| Index: doc/definition/strong-dart.tex
|
| diff --git a/doc/definition/strong-dart.tex b/doc/definition/strong-dart.tex
|
| index 520d2bf08cddfaff8798f20b092536e83f49d204..216b476238945a8af00dcfffd647077cdd5bb1e4 100644
|
| --- a/doc/definition/strong-dart.tex
|
| +++ b/doc/definition/strong-dart.tex
|
| @@ -12,37 +12,47 @@
|
| \newcommand{\Object}{\mathbf{Object}}
|
| \newcommand{\TApp}[2]{#1\mathrm{<}#2\mathrm{>}}
|
| \newcommand{\Type}{\mathbf{Type}}
|
| +\newcommand{\Weak}[1]{\mathbf{\{#1\}}}
|
| +\newcommand{\Sig}{\mathit{Sig}}
|
| +\newcommand{\Boxed}[1]{\langle #1 \rangle}
|
|
|
| % expressions
|
| \newcommand{\eassign}[2]{#1 = #2}
|
| \newcommand{\eas}[2]{#1\ \mathbf{as}\ #2}
|
| -\newcommand{\echeck}[2]{\kwop{check}(#1, #2)}
|
| +\newcommand{\ebox}[2]{\langle#1\rangle_{#2}}
|
| \newcommand{\ecall}[2]{#1(#2)}
|
| +\newcommand{\echeck}[2]{\kwop{check}(#1, #2)}
|
| \newcommand{\edcall}[2]{\kwop{dcall}(#1, #2)}
|
| \newcommand{\edload}[2]{\kwop{dload}(#1, #2)}
|
| +\newcommand{\edo}[1]{\kwdo\{\,#1\,\}}
|
| \newcommand{\eff}{\mathrm{ff}}
|
| \newcommand{\eis}[2]{#1\ \mathbf{is}\ #2}
|
| +\newcommand{\elabel}[1][l]{\mathit{l}}
|
| \newcommand{\elambda}[3]{(#1):#2 \Rightarrow #3}
|
| \newcommand{\eload}[2]{#1.#2}
|
| -\newcommand{\eset}[3]{\eassign{#1.#2}{#3}}
|
| \newcommand{\enew}[3]{\mathbf{new}\,\TApp{#1}{#2}(#3)}
|
| \newcommand{\enull}{\mathbf{null}}
|
| -\newcommand{\eprim}{\kwop{op}}
|
| +\newcommand{\eobject}[2]{\kwobject_{#1} \{#2\}}
|
| \newcommand{\eprimapp}[2]{\ecall{#1}{#2}}
|
| +\newcommand{\eprim}{\kwop{op}}
|
| \newcommand{\esend}[3]{\ecall{\eload{#1}{#2}}{#3}}
|
| +\newcommand{\eset}[3]{\eassign{#1.#2}{#3}}
|
| \newcommand{\esuper}{\mathbf{super}}
|
| \newcommand{\ethis}{\mathbf{this}}
|
| \newcommand{\ethrow}{\mathbf{throw}}
|
| \newcommand{\ett}{\mathrm{tt}}
|
| +\newcommand{\eunbox}[1]{{*#1}}
|
|
|
| % keywords
|
| \newcommand{\kwclass}{\kw{class}}
|
| -\newcommand{\kwextends}{\kw{extends}}
|
| +\newcommand{\kwdo}{\kw{do}}
|
| \newcommand{\kwelse}{\kw{else}}
|
| +\newcommand{\kwextends}{\kw{extends}}
|
| \newcommand{\kwfun}{\kw{fun}}
|
| \newcommand{\kwif}{\kw{if}}
|
| \newcommand{\kwin}{\kw{in}}
|
| \newcommand{\kwlet}{\kw{let}}
|
| +\newcommand{\kwobject}{\kw{object}}
|
| \newcommand{\kwreturn}{\kw{return}}
|
| \newcommand{\kwthen}{\kw{then}}
|
| \newcommand{\kwvar}{\kw{var}}
|
| @@ -54,7 +64,7 @@
|
|
|
|
|
| \newcommand{\fieldDecl}[2]{\kwvar\ #1 : #2}
|
| -\newcommand{\methodDecl}[2]{\kwfun\ #1 : #2}
|
| +\newcommand{\methodDecl}[3]{\kwfun\ #1 : \iftrans{#2 \triangleleft} #3}
|
|
|
| % statements
|
| \newcommand{\sifthenelse}[3]{\kwif\ (#1)\ \kwthen\ #2\ \kwelse\ #3}
|
| @@ -70,6 +80,12 @@
|
| \newcommand{\many}[1]{\overrightarrow{#1}}
|
| \newcommand{\alt}{\ \mathop{|}\ }
|
| \newcommand{\opt}[1]{[#1]}
|
| +\newcommand{\bind}[3]{#1 \Leftarrow\, #2\ \kw{in}\ #3}
|
| +
|
| +\newcommand{\note}[1]{\textbf{NOTE:} \textit{#1}}
|
| +
|
| +%dynamic semantics
|
| +\newcommand{\TypeError}{\mathbf{Error}}
|
|
|
| % inference rules
|
| \newcommand{\infrulem}[3][]{
|
| @@ -109,22 +125,32 @@
|
| \newboolean{show_translation}
|
| \setboolean{show_translation}{false}
|
| \newcommand{\iftrans}[1]{\ifthenelse{\boolean{show_translation}}{#1}{}}
|
| +\newcommand{\ifnottrans}[1]{\ifthenelse{\boolean{show_translation}}{#1}}
|
|
|
| \newcommand{\blockOk}[4]{#1 \vdash #2 \col #3\iftrans{\, \Uparrow\, #4}}
|
| \newcommand{\declOk}[5][]{#2 \vdash_{#1} #3 \, \Uparrow\, \iftrans{#4\, :\,} #5}
|
| \newcommand{\extends}[4][:]{#2[#3\ #1\ #4]}
|
| \newcommand{\fieldLookup}[4]{#1 \vdash #2.#3\, \leadsto_f\, #4}
|
| -\newcommand{\methodLookup}[4]{#1 \vdash #2.#3\, \leadsto_m\, #4}
|
| +\newcommand{\methodLookup}[5]{#1 \vdash #2.#3\, \leadsto_m\, \iftrans{#4 \triangleleft} #5}
|
| +\newcommand{\fieldAbsent}[3]{#1 \vdash #3 \notin #2}
|
| +\newcommand{\methodAbsent}[3]{#1 \vdash #3 \notin #2}
|
| \newcommand{\hastype}[3]{#1 \vdash #2 \, : \, #3}
|
| \newcommand{\stmtOk}[5]{#1 \vdash #2 \, : \, #3\, \Uparrow \iftrans{#4\, :\,} #5}
|
| \newcommand{\subst}[2]{[#1/#2]}
|
| \newcommand{\subtypeOfOpt}[5][?]{#2 \vdash\ #3 \sub^{#1} #4\, \Uparrow\, #5}
|
| \newcommand{\subtypeOf}[4][]{#2 \vdash\ #3 \sub^{#1} #4}
|
| \newcommand{\yieldsOk}[5]{#1 \vdash #2 \, : \, #3\, \Uparrow\, \iftrans{#4\, :\,} #5}
|
| -
|
| -
|
| +\newcommand{\programOk}[3]{#1 \vdash #2\iftrans{\, \Uparrow\, #3}}
|
| +\newcommand{\ok}[2]{#1 \vdash #2\, \mbox{\textbf{ok}}}
|
| +\newcommand{\overrideOk}[4]{#1 \vdash #2\,\kwextends\, #3 \Leftarrow\, #4}
|
| +
|
| +\newcommand{\down}[1]{\ensuremath{\downharpoonleft\!\!#1\!\!\downharpoonright}}
|
| +\newcommand{\up}[1]{\ensuremath{\upharpoonleft\!\!#1\!\!\upharpoonright}}
|
| +\newcommand{\sigof}[1]{\mathit{sigof}(#1)}
|
| +\newcommand{\typeof}[1]{\mathit{typeof}(#1)}
|
| \newcommand{\sstext}[2]{\ifthenelse{\boolean{show_translation}}{#2}{#1}}
|
|
|
| +\newcommand{\evaluatesTo}[5][]{\{#2\alt #3\} \stepsto_{#1} \{#4 \alt #5\}}
|
|
|
|
|
| \title{Dart strong mode definition}
|
| @@ -160,6 +186,11 @@ closurized functions).
|
| \alt \Bool
|
| \alt \Arrow[k]{\many{\tau}}{\sigma} \alt \TApp{C}{\many{\tau}} \\
|
| %
|
| +\text{Ground types $\tau, \sigma$} & ::= &
|
| + \Dynamic \alt \Object \alt \Null \alt \Type \alt \Num \\ &&
|
| + \alt \Bool
|
| + \alt \Arrow[+]{\many{\Dynamic}}{\Dynamic} \alt \TApp{C}{\many{\Dynamic}} \\
|
| +%
|
| \text{Optional type ($[\tau]$)} & ::= & \_ \alt \tau \\
|
| %
|
| \text{Term identifiers} & ::= & a, b, x, y, m, n, \ldots \\
|
| @@ -168,13 +199,12 @@ closurized functions).
|
| %
|
| \text{Expressions $e$} & ::= &
|
| x \alt i \alt \ett \alt \eff \alt \enull \alt \ethis \\&&
|
| - \alt \elambda{\many{x:\opt{\tau}}}{\opt{\sigma}}{e}
|
| + \alt \elambda{\many{x:\opt{\tau}}}{\opt{\sigma}}{s}
|
| \alt \enew{C}{\many{\tau}}{} \\&&
|
| - \alt \eprimapp{\eprim}{\many{e}} \alt \ecall{e}{\many{e}}
|
| - \alt \edcall{e}{\many{e}} \\&&
|
| - \alt \eload{e}{m} \alt \edload{e}{m} \alt \eload{\ethis}{x} \\&&
|
| + \alt \eprimapp{\eprim}{\many{e}} \alt \ecall{e}{\many{e}} \\&&
|
| + \alt \eload{e}{m} \alt \eload{\ethis}{x} \\&&
|
| \alt \eassign{x}{e} \alt \eset{\ethis}{x}{e} \\&&
|
| - \alt \ethrow \alt \eas{e}{\tau} \alt \eis{e}{\tau} \alt \echeck{e}{\tau}\\
|
| + \alt \ethrow \alt \eas{e}{\tau} \alt \eis{e}{\tau} \\
|
| %
|
| \text{Declaration ($\mathit{vd}$)} & ::= &
|
| \dvar{x:\opt{\tau}}{e} \alt \dfun{\tau}{f}{\many{x:\tau}}{s} \\
|
| @@ -182,7 +212,7 @@ closurized functions).
|
| \text{Statements ($s$)} & ::= & \mathit{vd} \alt e \alt \sifthenelse{e}{s_1}{s_2}
|
| \alt \sreturn{e} \alt s;s \\
|
| %
|
| -\text{Class decl ($\mathit{cd}$)} & ::= & \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{S}}}{\many{\mathit{vd}}} \\
|
| +\text{Class decl ($\mathit{cd}$)} & ::= & \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\many{\mathit{vd}}} \\
|
| %
|
| \text{Toplevel decl ($\mathit{td}$)} & ::= & \mathit{vd} \alt \mathit{cd}\\
|
| %
|
| @@ -207,10 +237,10 @@ type is $\sigma$.
|
| \begin{array}{lcl}
|
| \text{Type context ($\Delta$)} & ::= & \epsilon \alt \Delta, T \sub \tau \\
|
| \text{Class element ($\mathit{ce}$)} & ::= &
|
| - \fieldDecl{x}{\tau} \alt \methodDecl{f}{\tau} \\
|
| -\text{Class signature ($\mathit{Sig}$)} & ::= &
|
| - \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{S}}}{\many{\mathit{ce}}} \\
|
| -\text{Class hierarchy ($\Phi$)} & ::= & \epsilon \alt \Phi, C\ :\ \mathit{Sig} \\
|
| + \fieldDecl{x}{\tau} \alt \methodDecl{f}{\tau}{\sigma} \\
|
| +\text{Class signature ($\Sig$)} & ::= &
|
| + \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\many{\mathit{ce}}} \\
|
| +\text{Class hierarchy ($\Phi$)} & ::= & \epsilon \alt \Phi, C\ :\ \Sig \\
|
| \text{Term context ($\Gamma$)} & ::= & \epsilon \alt \Gamma, x\ :\ \tau
|
| \end{array}
|
| \]
|
| @@ -271,48 +301,46 @@ subtyping relation defined above.
|
| {\TApp{C}{\tau_0, \ldots, \tau_n}}
|
| {\TApp{G}{\sigma_0, \ldots, \sigma_m}}}
|
|
|
| -\section*{Field and Method lookup}
|
| -
|
| -\subsection*{Field lookup}
|
| -
|
| -\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \\
|
| - \fieldDecl{x}{\tau} \in \many{\mathit{ce}}
|
| - }
|
| - {\fieldLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| - }
|
| -
|
| -\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad x \notin \many{\mathit{ce}} \\
|
| - \fieldLookup{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{x}{\tau}
|
| - }
|
| - {\fieldLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| - }
|
| -
|
| -\subsection*{Method lookup}
|
| -
|
| -\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \\
|
| - \methodDecl{m}{\tau} \in \many{\mathit{ce}}
|
| - }
|
| - {\methodLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{m}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| - }
|
| -
|
| -\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad m \notin \many{\mathit{ce}} \\
|
| - \methodLookup{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{m}{\tau}
|
| - }
|
| - {\methodLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{m}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| - }
|
| -
|
|
|
|
|
| \section*{Typing}
|
| \input{static-semantics}
|
|
|
| +\pagebreak
|
| \section*{Elaboration}
|
| +\setboolean{show_translation}{true}
|
|
|
| -These are the same rules, extended with a translated term which corresponds to
|
| -the original term with the additional dynamic type checks inserted to reify the
|
| -static unsoundness as runtime type errors.
|
| +Elaboration is a type driven translation which maps a source Dart term to a
|
| +translated term which corresponds to the original term with additional dynamic
|
| +type checks inserted to reify the static unsoundness as runtime type errors.
|
| +For the translation, we extend the source language slightly as follows.
|
| +\[
|
| +\begin{array}{lcl}
|
| +\text{Expressions $e$} & ::= & \ldots
|
| + \alt \edcall{e}{\many{e}} \alt \edload{e}{m} \alt \echeck{e}{\tau}\\
|
| +\end{array}
|
| +\]
|
| +
|
| +The expression language is extended with an explicitly checked dynamic call
|
| +operation, and explicitly checked dynamic method load operation, and a runtime
|
| +type test. Note that while a user level cast throws an exception on failure,
|
| +the runtime type test term introduced here produces a hard type error which
|
| +cannot be caught programmatically.
|
| +
|
| +We also extend typing contexts slightly by adding an internal type to method signatures.
|
| +\[
|
| +\begin{array}{lcl}
|
| +\text{Class element ($\mathit{ce}$)} & ::= &
|
| + \fieldDecl{x}{\tau} \alt \methodDecl{f}{\tau}{\sigma} \\
|
| +\end{array}
|
| +\]
|
| +A method signature of the form $\methodDecl{f}{\tau}{\sigma}$ describes a method
|
| +whose public interface is described by $\sigma$, but which has an internal type
|
| +$\tau$ which is a subtype of $\sigma$, but which is properly covariant in any
|
| +type parameters. The elaboration introduces runtime type checks to mediate
|
| +between the two types. This is discussed further in the translation of classes
|
| +below.
|
|
|
| -\setboolean{show_translation}{true}
|
| \input{static-semantics}
|
|
|
|
|
|
|