> |
| 439 >>> from pyasn1.type import univ |
| 440 >>> pi = univ.Real((314159, 10, -5)) |
| 441 >>> pi |
| 442 Real((314159, 10,-5)) |
| 443 >>> float(pi) |
| 444 3.14159 |
| 445 >>> pi == univ.Real(3.14159) |
| 446 True |
| 447 >>> univ.Real('inf') |
| 448 Real('inf') |
| 449 >>> univ.Real('-inf') == float('-inf') |
| 450 True |
| 451 >>> |
| 452 </pre> |
| 453 </td></tr></table> |
| 454 |
| 455 <p> |
| 456 If a Real object is initialized from a Python float or yielded by a math |
| 457 operation, the base is set to decimal 10 (what affects encoding). |
| 458 </p> |
| 459 |
| 460 <a name="1.1.6"></a> |
| 461 <h4> |
| 462 1.1.6 Bit string type |
| 463 </h4> |
| 464 |
| 465 <p> |
| 466 ASN.1 BIT STRING type holds opaque binary data of an arbitrarily length. |
| 467 A BIT STRING value could be initialized by either a binary (base 2) or |
| 468 hex (base 16) value. |
| 469 </p> |
| 470 |
| 471 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 472 <pre> |
| 473 public-key BIT STRING ::= '1010111011110001010110101101101 |
| 474 1011000101010000010110101100010 |
| 475 0110101010000111101010111111110'B |
| 476 |
| 477 signature BIT STRING ::= 'AF01330CD932093392100B39FF00DE0'H |
| 478 </pre> |
| 479 </td></tr></table> |
| 480 |
| 481 <p> |
| 482 The pyasn1 BitString objects can initialize from native ASN.1 notation |
| 483 (base 2 or base 16 strings) or from a Python tuple of binary components. |
| 484 </p> |
| 485 |
| 486 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 487 <pre> |
| 488 >>> from pyasn1.type import univ |
| 489 >>> publicKey = univ.BitString( |
| 490 ... "'1010111011110001010110101101101" |
| 491 ... "1011000101010000010110101100010" |
| 492 ... "0110101010000111101010111111110'B" |
| 493 ) |
| 494 >>> publicKey |
| 495 BitString("'10101110111100010101101011011011011000101010000010110101100010\ |
| 496 0110101010000111101010111111110'B") |
| 497 >>> signature = univ.BitString( |
| 498 ... "'AF01330CD932093392100B39FF00DE0'H" |
| 499 ... ) |
| 500 >>> signature |
| 501 BitString("'101011110000000100110011000011001101100100110010000010010011001\ |
| 502 1100100100001000000001011001110011111111100000000110111100000'B") |
| 503 >>> fingerprint = univ.BitString( |
| 504 ... (1, 0, 1, 1 ,0, 1, 1, 1, 0, 1, 0, 1) |
| 505 ... ) |
| 506 >>> fingerprint |
| 507 BitString("'101101110101'B") |
| 508 >>> |
| 509 </pre> |
| 510 </td></tr></table> |
| 511 |
| 512 <p> |
| 513 Another BIT STRING initialization method supported by ASN.1 notation |
| 514 is to specify only 1-th bits along with their human-friendly label |
| 515 and bit offset relative to the beginning of the bit string. With this |
| 516 method, all not explicitly mentioned bits are doomed to be zeros. |
| 517 </p> |
| 518 |
| 519 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 520 <pre> |
| 521 bit-mask BIT STRING ::= { |
| 522 read-flag(0), |
| 523 write-flag(2), |
| 524 run-flag(4) |
| 525 } |
| 526 </pre> |
| 527 </td></tr></table> |
| 528 |
| 529 <p> |
| 530 To express this in pyasn1, we will employ the named values feature (as with |
| 531 Enumeration type). |
| 532 </p> |
| 533 |
| 534 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 535 <pre> |
| 536 >>> from pyasn1.type import univ, namedval |
| 537 >>> class BitMask(univ.BitString): |
| 538 ... namedValues = namedval.NamedValues( |
| 539 ... ('read-flag', 0), |
| 540 ... ('write-flag', 2), |
| 541 ... ('run-flag', 4) |
| 542 ... ) |
| 543 >>> bitMask = BitMask('read-flag,run-flag') |
| 544 >>> bitMask |
| 545 BitMask("'10001'B") |
| 546 >>> tuple(bitMask) |
| 547 (1, 0, 0, 0, 1) |
| 548 >>> bitMask[4] |
| 549 1 |
| 550 >>> |
| 551 </pre> |
| 552 </td></tr></table> |
| 553 |
| 554 <p> |
| 555 The BitString objects mimic the properties of Python tuple type in part |
| 556 of immutable sequence object protocol support. |
| 557 </p> |
| 558 |
| 559 <a name="1.1.7"></a> |
| 560 <h4> |
| 561 1.1.7 OctetString type |
| 562 </h4> |
| 563 |
| 564 <p> |
| 565 The OCTET STRING type is a confusing subject. According to ASN.1 |
| 566 specification, this type is similar to BIT STRING, the major difference |
| 567 is that the former operates in 8-bit chunks of data. What is important |
| 568 to note, is that OCTET STRING was NOT designed to handle text strings - the |
| 569 standard provides many other types specialized for text content. For that |
| 570 reason, ASN.1 forbids to initialize OCTET STRING values with "quoted text |
| 571 strings", only binary or hex initializers, similar to BIT STRING ones, |
| 572 are allowed. |
| 573 </p> |
| 574 |
| 575 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 576 <pre> |
| 577 thumbnail OCTET STRING ::= '1000010111101110101111000000111011'B |
| 578 thumbnail OCTET STRING ::= 'FA9823C43E43510DE3422'H |
| 579 </pre> |
| 580 </td></tr></table> |
| 581 |
| 582 <p> |
| 583 However, ASN.1 users (e.g. protocols designers) seem to ignore the original |
| 584 purpose of the OCTET STRING type - they used it for handling all kinds of |
| 585 data, including text strings. |
| 586 </p> |
| 587 |
| 588 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 589 <pre> |
| 590 welcome-message OCTET STRING ::= "Welcome to ASN.1 wilderness!" |
| 591 </pre> |
| 592 </td></tr></table> |
| 593 |
| 594 <p> |
| 595 In pyasn1, we have taken a liberal approach and allowed both BIT STRING |
| 596 style and quoted text initializers for the OctetString objects. To avoid |
| 597 possible collisions, quoted text is the default initialization syntax. |
| 598 </p> |
| 599 |
| 600 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 601 <pre> |
| 602 >>> from pyasn1.type import univ |
| 603 >>> thumbnail = univ.OctetString( |
| 604 ... binValue='1000010111101110101111000000111011' |
| 605 ... ) |
| 606 >>> thumbnail |
| 607 OctetString(hexValue='85eebcec0') |
| 608 >>> thumbnail = univ.OctetString( |
| 609 ... hexValue='FA9823C43E43510DE3422' |
| 610 ... ) |
| 611 >>> thumbnail |
| 612 OctetString(hexValue='fa9823c43e4351de34220') |
| 613 >>> |
| 614 </pre> |
| 615 </td></tr></table> |
| 616 |
| 617 <p> |
| 618 Most frequent usage of the OctetString class is to instantiate it with |
| 619 a text string. |
| 620 </p> |
| 621 |
| 622 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 623 <pre> |
| 624 >>> from pyasn1.type import univ |
| 625 >>> welcomeMessage = univ.OctetString('Welcome to ASN.1 wilderness!') |
| 626 >>> welcomeMessage |
| 627 OctetString(b'Welcome to ASN.1 wilderness!') |
| 628 >>> print('%s' % welcomeMessage) |
| 629 Welcome to ASN.1 wilderness! |
| 630 >>> welcomeMessage[11:16] |
| 631 OctetString(b'ASN.1') |
| 632 >>> |
| 633 </pre> |
| 634 </td></tr></table> |
| 635 |
| 636 <p> |
| 637 OctetString objects support the immutable sequence object protocol. |
| 638 In other words, they behave like Python 3 bytes (or Python 2 strings). |
| 639 </p> |
| 640 |
| 641 <p> |
| 642 When running pyasn1 on Python 3, it's better to use the bytes objects for |
| 643 OctetString instantiation, as it's more reliable and efficient. |
| 644 </p> |
| 645 |
| 646 <p> |
| 647 Additionally, OctetString's can also be instantiated with a sequence of |
| 648 8-bit integers (ASCII codes). |
| 649 </p> |
| 650 |
| 651 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 652 <pre> |
| 653 >>> univ.OctetString((77, 101, 101, 103, 111)) |
| 654 OctetString(b'Meego') |
| 655 </pre> |
| 656 </td></tr></table> |
| 657 |
| 658 <p> |
| 659 It is sometimes convenient to express OctetString instances as 8-bit |
| 660 characters (Python 3 bytes or Python 2 strings) or 8-bit integers. |
| 661 </p> |
| 662 |
| 663 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 664 <pre> |
| 665 >>> octetString = univ.OctetString('ABCDEF') |
| 666 >>> octetString.asNumbers() |
| 667 (65, 66, 67, 68, 69, 70) |
| 668 >>> octetString.asOctets() |
| 669 b'ABCDEF' |
| 670 </pre> |
| 671 </td></tr></table> |
| 672 |
| 673 <a name="1.1.8"></a> |
| 674 <h4> |
| 675 1.1.8 ObjectIdentifier type |
| 676 </h4> |
| 677 |
| 678 <p> |
| 679 Values of the OBJECT IDENTIFIER type are sequences of integers that could |
| 680 be used to identify virtually anything in the world. Various ASN.1-based |
| 681 protocols employ OBJECT IDENTIFIERs for their own identification needs. |
| 682 </p> |
| 683 |
| 684 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 685 <pre> |
| 686 internet-id OBJECT IDENTIFIER ::= { |
| 687 iso(1) identified-organization(3) dod(6) internet(1) |
| 688 } |
| 689 </pre> |
| 690 </td></tr></table> |
| 691 |
| 692 <p> |
| 693 One of the natural ways to map OBJECT IDENTIFIER type into a Python |
| 694 one is to use Python tuples of integers. So this approach is taken by |
| 695 pyasn1. |
| 696 </p> |
| 697 |
| 698 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 699 <pre> |
| 700 >>> from pyasn1.type import univ |
| 701 >>> internetId = univ.ObjectIdentifier((1, 3, 6, 1)) |
| 702 >>> internetId |
| 703 ObjectIdentifier('1.3.6.1') |
| 704 >>> internetId[2] |
| 705 6 |
| 706 >>> internetId[1:3] |
| 707 ObjectIdentifier('3.6') |
| 708 </pre> |
| 709 </td></tr></table> |
| 710 |
| 711 <p> |
| 712 A more human-friendly "dotted" notation is also supported. |
| 713 </p> |
| 714 |
| 715 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 716 <pre> |
| 717 >>> from pyasn1.type import univ |
| 718 >>> univ.ObjectIdentifier('1.3.6.1') |
| 719 ObjectIdentifier('1.3.6.1') |
| 720 </pre> |
| 721 </td></tr></table> |
| 722 |
| 723 <p> |
| 724 Symbolic names of the arcs of object identifier, sometimes present in |
| 725 ASN.1 specifications, are not preserved and used in pyasn1 objects. |
| 726 </p> |
| 727 |
| 728 <p> |
| 729 The ObjectIdentifier objects mimic the properties of Python tuple type in |
| 730 part of immutable sequence object protocol support. |
| 731 </p> |
| 732 |
| 733 <a name="1.1.9"></a> |
| 734 <h4> |
| 735 1.1.9 Character string types |
| 736 </h4> |
| 737 |
| 738 <p> |
| 739 ASN.1 standard introduces a diverse set of text-specific types. All of them |
| 740 were designed to handle various types of characters. Some of these types seem |
| 741 be obsolete nowdays, as their target technologies are gone. Another issue |
| 742 to be aware of is that raw OCTET STRING type is sometimes used in practice |
| 743 by ASN.1 users instead of specialized character string types, despite |
| 744 explicit prohibition imposed by ASN.1 specification. |
| 745 </p> |
| 746 |
| 747 <p> |
| 748 The two types are specific to ASN.1 are NumericString and PrintableString. |
| 749 </p> |
| 750 |
| 751 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 752 <pre> |
| 753 welcome-message ::= PrintableString { |
| 754 "Welcome to ASN.1 text types" |
| 755 } |
| 756 |
| 757 dial-pad-numbers ::= NumericString { |
| 758 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" |
| 759 } |
| 760 </pre> |
| 761 </td></tr></table> |
| 762 |
| 763 <p> |
| 764 Their pyasn1 implementations are: |
| 765 </p> |
| 766 |
| 767 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 768 <pre> |
| 769 >>> from pyasn1.type import char |
| 770 >>> '%s' % char.PrintableString("Welcome to ASN.1 text types") |
| 771 'Welcome to ASN.1 text types' |
| 772 >>> dialPadNumbers = char.NumericString( |
| 773 "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" |
| 774 ) |
| 775 >>> dialPadNumbers |
| 776 NumericString(b'0123456789') |
| 777 >>> |
| 778 </pre> |
| 779 </td></tr></table> |
| 780 |
| 781 <p> |
| 782 The following types came to ASN.1 from ISO standards on character sets. |
| 783 </p> |
| 784 |
| 785 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 786 <pre> |
| 787 >>> from pyasn1.type import char |
| 788 >>> char.VisibleString("abc") |
| 789 VisibleString(b'abc') |
| 790 >>> char.IA5String('abc') |
| 791 IA5String(b'abc') |
| 792 >>> char.TeletexString('abc') |
| 793 TeletexString(b'abc') |
| 794 >>> char.VideotexString('abc') |
| 795 VideotexString(b'abc') |
| 796 >>> char.GraphicString('abc') |
| 797 GraphicString(b'abc') |
| 798 >>> char.GeneralString('abc') |
| 799 GeneralString(b'abc') |
| 800 >>> |
| 801 </pre> |
| 802 </td></tr></table> |
| 803 |
| 804 <p> |
| 805 The last three types are relatively recent addition to the family of |
| 806 character string types: UniversalString, BMPString, UTF8String. |
| 807 </p> |
| 808 |
| 809 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 810 <pre> |
| 811 >>> from pyasn1.type import char |
| 812 >>> char.UniversalString("abc") |
| 813 UniversalString(b'abc') |
| 814 >>> char.BMPString('abc') |
| 815 BMPString(b'abc') |
| 816 >>> char.UTF8String('abc') |
| 817 UTF8String(b'abc') |
| 818 >>> utf8String = char.UTF8String('У попа была собака') |
| 819 >>> utf8String |
| 820 UTF8String(b'\xd0\xa3 \xd0\xbf\xd0\xbe\xd0\xbf\xd0\xb0 \xd0\xb1\xd1\x8b\xd0\xbb\
xd0\xb0 \ |
| 821 \xd1\x81\xd0\xbe\xd0\xb1\xd0\xb0\xd0\xba\xd0\xb0') |
| 822 >>> print(utf8String) |
| 823 У попа была собака |
| 824 >>> |
| 825 </pre> |
| 826 </td></tr></table> |
| 827 |
| 828 <p> |
| 829 In pyasn1, all character type objects behave like Python strings. None of |
| 830 them is currently constrained in terms of valid alphabet so it's up to |
| 831 the data source to keep an eye on data validation for these types. |
| 832 </p> |
| 833 |
| 834 <a name="1.1.10"></a> |
| 835 <h4> |
| 836 1.1.10 Useful types |
| 837 </h4> |
| 838 |
| 839 <p> |
| 840 There are three so-called useful types defined in the standard: |
| 841 ObjectDescriptor, GeneralizedTime, UTCTime. They all are subtypes |
| 842 of GraphicString or VisibleString types therefore useful types are |
| 843 character string types. |
| 844 </p> |
| 845 |
| 846 <p> |
| 847 It's advised by the ASN.1 standard to have an instance of ObjectDescriptor |
| 848 type holding a human-readable description of corresponding instance of |
| 849 OBJECT IDENTIFIER type. There are no formal linkage between these instances |
| 850 and provision for ObjectDescriptor uniqueness in the standard. |
| 851 </p> |
| 852 |
| 853 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 854 <pre> |
| 855 >>> from pyasn1.type import useful |
| 856 >>> descrBER = useful.ObjectDescriptor( |
| 857 "Basic encoding of a single ASN.1 type" |
| 858 ) |
| 859 >>> |
| 860 </pre> |
| 861 </td></tr></table> |
| 862 |
| 863 <p> |
| 864 GeneralizedTime and UTCTime types are designed to hold a human-readable |
| 865 timestamp in a universal and unambiguous form. The former provides |
| 866 more flexibility in notation while the latter is more strict but has |
| 867 Y2K issues. |
| 868 </p> |
| 869 |
| 870 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 871 <pre> |
| 872 ;; Mar 8 2010 12:00:00 MSK |
| 873 moscow-time GeneralizedTime ::= "20110308120000.0" |
| 874 ;; Mar 8 2010 12:00:00 UTC |
| 875 utc-time GeneralizedTime ::= "201103081200Z" |
| 876 ;; Mar 8 1999 12:00:00 UTC |
| 877 utc-time UTCTime ::= "9803081200Z" |
| 878 </pre> |
| 879 </td></tr></table> |
| 880 |
| 881 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 882 <pre> |
| 883 >>> from pyasn1.type import useful |
| 884 >>> moscowTime = useful.GeneralizedTime("20110308120000.0") |
| 885 >>> utcTime = useful.UTCTime("9803081200Z") |
| 886 >>> |
| 887 </pre> |
| 888 </td></tr></table> |
| 889 |
| 890 <p> |
| 891 Despite their intended use, these types possess no special, time-related, |
| 892 handling in pyasn1. They are just printable strings. |
| 893 </p> |
| 894 |
| 895 <a name="1.2"></a> |
| 896 <h4> |
| 897 1.2 Tagging |
| 898 </h4> |
| 899 |
| 900 <p> |
| 901 In order to continue with the Constructed ASN.1 types, we will first have |
| 902 to introduce the concept of tagging (and its pyasn1 implementation), as |
| 903 some of the Constructed types rely upon the tagging feature. |
| 904 </p> |
| 905 |
| 906 <p> |
| 907 When a value is coming into an ASN.1-based system (received from a network |
| 908 or read from some storage), the receiving entity has to determine the |
| 909 type of the value to interpret and verify it accordingly. |
| 910 </p> |
| 911 |
| 912 <p> |
| 913 Historically, the first data serialization protocol introduced in |
| 914 ASN.1 was BER (Basic Encoding Rules). According to BER, any serialized |
| 915 value is packed into a triplet of (Type, Length, Value) where Type is a |
| 916 code that identifies the value (which is called <i>tag</i> in ASN.1), |
| 917 length is the number of bytes occupied by the value in its serialized form |
| 918 and value is ASN.1 value in a form suitable for serial transmission or storage. |
| 919 </p> |
| 920 |
| 921 <p> |
| 922 For that reason almost every ASN.1 type has a tag (which is actually a |
| 923 BER type) associated with it by default. |
| 924 </p> |
| 925 |
| 926 <p> |
| 927 An ASN.1 tag could be viewed as a tuple of three numbers: |
| 928 (Class, Format, Number). While Number identifies a tag, Class component |
| 929 is used to create scopes for Numbers. Four scopes are currently defined: |
| 930 UNIVERSAL, context-specific, APPLICATION and PRIVATE. The Format component |
| 931 is actually a one-bit flag - zero for tags associated with scalar types, |
| 932 and one for constructed types (will be discussed later on). |
| 933 </p> |
| 934 |
| 935 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 936 <pre> |
| 937 MyIntegerType ::= [12] INTEGER |
| 938 MyOctetString ::= [APPLICATION 0] OCTET STRING |
| 939 </pre> |
| 940 </td></tr></table> |
| 941 |
| 942 <p> |
| 943 In pyasn1, tags are implemented as immutable, tuple-like objects: |
| 944 </p> |
| 945 |
| 946 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 947 <pre> |
| 948 >>> from pyasn1.type import tag |
| 949 >>> myTag = tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10) |
| 950 >>> myTag |
| 951 Tag(tagClass=128, tagFormat=0, tagId=10) |
| 952 >>> tuple(myTag) |
| 953 (128, 0, 10) |
| 954 >>> myTag[2] |
| 955 10 |
| 956 >>> myTag == tag.Tag(tag.tagClassApplication, tag.tagFormatSimple, 10) |
| 957 False |
| 958 >>> |
| 959 </pre> |
| 960 </td></tr></table> |
| 961 |
| 962 <p> |
| 963 Default tag, associated with any ASN.1 type, could be extended or replaced |
| 964 to make new type distinguishable from its ancestor. The standard provides |
| 965 two modes of tag mangling - IMPLICIT and EXPLICIT. |
| 966 </p> |
| 967 |
| 968 <p> |
| 969 EXPLICIT mode works by appending new tag to the existing ones thus creating |
| 970 an ordered set of tags. This set will be considered as a whole for type |
| 971 identification and encoding purposes. Important property of EXPLICIT tagging |
| 972 mode is that it preserves base type information in encoding what makes it |
| 973 possible to completely recover type information from encoding. |
| 974 </p> |
| 975 |
| 976 <p> |
| 977 When tagging in IMPLICIT mode, the outermost existing tag is dropped and |
| 978 replaced with a new one. |
| 979 </p> |
| 980 |
| 981 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 982 <pre> |
| 983 MyIntegerType ::= [12] IMPLICIT INTEGER |
| 984 MyOctetString ::= [APPLICATION 0] EXPLICIT OCTET STRING |
| 985 </pre> |
| 986 </td></tr></table> |
| 987 |
| 988 <p> |
| 989 To model both modes of tagging, a specialized container TagSet object (holding |
| 990 zero, one or more Tag objects) is used in pyasn1. |
| 991 </p> |
| 992 |
| 993 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 994 <pre> |
| 995 >>> from pyasn1.type import tag |
| 996 >>> tagSet = tag.TagSet( |
| 997 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10), # base tag |
| 998 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10) # effective tag |
| 999 ... ) |
| 1000 >>> tagSet |
| 1001 TagSet(Tag(tagClass=128, tagFormat=0, tagId=10)) |
| 1002 >>> tagSet.getBaseTag() |
| 1003 Tag(tagClass=128, tagFormat=0, tagId=10) |
| 1004 >>> tagSet = tagSet.tagExplicitly( |
| 1005 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 20) |
| 1006 ... ) |
| 1007 >>> tagSet |
| 1008 TagSet(Tag(tagClass=128, tagFormat=0, tagId=10), |
| 1009 Tag(tagClass=128, tagFormat=32, tagId=20)) |
| 1010 >>> tagSet = tagSet.tagExplicitly( |
| 1011 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 30) |
| 1012 ... ) |
| 1013 >>> tagSet |
| 1014 TagSet(Tag(tagClass=128, tagFormat=0, tagId=10), |
| 1015 Tag(tagClass=128, tagFormat=32, tagId=20), |
| 1016 Tag(tagClass=128, tagFormat=32, tagId=30)) |
| 1017 >>> tagSet = tagSet.tagImplicitly( |
| 1018 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 40) |
| 1019 ... ) |
| 1020 >>> tagSet |
| 1021 TagSet(Tag(tagClass=128, tagFormat=0, tagId=10), |
| 1022 Tag(tagClass=128, tagFormat=32, tagId=20), |
| 1023 Tag(tagClass=128, tagFormat=32, tagId=40)) |
| 1024 >>> |
| 1025 </pre> |
| 1026 </td></tr></table> |
| 1027 |
| 1028 <p> |
| 1029 As a side note: the "base tag" concept (accessible through the getBaseTag() |
| 1030 method) is specific to pyasn1 -- the base tag is used to identify the original |
| 1031 ASN.1 type of an object in question. Base tag is never occurs in encoding |
| 1032 and is mostly used internally by pyasn1 for choosing type-specific data |
| 1033 processing algorithms. The "effective tag" is the one that always appears in |
| 1034 encoding and is used on tagSets comparation. |
| 1035 </p> |
| 1036 |
| 1037 <p> |
| 1038 Any two TagSet objects could be compared to see if one is a derivative |
| 1039 of the other. Figuring this out is also useful in cases when a type-specific |
| 1040 data processing algorithms are to be chosen. |
| 1041 </p> |
| 1042 |
| 1043 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1044 <pre> |
| 1045 >>> from pyasn1.type import tag |
| 1046 >>> tagSet1 = tag.TagSet( |
| 1047 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10) # base tag |
| 1048 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10) # effective tag |
| 1049 ... ) |
| 1050 >>> tagSet2 = tagSet1.tagExplicitly( |
| 1051 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 20) |
| 1052 ... ) |
| 1053 >>> tagSet1.isSuperTagSetOf(tagSet2) |
| 1054 True |
| 1055 >>> tagSet2.isSuperTagSetOf(tagSet1) |
| 1056 False |
| 1057 >>> |
| 1058 </pre> |
| 1059 </td></tr></table> |
| 1060 |
| 1061 <p> |
| 1062 We will complete this discussion on tagging with a real-world example. The |
| 1063 following ASN.1 tagged type: |
| 1064 </p> |
| 1065 |
| 1066 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1067 <pre> |
| 1068 MyIntegerType ::= [12] EXPLICIT INTEGER |
| 1069 </pre> |
| 1070 </td></tr></table> |
| 1071 |
| 1072 <p> |
| 1073 could be expressed in pyasn1 like this: |
| 1074 </p> |
| 1075 |
| 1076 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1077 <pre> |
| 1078 >>> from pyasn1.type import univ, tag |
| 1079 >>> class MyIntegerType(univ.Integer): |
| 1080 ... tagSet = univ.Integer.tagSet.tagExplicitly( |
| 1081 ... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 12) |
| 1082 ... ) |
| 1083 >>> myInteger = MyIntegerType(12345) |
| 1084 >>> myInteger.getTagSet() |
| 1085 TagSet(Tag(tagClass=0, tagFormat=0, tagId=2), |
| 1086 Tag(tagClass=128, tagFormat=32, tagId=12)) |
| 1087 >>> |
| 1088 </pre> |
| 1089 </td></tr></table> |
| 1090 |
| 1091 <p> |
| 1092 Referring to the above code, the tagSet class attribute is a property of any |
| 1093 pyasn1 type object that assigns default tagSet to a pyasn1 value object. This |
| 1094 default tagSet specification can be ignored and effectively replaced by some |
| 1095 other tagSet value passed on object instantiation. |
| 1096 </p> |
| 1097 |
| 1098 <p> |
| 1099 It's important to understand that the tag set property of pyasn1 type/value |
| 1100 object can never be modifed in place. In other words, a pyasn1 type/value |
| 1101 object can never change its tags. The only way is to create a new pyasn1 |
| 1102 type/value object and associate different tag set with it. |
| 1103 </p> |
| 1104 |
| 1105 |
| 1106 <a name="1.3"></a> |
| 1107 <h4> |
| 1108 1.3 Constructed types |
| 1109 </h4> |
| 1110 |
| 1111 <p> |
| 1112 Besides scalar types, ASN.1 specifies so-called constructed ones - these |
| 1113 are capable of holding one or more values of other types, both scalar |
| 1114 and constructed. |
| 1115 </p> |
| 1116 |
| 1117 <p> |
| 1118 In pyasn1 implementation, constructed ASN.1 types behave like |
| 1119 Python sequences, and also support additional component addressing methods, |
| 1120 specific to particular constructed type. |
| 1121 </p> |
| 1122 |
| 1123 <a name="1.3.1"></a> |
| 1124 <h4> |
| 1125 1.3.1 Sequence and Set types |
| 1126 </h4> |
| 1127 |
| 1128 <p> |
| 1129 The Sequence and Set types have many similar properties: |
| 1130 </p> |
| 1131 <ul> |
| 1132 <li>they can hold any number of inner components of different types |
| 1133 <li>every component has a human-friendly identifier |
| 1134 <li>any component can have a default value |
| 1135 <li>some components can be absent. |
| 1136 </ul> |
| 1137 |
| 1138 <p> |
| 1139 However, Sequence type guarantees the ordering of Sequence value components |
| 1140 to match their declaration order. By contrast, components of the |
| 1141 Set type can be ordered to best suite application's needs. |
| 1142 <p> |
| 1143 |
| 1144 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1145 <pre> |
| 1146 Record ::= SEQUENCE { |
| 1147 id INTEGER, |
| 1148 room [0] INTEGER OPTIONAL, |
| 1149 house [1] INTEGER DEFAULT 0 |
| 1150 } |
| 1151 </pre> |
| 1152 </td></tr></table> |
| 1153 |
| 1154 <p> |
| 1155 Up to this moment, the only method we used for creating new pyasn1 types |
| 1156 is Python sub-classing. With this method, a new, named Python class is created |
| 1157 what mimics type derivation in ASN.1 grammar. However, ASN.1 also allows for |
| 1158 defining anonymous subtypes (room and house components in the example above). |
| 1159 To support anonymous subtyping in pyasn1, a cloning operation on an existing |
| 1160 pyasn1 type object can be invoked what creates a new instance of original |
| 1161 object with possibly modified properties. |
| 1162 </p> |
| 1163 |
| 1164 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1165 <pre> |
| 1166 >>> from pyasn1.type import univ, namedtype, tag |
| 1167 >>> class Record(univ.Sequence): |
| 1168 ... componentType = namedtype.NamedTypes( |
| 1169 ... namedtype.NamedType('id', univ.Integer()), |
| 1170 ... namedtype.OptionalNamedType( |
| 1171 ... 'room', |
| 1172 ... univ.Integer().subtype(implicitTag=tag.Tag(tag.tagClassContext, tag.ta
gFormatSimple, 0)) |
| 1173 ... ), |
| 1174 ... namedtype.DefaultedNamedType( |
| 1175 ... 'house', |
| 1176 ... univ.Integer(0).subtype(implicitTag=tag.Tag(tag.tagClassContext, tag.t
agFormatSimple, 1)) |
| 1177 ... ) |
| 1178 ... ) |
| 1179 >>> |
| 1180 </pre> |
| 1181 </td></tr></table> |
| 1182 |
| 1183 <p> |
| 1184 All pyasn1 constructed type classes have a class attribute <b>componentType</b> |
| 1185 that represent default type specification. Its value is a NamedTypes object. |
| 1186 </p> |
| 1187 |
| 1188 <p> |
| 1189 The NamedTypes class instance holds a sequence of NameType, OptionalNamedType |
| 1190 or DefaultedNamedType objects which, in turn, refer to pyasn1 type objects that |
| 1191 represent inner SEQUENCE components specification. |
| 1192 </p> |
| 1193 |
| 1194 <p> |
| 1195 Finally, invocation of a subtype() method of pyasn1 type objects in the code |
| 1196 above returns an implicitly tagged copy of original object. |
| 1197 </p> |
| 1198 |
| 1199 <p> |
| 1200 Once a SEQUENCE or SET type is decleared with pyasn1, it can be instantiated |
| 1201 and initialized (continuing the above code): |
| 1202 </p> |
| 1203 |
| 1204 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1205 <pre> |
| 1206 >>> record = Record() |
| 1207 >>> record.setComponentByName('id', 123) |
| 1208 >>> print(record.prettyPrint()) |
| 1209 Record: |
| 1210 id=123 |
| 1211 >>> |
| 1212 >>> record.setComponentByPosition(1, 321) |
| 1213 >>> print(record.prettyPrint()) |
| 1214 Record: |
| 1215 id=123 |
| 1216 room=321 |
| 1217 >>> |
| 1218 >>> record.setDefaultComponents() |
| 1219 >>> print(record.prettyPrint()) |
| 1220 Record: |
| 1221 id=123 |
| 1222 room=321 |
| 1223 house=0 |
| 1224 </pre> |
| 1225 </td></tr></table> |
| 1226 |
| 1227 <p> |
| 1228 Inner components of pyasn1 Sequence/Set objects could be accessed using the |
| 1229 following methods: |
| 1230 </p> |
| 1231 |
| 1232 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1233 <pre> |
| 1234 >>> record.getComponentByName('id') |
| 1235 Integer(123) |
| 1236 >>> record.getComponentByPosition(1) |
| 1237 Integer(321) |
| 1238 >>> record[2] |
| 1239 Integer(0) |
| 1240 >>> for idx in range(len(record)): |
| 1241 ... print(record.getNameByPosition(idx), record.getComponentByPosition(idx)) |
| 1242 id 123 |
| 1243 room 321 |
| 1244 house 0 |
| 1245 >>> |
| 1246 </pre> |
| 1247 </td></tr></table> |
| 1248 |
| 1249 <p> |
| 1250 The Set type share all the properties of Sequence type, and additionally |
| 1251 support by-tag component addressing (as all Set components have distinct |
| 1252 types). |
| 1253 </p> |
| 1254 |
| 1255 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1256 <pre> |
| 1257 >>> from pyasn1.type import univ, namedtype, tag |
| 1258 >>> class Gamer(univ.Set): |
| 1259 ... componentType = namedtype.NamedTypes( |
| 1260 ... namedtype.NamedType('score', univ.Integer()), |
| 1261 ... namedtype.NamedType('player', univ.OctetString()), |
| 1262 ... namedtype.NamedType('id', univ.ObjectIdentifier()) |
| 1263 ... ) |
| 1264 >>> gamer = Gamer() |
| 1265 >>> gamer.setComponentByType(univ.Integer().getTagSet(), 121343) |
| 1266 >>> gamer.setComponentByType(univ.OctetString().getTagSet(), 'Pascal') |
| 1267 >>> gamer.setComponentByType(univ.ObjectIdentifier().getTagSet(), (1,3,7,2)) |
| 1268 >>> print(gamer.prettyPrint()) |
| 1269 Gamer: |
| 1270 score=121343 |
| 1271 player=b'Pascal' |
| 1272 id=1.3.7.2 |
| 1273 >>> |
| 1274 </pre> |
| 1275 </td></tr></table> |
| 1276 |
| 1277 <a name="1.3.2"></a> |
| 1278 <h4> |
| 1279 1.3.2 SequenceOf and SetOf types |
| 1280 </h4> |
| 1281 |
| 1282 <p> |
| 1283 Both, SequenceOf and SetOf types resemble an unlimited size list of components. |
| 1284 All the components must be of the same type. |
| 1285 </p> |
| 1286 |
| 1287 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1288 <pre> |
| 1289 Progression ::= SEQUENCE OF INTEGER |
| 1290 |
| 1291 arithmeticProgression Progression ::= { 1, 3, 5, 7 } |
| 1292 </pre> |
| 1293 </td></tr></table> |
| 1294 |
| 1295 <p> |
| 1296 SequenceOf and SetOf types are expressed by the very similar pyasn1 type |
| 1297 objects. Their components can only be addressed by position and they |
| 1298 both have a property of automatic resize. |
| 1299 </p> |
| 1300 |
| 1301 <p> |
| 1302 To specify inner component type, the <b>componentType</b> class attribute |
| 1303 should refer to another pyasn1 type object. |
| 1304 </p> |
| 1305 |
| 1306 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1307 <pre> |
| 1308 >>> from pyasn1.type import univ |
| 1309 >>> class Progression(univ.SequenceOf): |
| 1310 ... componentType = univ.Integer() |
| 1311 >>> arithmeticProgression = Progression() |
| 1312 >>> arithmeticProgression.setComponentByPosition(1, 111) |
| 1313 >>> print(arithmeticProgression.prettyPrint()) |
| 1314 Progression: |
| 1315 -empty- 111 |
| 1316 >>> arithmeticProgression.setComponentByPosition(0, 100) |
| 1317 >>> print(arithmeticProgression.prettyPrint()) |
| 1318 Progression: |
| 1319 100 111 |
| 1320 >>> |
| 1321 >>> for idx in range(len(arithmeticProgression)): |
| 1322 ... arithmeticProgression.getComponentByPosition(idx) |
| 1323 Integer(100) |
| 1324 Integer(111) |
| 1325 >>> |
| 1326 </pre> |
| 1327 </td></tr></table> |
| 1328 |
| 1329 <p> |
| 1330 Any scalar or constructed pyasn1 type object can serve as an inner component. |
| 1331 Missing components are prohibited in SequenceOf/SetOf value objects. |
| 1332 </p> |
| 1333 |
| 1334 <a name="1.3.3"></a> |
| 1335 <h4> |
| 1336 1.3.3 Choice type |
| 1337 </h4> |
| 1338 |
| 1339 <p> |
| 1340 Values of ASN.1 CHOICE type can contain only a single value of a type from a |
| 1341 list of possible alternatives. Alternatives must be ASN.1 types with |
| 1342 distinct tags for the whole structure to remain unambiguous. Unlike most |
| 1343 other types, CHOICE is an untagged one, e.g. it has no base tag of its own. |
| 1344 </p> |
| 1345 |
| 1346 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1347 <pre> |
| 1348 CodeOrMessage ::= CHOICE { |
| 1349 code INTEGER, |
| 1350 message OCTET STRING |
| 1351 } |
| 1352 </pre> |
| 1353 </td></tr></table> |
| 1354 |
| 1355 <p> |
| 1356 In pyasn1 implementation, Choice object behaves like Set but accepts only |
| 1357 a single inner component at a time. It also offers a few additional methods |
| 1358 specific to its behaviour. |
| 1359 </p> |
| 1360 |
| 1361 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1362 <pre> |
| 1363 >>> from pyasn1.type import univ, namedtype |
| 1364 >>> class CodeOrMessage(univ.Choice): |
| 1365 ... componentType = namedtype.NamedTypes( |
| 1366 ... namedtype.NamedType('code', univ.Integer()), |
| 1367 ... namedtype.NamedType('message', univ.OctetString()) |
| 1368 ... ) |
| 1369 >>> |
| 1370 >>> codeOrMessage = CodeOrMessage() |
| 1371 >>> print(codeOrMessage.prettyPrint()) |
| 1372 CodeOrMessage: |
| 1373 >>> codeOrMessage.setComponentByName('code', 123) |
| 1374 >>> print(codeOrMessage.prettyPrint()) |
| 1375 CodeOrMessage: |
| 1376 code=123 |
| 1377 >>> codeOrMessage.setComponentByName('message', 'my string value') |
| 1378 >>> print(codeOrMessage.prettyPrint()) |
| 1379 CodeOrMessage: |
| 1380 message=b'my string value' |
| 1381 >>> |
| 1382 </pre> |
| 1383 </td></tr></table> |
| 1384 |
| 1385 <p> |
| 1386 Since there could be only a single inner component value in the pyasn1 Choice |
| 1387 value object, either of the following methods could be used for fetching it |
| 1388 (continuing previous code): |
| 1389 </p> |
| 1390 |
| 1391 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1392 <pre> |
| 1393 >>> codeOrMessage.getName() |
| 1394 'message' |
| 1395 >>> codeOrMessage.getComponent() |
| 1396 OctetString(b'my string value') |
| 1397 >>> |
| 1398 </pre> |
| 1399 </td></tr></table> |
| 1400 |
| 1401 <a name="1.3.4"></a> |
| 1402 <h4> |
| 1403 1.3.4 Any type |
| 1404 </h4> |
| 1405 |
| 1406 <p> |
| 1407 The ASN.1 ANY type is a kind of wildcard or placeholder that matches |
| 1408 any other type without knowing it in advance. Like CHOICE type, ANY |
| 1409 has no base tag. |
| 1410 </p> |
| 1411 |
| 1412 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1413 <pre> |
| 1414 Error ::= SEQUENCE { |
| 1415 code INTEGER, |
| 1416 parameter ANY DEFINED BY code |
| 1417 } |
| 1418 </pre> |
| 1419 </td></tr></table> |
| 1420 |
| 1421 <p> |
| 1422 The ANY type is frequently used in specifications, where exact type is not |
| 1423 yet agreed upon between communicating parties or the number of possible |
| 1424 alternatives of a type is infinite. |
| 1425 Sometimes an auxiliary selector is kept around to help parties indicate |
| 1426 the kind of ANY payload in effect ("code" in the example above). |
| 1427 </p> |
| 1428 |
| 1429 <p> |
| 1430 Values of the ANY type contain serialized ASN.1 value(s) in form of |
| 1431 an octet string. Therefore pyasn1 Any value object share the properties of |
| 1432 pyasn1 OctetString object. |
| 1433 </p> |
| 1434 |
| 1435 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1436 <pre> |
| 1437 >>> from pyasn1.type import univ |
| 1438 >>> someValue = univ.Any(b'\x02\x01\x01') |
| 1439 >>> someValue |
| 1440 Any(b'\x02\x01\x01') |
| 1441 >>> str(someValue) |
| 1442 '\x02\x01\x01' |
| 1443 >>> bytes(someValue) |
| 1444 b'\x02\x01\x01' |
| 1445 >>> |
| 1446 </pre> |
| 1447 </td></tr></table> |
| 1448 |
| 1449 <p> |
| 1450 Receiving application is supposed to explicitly deserialize the content of Any |
| 1451 value object, possibly using auxiliary selector for figuring out its ASN.1 |
| 1452 type to pick appropriate decoder. |
| 1453 </p> |
| 1454 |
| 1455 <p> |
| 1456 There will be some more talk and code snippets covering Any type in the codecs |
| 1457 chapters that follow. |
| 1458 </p> |
| 1459 |
| 1460 <a name="1.4"></a> |
| 1461 <h4> |
| 1462 1.4 Subtype constraints |
| 1463 </h4> |
| 1464 |
| 1465 <p> |
| 1466 Most ASN.1 types can correspond to an infinite set of values. To adapt to |
| 1467 particular application's data model and needs, ASN.1 provides a mechanism |
| 1468 for limiting the infinite set to values, that make sense in particular case. |
| 1469 </p> |
| 1470 |
| 1471 <p> |
| 1472 Imposing value constraints on an ASN.1 type can also be seen as creating |
| 1473 a subtype from its base type. |
| 1474 </p> |
| 1475 |
| 1476 <p> |
| 1477 In pyasn1, constraints take shape of immutable objects capable |
| 1478 of evaluating given value against constraint-specific requirements. |
| 1479 Constraint object is a property of pyasn1 type. Like TagSet property, |
| 1480 associated with every pyasn1 type, constraints can never be modified |
| 1481 in place. The only way to modify pyasn1 type constraint is to associate |
| 1482 new constraint object to a new pyasn1 type object. |
| 1483 </p> |
| 1484 |
| 1485 <p> |
| 1486 A handful of different flavors of <i>constraints</i> are defined in ASN.1. |
| 1487 We will discuss them one by one in the following chapters and also explain |
| 1488 how to combine and apply them to types. |
| 1489 </p> |
| 1490 |
| 1491 <a name="1.4.1"></a> |
| 1492 <h4> |
| 1493 1.4.1 Single value constraint |
| 1494 </h4> |
| 1495 |
| 1496 <p> |
| 1497 This kind of constraint allows for limiting type to a finite, specified set |
| 1498 of values. |
| 1499 </p> |
| 1500 |
| 1501 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1502 <pre> |
| 1503 DialButton ::= OCTET STRING ( |
| 1504 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
| 1505 ) |
| 1506 </pre> |
| 1507 </td></tr></table> |
| 1508 |
| 1509 <p> |
| 1510 Its pyasn1 implementation would look like: |
| 1511 </p> |
| 1512 |
| 1513 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1514 <pre> |
| 1515 >>> from pyasn1.type import constraint |
| 1516 >>> c = constraint.SingleValueConstraint( |
| 1517 '0','1','2','3','4','5','6','7','8','9' |
| 1518 ) |
| 1519 >>> c |
| 1520 SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) |
| 1521 >>> c('0') |
| 1522 >>> c('A') |
| 1523 Traceback (most recent call last): |
| 1524 ... |
| 1525 pyasn1.type.error.ValueConstraintError: |
| 1526 SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) failed at: A |
| 1527 >>> |
| 1528 </pre> |
| 1529 </td></tr></table> |
| 1530 |
| 1531 <p> |
| 1532 As can be seen in the snippet above, if a value violates the constraint, an |
| 1533 exception will be thrown. A constrainted pyasn1 type object holds a |
| 1534 reference to a constraint object (or their combination, as will be explained |
| 1535 later) and calls it for value verification. |
| 1536 </p> |
| 1537 |
| 1538 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1539 <pre> |
| 1540 >>> from pyasn1.type import univ, constraint |
| 1541 >>> class DialButton(univ.OctetString): |
| 1542 ... subtypeSpec = constraint.SingleValueConstraint( |
| 1543 ... '0','1','2','3','4','5','6','7','8','9' |
| 1544 ... ) |
| 1545 >>> DialButton('0') |
| 1546 DialButton(b'0') |
| 1547 >>> DialButton('A') |
| 1548 Traceback (most recent call last): |
| 1549 ... |
| 1550 pyasn1.type.error.ValueConstraintError: |
| 1551 SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) failed at: A |
| 1552 >>> |
| 1553 </pre> |
| 1554 </td></tr></table> |
| 1555 |
| 1556 <p> |
| 1557 Constrained pyasn1 value object can never hold a violating value. |
| 1558 </p> |
| 1559 |
| 1560 <a name="1.4.2"></a> |
| 1561 <h4> |
| 1562 1.4.2 Value range constraint |
| 1563 </h4> |
| 1564 |
| 1565 <p> |
| 1566 A pair of values, compliant to a type to be constrained, denote low and upper |
| 1567 bounds of allowed range of values of a type. |
| 1568 </p> |
| 1569 |
| 1570 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1571 <pre> |
| 1572 Teenagers ::= INTEGER (13..19) |
| 1573 </pre> |
| 1574 </td></tr></table> |
| 1575 |
| 1576 <p> |
| 1577 And in pyasn1 terms: |
| 1578 </p> |
| 1579 |
| 1580 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1581 <pre> |
| 1582 >>> from pyasn1.type import univ, constraint |
| 1583 >>> class Teenagers(univ.Integer): |
| 1584 ... subtypeSpec = constraint.ValueRangeConstraint(13, 19) |
| 1585 >>> Teenagers(14) |
| 1586 Teenagers(14) |
| 1587 >>> Teenagers(20) |
| 1588 Traceback (most recent call last): |
| 1589 ... |
| 1590 pyasn1.type.error.ValueConstraintError: |
| 1591 ValueRangeConstraint(13, 19) failed at: 20 |
| 1592 >>> |
| 1593 </pre> |
| 1594 </td></tr></table> |
| 1595 |
| 1596 <p> |
| 1597 Value range constraint usually applies numeric types. |
| 1598 </p> |
| 1599 |
| 1600 <a name="1.4.3"></a> |
| 1601 <h4> |
| 1602 1.4.3 Size constraint |
| 1603 </h4> |
| 1604 |
| 1605 <p> |
| 1606 It is sometimes convenient to set or limit the allowed size of a data item |
| 1607 to be sent from one application to another to manage bandwidth and memory |
| 1608 consumption issues. Size constraint specifies the lower and upper bounds |
| 1609 of the size of a valid value. |
| 1610 </p> |
| 1611 |
| 1612 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1613 <pre> |
| 1614 TwoBits ::= BIT STRING (SIZE (2)) |
| 1615 </pre> |
| 1616 </td></tr></table> |
| 1617 |
| 1618 <p> |
| 1619 Express the same grammar in pyasn1: |
| 1620 </p> |
| 1621 |
| 1622 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1623 <pre> |
| 1624 >>> from pyasn1.type import univ, constraint |
| 1625 >>> class TwoBits(univ.BitString): |
| 1626 ... subtypeSpec = constraint.ValueSizeConstraint(2, 2) |
| 1627 >>> TwoBits((1,1)) |
| 1628 TwoBits("'11'B") |
| 1629 >>> TwoBits((1,1,0)) |
| 1630 Traceback (most recent call last): |
| 1631 ... |
| 1632 pyasn1.type.error.ValueConstraintError: |
| 1633 ValueSizeConstraint(2, 2) failed at: (1, 1, 0) |
| 1634 >>> |
| 1635 </pre> |
| 1636 </td></tr></table> |
| 1637 |
| 1638 <p> |
| 1639 Size constraint can be applied to potentially massive values - bit or octet |
| 1640 strings, SEQUENCE OF/SET OF values. |
| 1641 </p> |
| 1642 |
| 1643 <a name="1.4.4"></a> |
| 1644 <h4> |
| 1645 1.4.4 Alphabet constraint |
| 1646 </h4> |
| 1647 |
| 1648 <p> |
| 1649 The permitted alphabet constraint is similar to Single value constraint |
| 1650 but constraint applies to individual characters of a value. |
| 1651 </p> |
| 1652 |
| 1653 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1654 <pre> |
| 1655 MorseCode ::= PrintableString (FROM ("."|"-"|" ")) |
| 1656 </pre> |
| 1657 </td></tr></table> |
| 1658 |
| 1659 <p> |
| 1660 And in pyasn1: |
| 1661 </p> |
| 1662 |
| 1663 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1664 <pre> |
| 1665 >>> from pyasn1.type import char, constraint |
| 1666 >>> class MorseCode(char.PrintableString): |
| 1667 ... subtypeSpec = constraint.PermittedAlphabetConstraint(".", "-", " ") |
| 1668 >>> MorseCode("...---...") |
| 1669 MorseCode('...---...') |
| 1670 >>> MorseCode("?") |
| 1671 Traceback (most recent call last): |
| 1672 ... |
| 1673 pyasn1.type.error.ValueConstraintError: |
| 1674 PermittedAlphabetConstraint(".", "-", " ") failed at: "?" |
| 1675 >>> |
| 1676 </pre> |
| 1677 </td></tr></table> |
| 1678 |
| 1679 <p> |
| 1680 Current implementation does not handle ranges of characters in constraint |
| 1681 (FROM "A".."Z" syntax), one has to list the whole set in a range. |
| 1682 </p> |
| 1683 |
| 1684 <a name="1.4.5"></a> |
| 1685 <h4> |
| 1686 1.4.5 Constraint combinations |
| 1687 </h4> |
| 1688 |
| 1689 <p> |
| 1690 Up to this moment, we used a single constraint per ASN.1 type. The standard, |
| 1691 however, allows for combining multiple individual constraints into |
| 1692 intersections, unions and exclusions. |
| 1693 </p> |
| 1694 |
| 1695 <p> |
| 1696 In pyasn1 data model, all of these methods of constraint combinations are |
| 1697 implemented as constraint-like objects holding individual constraint (or |
| 1698 combination) objects. Like terminal constraint objects, combination objects |
| 1699 are capable to perform value verification at its set of enclosed constraints |
| 1700 according to the logic of particular combination. |
| 1701 </p> |
| 1702 |
| 1703 <p> |
| 1704 Constraints intersection verification succeeds only if a value is |
| 1705 compliant to each constraint in a set. To begin with, the following |
| 1706 specification will constitute a valid telephone number: |
| 1707 </p> |
| 1708 |
| 1709 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1710 <pre> |
| 1711 PhoneNumber ::= NumericString (FROM ("0".."9")) (SIZE 11) |
| 1712 </pre> |
| 1713 </td></tr></table> |
| 1714 |
| 1715 <p> |
| 1716 Constraint intersection object serves the logic above: |
| 1717 </p> |
| 1718 |
| 1719 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1720 <pre> |
| 1721 >>> from pyasn1.type import char, constraint |
| 1722 >>> class PhoneNumber(char.NumericString): |
| 1723 ... subtypeSpec = constraint.ConstraintsIntersection( |
| 1724 ... constraint.PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','
8','9'), |
| 1725 ... constraint.ValueSizeConstraint(11, 11) |
| 1726 ... ) |
| 1727 >>> PhoneNumber('79039343212') |
| 1728 PhoneNumber('79039343212') |
| 1729 >>> PhoneNumber('?9039343212') |
| 1730 Traceback (most recent call last): |
| 1731 ... |
| 1732 pyasn1.type.error.ValueConstraintError: |
| 1733 ConstraintsIntersection( |
| 1734 PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','8','9'), |
| 1735 ValueSizeConstraint(11, 11)) failed at: |
| 1736 PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','8','9') failed a
t: "?039343212" |
| 1737 >>> PhoneNumber('9343212') |
| 1738 Traceback (most recent call last): |
| 1739 ... |
| 1740 pyasn1.type.error.ValueConstraintError: |
| 1741 ConstraintsIntersection( |
| 1742 PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','8','9'), |
| 1743 ValueSizeConstraint(11, 11)) failed at: |
| 1744 ValueSizeConstraint(10, 10) failed at: "9343212" |
| 1745 >>> |
| 1746 </pre> |
| 1747 </td></tr></table> |
| 1748 |
| 1749 <p> |
| 1750 Union of constraints works by making sure that a value is compliant |
| 1751 to any of the constraint in a set. For instance: |
| 1752 </p> |
| 1753 |
| 1754 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1755 <pre> |
| 1756 CapitalOrSmall ::= IA5String (FROM ('A','B','C') | FROM ('a','b','c')) |
| 1757 </pre> |
| 1758 </td></tr></table> |
| 1759 |
| 1760 <p> |
| 1761 It's important to note, that a value must fully comply to any single |
| 1762 constraint in a set. In the specification above, a value of all small or |
| 1763 all capital letters is compliant, but a mix of small&capitals is not. |
| 1764 Here's its pyasn1 analogue: |
| 1765 </p> |
| 1766 |
| 1767 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1768 <pre> |
| 1769 >>> from pyasn1.type import char, constraint |
| 1770 >>> class CapitalOrSmall(char.IA5String): |
| 1771 ... subtypeSpec = constraint.ConstraintsUnion( |
| 1772 ... constraint.PermittedAlphabetConstraint('A','B','C'), |
| 1773 ... constraint.PermittedAlphabetConstraint('a','b','c') |
| 1774 ... ) |
| 1775 >>> CapitalOrSmall('ABBA') |
| 1776 CapitalOrSmall('ABBA') |
| 1777 >>> CapitalOrSmall('abba') |
| 1778 CapitalOrSmall('abba') |
| 1779 >>> CapitalOrSmall('Abba') |
| 1780 Traceback (most recent call last): |
| 1781 ... |
| 1782 pyasn1.type.error.ValueConstraintError: |
| 1783 ConstraintsUnion(PermittedAlphabetConstraint('A', 'B', 'C'), |
| 1784 PermittedAlphabetConstraint('a', 'b', 'c')) failed at: failed for "Abba" |
| 1785 >>> |
| 1786 </pre> |
| 1787 </td></tr></table> |
| 1788 |
| 1789 <p> |
| 1790 Finally, the exclusion constraint simply negates the logic of value |
| 1791 verification at a constraint. In the following example, any integer value |
| 1792 is allowed in a type but not zero. |
| 1793 </p> |
| 1794 |
| 1795 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1796 <pre> |
| 1797 NoZero ::= INTEGER (ALL EXCEPT 0) |
| 1798 </pre> |
| 1799 </td></tr></table> |
| 1800 |
| 1801 <p> |
| 1802 In pyasn1 the above definition would read: |
| 1803 </p> |
| 1804 |
| 1805 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1806 <pre> |
| 1807 >>> from pyasn1.type import univ, constraint |
| 1808 >>> class NoZero(univ.Integer): |
| 1809 ... subtypeSpec = constraint.ConstraintsExclusion( |
| 1810 ... constraint.SingleValueConstraint(0) |
| 1811 ... ) |
| 1812 >>> NoZero(1) |
| 1813 NoZero(1) |
| 1814 >>> NoZero(0) |
| 1815 Traceback (most recent call last): |
| 1816 ... |
| 1817 pyasn1.type.error.ValueConstraintError: |
| 1818 ConstraintsExclusion(SingleValueConstraint(0)) failed at: 0 |
| 1819 >>> |
| 1820 </pre> |
| 1821 </td></tr></table> |
| 1822 |
| 1823 <p> |
| 1824 The depth of such a constraints tree, built with constraint combination objects |
| 1825 at its nodes, has not explicit limit. Value verification is performed in a |
| 1826 recursive manner till a definite solution is found. |
| 1827 </p> |
| 1828 |
| 1829 <a name="1.5"></a> |
| 1830 <h4> |
| 1831 1.5 Types relationships |
| 1832 </h4> |
| 1833 |
| 1834 <p> |
| 1835 In the course of data processing in an application, it is sometimes |
| 1836 convenient to figure out the type relationships between pyasn1 type or |
| 1837 value objects. Formally, two things influence pyasn1 types relationship: |
| 1838 <i>tag set</i> and <i>subtype constraints</i>. One pyasn1 type is considered |
| 1839 to be a derivative of another if their TagSet and Constraint objects are |
| 1840 a derivation of one another. |
| 1841 </p> |
| 1842 |
| 1843 <p> |
| 1844 The following example illustrates the concept (we use the same tagset but |
| 1845 different constraints for simplicity): |
| 1846 </p> |
| 1847 |
| 1848 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1849 <pre> |
| 1850 >>> from pyasn1.type import univ, constraint |
| 1851 >>> i1 = univ.Integer(subtypeSpec=constraint.ValueRangeConstraint(3,8)) |
| 1852 >>> i2 = univ.Integer(subtypeSpec=constraint.ConstraintsIntersection( |
| 1853 ... constraint.ValueRangeConstraint(3,8), |
| 1854 ... constraint.ValueRangeConstraint(4,7) |
| 1855 ... ) ) |
| 1856 >>> i1.isSameTypeWith(i2) |
| 1857 False |
| 1858 >>> i1.isSuperTypeOf(i2) |
| 1859 True |
| 1860 >>> i1.isSuperTypeOf(i1) |
| 1861 True |
| 1862 >>> i2.isSuperTypeOf(i1) |
| 1863 False |
| 1864 >>> |
| 1865 </pre> |
| 1866 </td></tr></table> |
| 1867 |
| 1868 <p> |
| 1869 As can be seen in the above code snippet, there are two methods of any pyasn1 |
| 1870 type/value object that test types for their relationship: |
| 1871 <b>isSameTypeWith</b>() and <b>isSuperTypeOf</b>(). The former is |
| 1872 self-descriptive while the latter yields true if the argument appears |
| 1873 to be a pyasn1 object which has tagset and constraints derived from those |
| 1874 of the object being called. |
| 1875 </p> |
| 1876 |
| 1877 <a name="2"></a> |
| 1878 <h3> |
| 1879 2. Codecs |
| 1880 </h3> |
| 1881 |
| 1882 <p> |
| 1883 In ASN.1 context, |
| 1884 <a href=http://en.wikipedia.org/wiki/Codec>codec</a> |
| 1885 is a program that transforms between concrete data structures and a stream |
| 1886 of octets, suitable for transmission over the wire. This serialized form of |
| 1887 data is sometimes called <i>substrate</i> or <i>essence</i>. |
| 1888 </p> |
| 1889 |
| 1890 <p> |
| 1891 In pyasn1 implementation, substrate takes shape of Python 3 bytes or |
| 1892 Python 2 string objects. |
| 1893 </p> |
| 1894 |
| 1895 <p> |
| 1896 One of the properties of a codec is its ability to cope with incomplete |
| 1897 data and/or substrate what implies codec to be stateful. In other words, |
| 1898 when decoder runs out of substrate and data item being recovered is still |
| 1899 incomplete, stateful codec would suspend and complete data item recovery |
| 1900 whenever the rest of substrate becomes available. Similarly, stateful encoder |
| 1901 would encode data items in multiple steps waiting for source data to |
| 1902 arrive. Codec restartability is especially important when application deals |
| 1903 with large volumes of data and/or runs on low RAM. For an interesting |
| 1904 discussion on codecs options and design choices, refer to |
| 1905 <a href=http://directory.apache.org/subprojects/asn1/>Apache ASN.1 project</a> |
| 1906 . |
| 1907 </p> |
| 1908 |
| 1909 <p> |
| 1910 As of this writing, codecs implemented in pyasn1 are all stateless, mostly |
| 1911 to keep the code simple. |
| 1912 </p> |
| 1913 |
| 1914 <p> |
| 1915 The pyasn1 package currently supports |
| 1916 <a href=http://en.wikipedia.org/wiki/Basic_encoding_rules>BER</a> codec and |
| 1917 its variations -- |
| 1918 <a href=http://en.wikipedia.org/wiki/Canonical_encoding_rules>CER</a> and |
| 1919 <a href=http://en.wikipedia.org/wiki/Distinguished_encoding_rules>DER</a>. |
| 1920 More ASN.1 codecs are planned for implementation in the future. |
| 1921 </p> |
| 1922 |
| 1923 <a name="2.1"></a> |
| 1924 <h4> |
| 1925 2.1 Encoders |
| 1926 </h4> |
| 1927 |
| 1928 <p> |
| 1929 Encoder is used for transforming pyasn1 value objects into substrate. Only |
| 1930 pyasn1 value objects could be serialized, attempts to process pyasn1 type |
| 1931 objects will cause encoder failure. |
| 1932 </p> |
| 1933 |
| 1934 <p> |
| 1935 The following code will create a pyasn1 Integer object and serialize it with |
| 1936 BER encoder: |
| 1937 </p> |
| 1938 |
| 1939 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1940 <pre> |
| 1941 >>> from pyasn1.type import univ |
| 1942 >>> from pyasn1.codec.ber import encoder |
| 1943 >>> encoder.encode(univ.Integer(123456)) |
| 1944 b'\x02\x03\x01\xe2@' |
| 1945 >>> |
| 1946 </pre> |
| 1947 </td></tr></table> |
| 1948 |
| 1949 <p> |
| 1950 BER standard also defines a so-called <i>indefinite length</i> encoding form |
| 1951 which makes large data items processing more memory efficient. It is mostly |
| 1952 useful when encoder does not have the whole value all at once and the |
| 1953 length of the value can not be determined at the beginning of encoding. |
| 1954 </p> |
| 1955 |
| 1956 <p> |
| 1957 <i>Constructed encoding</i> is another feature of BER closely related to the |
| 1958 indefinite length form. In essence, a large scalar value (such as ASN.1 |
| 1959 character BitString type) could be chopped into smaller chunks by encoder |
| 1960 and transmitted incrementally to limit memory consumption. Unlike indefinite |
| 1961 length case, the length of the whole value must be known in advance when |
| 1962 using constructed, definite length encoding form. |
| 1963 </p> |
| 1964 |
| 1965 <p> |
| 1966 Since pyasn1 codecs are not restartable, pyasn1 encoder may only encode data |
| 1967 item all at once. However, even in this case, generating indefinite length |
| 1968 encoding may help a low-memory receiver, running a restartable decoder, |
| 1969 to process a large data item. |
| 1970 </p> |
| 1971 |
| 1972 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 1973 <pre> |
| 1974 >>> from pyasn1.type import univ |
| 1975 >>> from pyasn1.codec.ber import encoder |
| 1976 >>> encoder.encode( |
| 1977 ... univ.OctetString('The quick brown fox jumps over the lazy dog'), |
| 1978 ... defMode=False, |
| 1979 ... maxChunkSize=8 |
| 1980 ... ) |
| 1981 b'$\x80\x04\x08The quic\x04\x08k brown \x04\x08fox jump\x04\x08s over \ |
| 1982 t\x04\x08he lazy \x04\x03dog\x00\x00' |
| 1983 >>> |
| 1984 >>> encoder.encode( |
| 1985 ... univ.OctetString('The quick brown fox jumps over the lazy dog'), |
| 1986 ... maxChunkSize=8 |
| 1987 ... ) |
| 1988 b'$7\x04\x08The quic\x04\x08k brown \x04\x08fox jump\x04\x08s over \ |
| 1989 t\x04\x08he lazy \x04\x03dog' |
| 1990 </pre> |
| 1991 </td></tr></table> |
| 1992 |
| 1993 <p> |
| 1994 The <b>defMode</b> encoder parameter disables definite length encoding mode, |
| 1995 while the optional <b>maxChunkSize</b> parameter specifies desired |
| 1996 substrate chunk size that influences memory requirements at the decoder's end. |
| 1997 </p> |
| 1998 |
| 1999 <p> |
| 2000 To use CER or DER encoders one needs to explicitly import and call them - the |
| 2001 APIs are all compatible. |
| 2002 </p> |
| 2003 |
| 2004 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2005 <pre> |
| 2006 >>> from pyasn1.type import univ |
| 2007 >>> from pyasn1.codec.ber import encoder as ber_encoder |
| 2008 >>> from pyasn1.codec.cer import encoder as cer_encoder |
| 2009 >>> from pyasn1.codec.der import encoder as der_encoder |
| 2010 >>> ber_encoder.encode(univ.Boolean(True)) |
| 2011 b'\x01\x01\x01' |
| 2012 >>> cer_encoder.encode(univ.Boolean(True)) |
| 2013 b'\x01\x01\xff' |
| 2014 >>> der_encoder.encode(univ.Boolean(True)) |
| 2015 b'\x01\x01\xff' |
| 2016 >>> |
| 2017 </pre> |
| 2018 </td></tr></table> |
| 2019 |
| 2020 <a name="2.2"></a> |
| 2021 <h4> |
| 2022 2.2 Decoders |
| 2023 </h4> |
| 2024 |
| 2025 <p> |
| 2026 In the process of decoding, pyasn1 value objects are created and linked to |
| 2027 each other, based on the information containted in the substrate. Thus, |
| 2028 the original pyasn1 value object(s) are recovered. |
| 2029 </p> |
| 2030 |
| 2031 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2032 <pre> |
| 2033 >>> from pyasn1.type import univ |
| 2034 >>> from pyasn1.codec.ber import encoder, decoder |
| 2035 >>> substrate = encoder.encode(univ.Boolean(True)) |
| 2036 >>> decoder.decode(substrate) |
| 2037 (Boolean('True(1)'), b'') |
| 2038 >>> |
| 2039 </pre> |
| 2040 </td></tr></table> |
| 2041 |
| 2042 <p> |
| 2043 Commenting on the code snippet above, pyasn1 decoder accepts substrate |
| 2044 as an argument and returns a tuple of pyasn1 value object (possibly |
| 2045 a top-level one in case of constructed object) and unprocessed part |
| 2046 of input substrate. |
| 2047 </p> |
| 2048 |
| 2049 <p> |
| 2050 All pyasn1 decoders can handle both definite and indefinite length |
| 2051 encoding modes automatically, explicit switching into one mode |
| 2052 to another is not required. |
| 2053 </p> |
| 2054 |
| 2055 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2056 <pre> |
| 2057 >>> from pyasn1.type import univ |
| 2058 >>> from pyasn1.codec.ber import encoder, decoder |
| 2059 >>> substrate = encoder.encode( |
| 2060 ... univ.OctetString('The quick brown fox jumps over the lazy dog'), |
| 2061 ... defMode=False, |
| 2062 ... maxChunkSize=8 |
| 2063 ... ) |
| 2064 >>> decoder.decode(substrate) |
| 2065 (OctetString(b'The quick brown fox jumps over the lazy dog'), b'') |
| 2066 >>> |
| 2067 </pre> |
| 2068 </td></tr></table> |
| 2069 |
| 2070 <p> |
| 2071 Speaking of BER/CER/DER encoding, in many situations substrate may not contain |
| 2072 all necessary information needed for complete and accurate ASN.1 values |
| 2073 recovery. The most obvious cases include implicitly tagged ASN.1 types |
| 2074 and constrained types. |
| 2075 </p> |
| 2076 |
| 2077 <p> |
| 2078 As discussed earlier in this handbook, when an ASN.1 type is implicitly |
| 2079 tagged, previous outermost tag is lost and never appears in substrate. |
| 2080 If it is the base tag that gets lost, decoder is unable to pick type-specific |
| 2081 value decoder at its table of built-in types, and therefore recover |
| 2082 the value part, based only on the information contained in substrate. The |
| 2083 approach taken by pyasn1 decoder is to use a prototype pyasn1 type object (or |
| 2084 a set of them) to <i>guide</i> the decoding process by matching [possibly |
| 2085 incomplete] tags recovered from substrate with those found in prototype pyasn1 |
| 2086 type objects (also called pyasn1 specification object further in this paper). |
| 2087 </p> |
| 2088 |
| 2089 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2090 <pre> |
| 2091 >>> from pyasn1.codec.ber import decoder |
| 2092 >>> decoder.decode(b'\x02\x01\x0c', asn1Spec=univ.Integer()) |
| 2093 Integer(12), b'' |
| 2094 >>> |
| 2095 </pre> |
| 2096 </td></tr></table> |
| 2097 |
| 2098 <p> |
| 2099 Decoder would neither modify pyasn1 specification object nor use |
| 2100 its current values (if it's a pyasn1 value object), but rather use it as |
| 2101 a hint for choosing proper decoder and as a pattern for creating new objects: |
| 2102 </p> |
| 2103 |
| 2104 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2105 <pre> |
| 2106 >>> from pyasn1.type import univ, tag |
| 2107 >>> from pyasn1.codec.ber import encoder, decoder |
| 2108 >>> i = univ.Integer(12345).subtype( |
| 2109 ... implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 40) |
| 2110 ... ) |
| 2111 >>> substrate = encoder.encode(i) |
| 2112 >>> substrate |
| 2113 b'\x9f(\x0209' |
| 2114 >>> decoder.decode(substrate) |
| 2115 Traceback (most recent call last): |
| 2116 ... |
| 2117 pyasn1.error.PyAsn1Error: |
| 2118 TagSet(Tag(tagClass=128, tagFormat=0, tagId=40)) not in asn1Spec |
| 2119 >>> decoder.decode(substrate, asn1Spec=i) |
| 2120 (Integer(12345), b'') |
| 2121 >>> |
| 2122 </pre> |
| 2123 </td></tr></table> |
| 2124 |
| 2125 <p> |
| 2126 Notice in the example above, that an attempt to run decoder without passing |
| 2127 pyasn1 specification object fails because recovered tag does not belong |
| 2128 to any of the built-in types. |
| 2129 </p> |
| 2130 |
| 2131 <p> |
| 2132 Another important feature of guided decoder operation is the use of |
| 2133 values constraints possibly present in pyasn1 specification object. |
| 2134 To explain this, we will decode a random integer object into generic Integer |
| 2135 and the constrained one. |
| 2136 </p> |
| 2137 |
| 2138 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2139 <pre> |
| 2140 >>> from pyasn1.type import univ, constraint |
| 2141 >>> from pyasn1.codec.ber import encoder, decoder |
| 2142 >>> class DialDigit(univ.Integer): |
| 2143 ... subtypeSpec = constraint.ValueRangeConstraint(0,9) |
| 2144 >>> substrate = encoder.encode(univ.Integer(13)) |
| 2145 >>> decoder.decode(substrate) |
| 2146 (Integer(13), b'') |
| 2147 >>> decoder.decode(substrate, asn1Spec=DialDigit()) |
| 2148 Traceback (most recent call last): |
| 2149 ... |
| 2150 pyasn1.type.error.ValueConstraintError: |
| 2151 ValueRangeConstraint(0, 9) failed at: 13 |
| 2152 >>> |
| 2153 </pre> |
| 2154 </td></tr></table> |
| 2155 |
| 2156 <p> |
| 2157 Similarily to encoders, to use CER or DER decoders application has to |
| 2158 explicitly import and call them - all APIs are compatible. |
| 2159 </p> |
| 2160 |
| 2161 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2162 <pre> |
| 2163 >>> from pyasn1.type import univ |
| 2164 >>> from pyasn1.codec.ber import encoder as ber_encoder |
| 2165 >>> substrate = ber_encoder.encode(univ.OctetString('http://pyasn1.sf.net')) |
| 2166 >>> |
| 2167 >>> from pyasn1.codec.ber import decoder as ber_decoder |
| 2168 >>> from pyasn1.codec.cer import decoder as cer_decoder |
| 2169 >>> from pyasn1.codec.der import decoder as der_decoder |
| 2170 >>> |
| 2171 >>> ber_decoder.decode(substrate) |
| 2172 (OctetString(b'http://pyasn1.sf.net'), b'') |
| 2173 >>> cer_decoder.decode(substrate) |
| 2174 (OctetString(b'http://pyasn1.sf.net'), b'') |
| 2175 >>> der_decoder.decode(substrate) |
| 2176 (OctetString(b'http://pyasn1.sf.net'), b'') |
| 2177 >>> |
| 2178 </pre> |
| 2179 </td></tr></table> |
| 2180 |
| 2181 <a name="2.2.1"></a> |
| 2182 <h4> |
| 2183 2.2.1 Decoding untagged types |
| 2184 </h4> |
| 2185 |
| 2186 <p> |
| 2187 It has already been mentioned, that ASN.1 has two "special case" types: |
| 2188 CHOICE and ANY. They are different from other types in part of |
| 2189 tagging - unless these two are additionally tagged, neither of them will |
| 2190 have their own tag. Therefore these types become invisible in substrate |
| 2191 and can not be recovered without passing pyasn1 specification object to |
| 2192 decoder. |
| 2193 </p> |
| 2194 |
| 2195 <p> |
| 2196 To explain the issue, we will first prepare a Choice object to deal with: |
| 2197 </p> |
| 2198 |
| 2199 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2200 <pre> |
| 2201 >>> from pyasn1.type import univ, namedtype |
| 2202 >>> class CodeOrMessage(univ.Choice): |
| 2203 ... componentType = namedtype.NamedTypes( |
| 2204 ... namedtype.NamedType('code', univ.Integer()), |
| 2205 ... namedtype.NamedType('message', univ.OctetString()) |
| 2206 ... ) |
| 2207 >>> |
| 2208 >>> codeOrMessage = CodeOrMessage() |
| 2209 >>> codeOrMessage.setComponentByName('message', 'my string value') |
| 2210 >>> print(codeOrMessage.prettyPrint()) |
| 2211 CodeOrMessage: |
| 2212 message=b'my string value' |
| 2213 >>> |
| 2214 </pre> |
| 2215 </td></tr></table> |
| 2216 |
| 2217 <p> |
| 2218 Let's now encode this Choice object and then decode its substrate |
| 2219 with and without pyasn1 specification object: |
| 2220 </p> |
| 2221 |
| 2222 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2223 <pre> |
| 2224 >>> from pyasn1.codec.ber import encoder, decoder |
| 2225 >>> substrate = encoder.encode(codeOrMessage) |
| 2226 >>> substrate |
| 2227 b'\x04\x0fmy string value' |
| 2228 >>> encoder.encode(univ.OctetString('my string value')) |
| 2229 b'\x04\x0fmy string value' |
| 2230 >>> |
| 2231 >>> decoder.decode(substrate) |
| 2232 (OctetString(b'my string value'), b'') |
| 2233 >>> codeOrMessage, substrate = decoder.decode(substrate, asn1Spec=CodeOrMessage(
)) |
| 2234 >>> print(codeOrMessage.prettyPrint()) |
| 2235 CodeOrMessage: |
| 2236 message=b'my string value' |
| 2237 >>> |
| 2238 </pre> |
| 2239 </td></tr></table> |
| 2240 |
| 2241 <p> |
| 2242 First thing to notice in the listing above is that the substrate produced |
| 2243 for our Choice value object is equivalent to the substrate for an OctetString |
| 2244 object initialized to the same value. In other words, any information about |
| 2245 the Choice component is absent in encoding. |
| 2246 </p> |
| 2247 |
| 2248 <p> |
| 2249 Sure enough, that kind of substrate will decode into an OctetString object, |
| 2250 unless original Choice type object is passed to decoder to guide the decoding |
| 2251 process. |
| 2252 </p> |
| 2253 |
| 2254 <p> |
| 2255 Similarily untagged ANY type behaves differently on decoding phase - when |
| 2256 decoder bumps into an Any object in pyasn1 specification, it stops decoding |
| 2257 and puts all the substrate into a new Any value object in form of an octet |
| 2258 string. Concerned application could then re-run decoder with an additional, |
| 2259 more exact pyasn1 specification object to recover the contents of Any |
| 2260 object. |
| 2261 </p> |
| 2262 |
| 2263 <p> |
| 2264 As it was mentioned elsewhere in this paper, Any type allows for incomplete |
| 2265 or changing ASN.1 specification to be handled gracefully by decoder and |
| 2266 applications. |
| 2267 </p> |
| 2268 |
| 2269 <p> |
| 2270 To illustrate the working of Any type, we'll have to make the stage |
| 2271 by encoding a pyasn1 object and then putting its substrate into an any |
| 2272 object. |
| 2273 </p> |
| 2274 |
| 2275 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2276 <pre> |
| 2277 >>> from pyasn1.type import univ |
| 2278 >>> from pyasn1.codec.ber import encoder, decoder |
| 2279 >>> innerSubstrate = encoder.encode(univ.Integer(1234)) |
| 2280 >>> innerSubstrate |
| 2281 b'\x02\x02\x04\xd2' |
| 2282 >>> any = univ.Any(innerSubstrate) |
| 2283 >>> any |
| 2284 Any(b'\x02\x02\x04\xd2') |
| 2285 >>> substrate = encoder.encode(any) |
| 2286 >>> substrate |
| 2287 b'\x02\x02\x04\xd2' |
| 2288 >>> |
| 2289 </pre> |
| 2290 </td></tr></table> |
| 2291 |
| 2292 <p> |
| 2293 As with Choice type encoding, there is no traces of Any type in substrate. |
| 2294 Obviously, the substrate we are dealing with, will decode into the inner |
| 2295 [Integer] component, unless pyasn1 specification is given to guide the |
| 2296 decoder. Continuing previous code: |
| 2297 </p> |
| 2298 |
| 2299 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2300 <pre> |
| 2301 >>> from pyasn1.type import univ |
| 2302 >>> from pyasn1.codec.ber import encoder, decoder |
| 2303 |
| 2304 >>> decoder.decode(substrate) |
| 2305 (Integer(1234), b'') |
| 2306 >>> any, substrate = decoder.decode(substrate, asn1Spec=univ.Any()) |
| 2307 >>> any |
| 2308 Any(b'\x02\x02\x04\xd2') |
| 2309 >>> decoder.decode(str(any)) |
| 2310 (Integer(1234), b'') |
| 2311 >>> |
| 2312 </pre> |
| 2313 </td></tr></table> |
| 2314 |
| 2315 <p> |
| 2316 Both CHOICE and ANY types are widely used in practice. Reader is welcome to |
| 2317 take a look at |
| 2318 <a href=http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt> |
| 2319 ASN.1 specifications of X.509 applications</a> for more information. |
| 2320 </p> |
| 2321 |
| 2322 <a name="2.2.2"></a> |
| 2323 <h4> |
| 2324 2.2.2 Ignoring unknown types |
| 2325 </h4> |
| 2326 |
| 2327 <p> |
| 2328 When dealing with a loosely specified ASN.1 structure, the receiving |
| 2329 end may not be aware of some types present in the substrate. It may be |
| 2330 convenient then to turn decoder into a recovery mode. Whilst there, decoder |
| 2331 will not bail out when hit an unknown tag but rather treat it as an Any |
| 2332 type. |
| 2333 </p> |
| 2334 |
| 2335 <table bgcolor="lightgray" border=0 width=100%><TR><TD> |
| 2336 <pre> |
| 2337 >>> from pyasn1.type import univ, tag |
| 2338 >>> from pyasn1.codec.ber import encoder, decoder |
| 2339 >>> taggedInt = univ.Integer(12345).subtype( |
| 2340 ... implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 40) |
| 2341 ... ) |
| 2342 >>> substrate = encoder.encode(taggedInt) |
| 2343 >>> decoder.decode(substrate) |
| 2344 Traceback (most recent call last): |
| 2345 ... |
| 2346 pyasn1.error.PyAsn1Error: TagSet(Tag(tagClass=128, tagFormat=0, tagId=40)) not i
n asn1Spec |
| 2347 >>> |
| 2348 >>> decoder.decode.defaultErrorState = decoder.stDumpRawValue |
| 2349 >>> decoder.decode(substrate) |
| 2350 (Any(b'\x9f(\x0209'), '') |
| 2351 >>> |
| 2352 </pre> |
| 2353 </td></tr></table> |
| 2354 |
| 2355 <p> |
| 2356 It's also possible to configure a custom decoder, to handle unknown tags |
| 2357 found in substrate. This can be done by means of <b>defaultRawDecoder</b> |
| 2358 attribute holding a reference to type decoder object. Refer to the source |
| 2359 for API details. |
| 2360 </p> |
| 2361 |
| 2362 <a name="3"></a> |
| 2363 <h3> |
| 2364 3. Feedback and getting help |
| 2365 </h3> |
| 2366 |
| 2367 <p> |
| 2368 Although pyasn1 software is almost a decade old and used in many production |
| 2369 environments, it still may have bugs and non-implemented pieces. Anyone |
| 2370 who happens to run into such defect is welcome to complain to |
| 2371 <a href=mailto:pyasn1-users@lists.sourceforge.net>pyasn1 mailing list</a> |
| 2372 or better yet fix the issue and send |
| 2373 <a href=mailto:ilya@glas.net>me</a> the patch. |
| 2374 </p> |
| 2375 |
| 2376 <p> |
| 2377 Typically, pyasn1 is used for building arbitrary protocol support into |
| 2378 various applications. This involves manual translation of ASN.1 data |
| 2379 structures into their pyasn1 implementations. To save time and effort, |
| 2380 data structures for some of the popular protocols are pre-programmed |
| 2381 and kept for further re-use in form of the |
| 2382 <a href=http://sourceforge.net/projects/pyasn1/files/pyasn1-modules/> |
| 2383 pyasn1-modules package</a>. For instance, many structures for PKI (X.509, |
| 2384 PKCS#*, CRMF, OCSP), LDAP and SNMP are present. |
| 2385 Applications authors are advised to import and use relevant modules |
| 2386 from that package whenever needed protocol structures are already |
| 2387 there. New protocol modules contributions are welcome. |
| 2388 </p> |
| 2389 |
| 2390 <p> |
| 2391 And finally, the latest pyasn1 package revision is available for free |
| 2392 download from |
| 2393 <a href=http://sourceforge.net/projects/pyasn1/>project home</a> and |
| 2394 also from the |
| 2395 <a href=http://pypi.python.org/pypi>Python package repository</a>. |
| 2396 </p> |
| 2397 |
| 2398 <hr> |
| 2399 |
| 2400 </td> |
| 2401 </tr> |
| 2402 </table> |
| 2403 </center> |
| 2404 </body> |
| 2405 </html> |
OLD | NEW |