| Index: doc/definition/static-semantics.tex
|
| diff --git a/doc/definition/static-semantics.tex b/doc/definition/static-semantics.tex
|
| index c54420120eb664a4fc8ec68bc755f3d80908882a..b103d95683914bdc59de4bc6d5369143d882fd72 100644
|
| --- a/doc/definition/static-semantics.tex
|
| +++ b/doc/definition/static-semantics.tex
|
| @@ -1,3 +1,78 @@
|
| +\subsection*{Field lookup}
|
| +
|
| +\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \\
|
| + \fieldDecl{x}{\tau} \in \many{\mathit{ce}}
|
| + }
|
| + {\fieldLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| + }
|
| +
|
| +\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad x \notin \many{\mathit{ce}} \\
|
| + \fieldLookup{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{x}{\tau}
|
| + }
|
| + {\fieldLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| + }
|
| +
|
| +
|
| +\subsection*{Method lookup}
|
| +
|
| +\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \\
|
| + \methodDecl{m}{\tau}{\sigma} \in \many{\mathit{ce}}
|
| + }
|
| + {\methodLookup{\Phi}
|
| + {\TApp{C}{\tau_0, \ldots, \tau_n}}{m}
|
| + {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| + {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\sigma}}
|
| + }
|
| +
|
| +\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad m \notin \many{\mathit{ce}} \\
|
| + \methodLookup{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{m}{\tau}{\sigma}
|
| + }
|
| + {\methodLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{m}
|
| + {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
|
| + {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\sigma}}
|
| + }
|
| +
|
| +\subsection*{Method and field absence}
|
| +
|
| +\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad x \notin \many{\mathit{ce}} \\
|
| + \fieldAbsent{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{x}
|
| + }
|
| + {\fieldAbsent{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}
|
| + }
|
| +
|
| +\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad m \notin \many{\mathit{ce}} \\
|
| + \methodAbsent{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{m}{\tau}{\sigma}
|
| + }
|
| + {\methodAbsent{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{m}
|
| + }
|
| +
|
| +\iftrans{
|
| +
|
| +\subsection*{Type translation}
|
| +
|
| +To translate covariant generics, we essentially want to treat all contravariant
|
| +occurrences of type variables as $\Dynamic$. The type translation
|
| +$\down{\tau}$ implements this. It is defined in terms of the dual operator
|
| +$\up{\tau}$ which translates positive occurences of type variables as $\Dynamic$.
|
| +
|
| +\begin{eqnarray*}
|
| + \down{T} & = & T \\
|
| + \down{\Arrow[k]{\tau_0, \ldots, \tau_n}{\tau_r}} & = &
|
| + \Arrow[k]{\up{\tau_0}, \ldots, \up{\tau_n}}{\down{\tau_r}} \\
|
| + \down{\TApp{C}{\tau_0, \ldots, \tau_n}} & = & \TApp{C}{\down{\tau_0}, \ldots, \down{\tau_n}} \\
|
| + \down{\tau} & = & \tau\ \mbox{otherwise}
|
| +\end{eqnarray*}
|
| +
|
| +\begin{eqnarray*}
|
| + \up{T} & = & \Dynamic \\
|
| + \up{\Arrow[k]{\tau_0, \ldots, \tau_n}{\tau_r}} & = &
|
| + \Arrow[k]{\down{\tau_0}, \ldots, \down{\tau_n}}{\up{\tau_r}} \\
|
| + \up{\TApp{C}{\tau_0, \ldots, \tau_n}} & = & \TApp{C}{\up{\tau_0}, \ldots, \up{\tau_n}} \\
|
| + \up{\tau} & = & \tau\ \mbox{if $\tau$ is base type.}
|
| +\end{eqnarray*}
|
| +
|
| +
|
| +}
|
| \subsection*{Expression typing: $\yieldsOk{\Phi, \Delta, \Gamma}{e}{\opt{\tau}}{e'}{\tau'}$}
|
| \hrulefill\\
|
|
|
| @@ -88,12 +163,12 @@ contextual information if present and applicable, or $\Dynamic$ otherwise.
|
| }
|
|
|
| \infrule{\Gamma' = \extends{\Gamma}{\many{x}}{\many{\tau}} \quad\quad
|
| - \yieldsOk{\Phi, \Delta, \Gamma'}{e}{\sigma}{e'}{\sigma'}
|
| + \stmtOk{\Phi, \Delta, \Gamma'}{s}{\sigma}{s'}{\Gamma'}
|
| }
|
| {\yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{\many{x:\tau}}{\sigma}{e}}
|
| + {\elambda{\many{x:\tau}}{\sigma}{s}}
|
| {\_}
|
| - {\elambda{\many{x:\tau}}{\sigma}{e'}}
|
| + {\elambda{\many{x:\tau}}{\sigma}{s'}}
|
| {\Arrow[-]{\many{\tau}}{\sigma}}
|
| }
|
|
|
| @@ -102,13 +177,13 @@ the argument type replaced with $\Dynamic$.}
|
| {}
|
|
|
| \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\Dynamic, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
|
| + {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\Dynamic, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
|
| {\opt{\tau}}
|
| {e_f}
|
| {\tau_f}
|
| }
|
| {\yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
|
| + {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
|
| {\opt{\tau}}
|
| {e_f}
|
| {\tau_f}
|
| @@ -121,13 +196,13 @@ leaves this as a non-deterministic choice.}{}
|
|
|
| \infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\
|
| \yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\upsilon_i, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
|
| + {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\upsilon_i, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
|
| {\tau_c}
|
| {e_f}
|
| {\tau_f}
|
| }
|
| {\yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
|
| + {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
|
| {\tau_c}
|
| {e_f}
|
| {\tau_f}
|
| @@ -137,13 +212,13 @@ leaves this as a non-deterministic choice.}{}
|
| the return type replaced with $\Dynamic$.}{}
|
|
|
| \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{\many{x:\opt{\tau}}}{\Dynamic}{e}}
|
| + {\elambda{\many{x:\opt{\tau}}}{\Dynamic}{s}}
|
| {\opt{\tau_c}}
|
| {e_f}
|
| {\tau_f}
|
| }
|
| {\yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{\many{x:\opt{\tau}}}{\_}{e}}
|
| + {\elambda{\many{x:\opt{\tau}}}{\_}{s}}
|
| {\opt{\tau_c}}
|
| {e_f}
|
| {\tau_f}
|
| @@ -156,13 +231,13 @@ leaves this as a non-deterministic choice. }{}
|
|
|
| \infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\
|
| \yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{\many{x:\opt{\tau}}}{\upsilon_r}{e}}
|
| + {\elambda{\many{x:\opt{\tau}}}{\upsilon_r}{s}}
|
| {\tau_c}
|
| {e_f}
|
| {\tau_f}
|
| }
|
| {\yieldsOk{\Phi, \Delta, \Gamma}
|
| - {\elambda{\many{x:\opt{\tau}}}{\_}{e}}
|
| + {\elambda{\many{x:\opt{\tau}}}{\_}{s}}
|
| {\tau_c}
|
| {e_f}
|
| {\tau_f}
|
| @@ -255,6 +330,7 @@ are well-typed at any type. }
|
| {\Dynamic}
|
| }
|
|
|
| +\iftrans{
|
| \sstext{A dynamic call expression is well-typed so long as the applicand and the
|
| arguments are well-typed at any type.}{}
|
|
|
| @@ -276,6 +352,8 @@ arguments are well-typed at any type.}{}
|
| {\Dynamic}
|
| }
|
|
|
| +}
|
| +
|
| \sstext{A method load is well-typed if the term is well-typed, and the method name is
|
| present in the type of the term.}{}
|
|
|
| @@ -284,7 +362,7 @@ present in the type of the term.}{}
|
| {\_}
|
| {e'}
|
| {\sigma} \quad\quad
|
| - \methodLookup{\Phi}{\sigma}{m}{\tau}
|
| + \methodLookup{\Phi}{\sigma}{m}{\sigma}{\tau}
|
| }
|
| {\yieldsOk{\Phi, \Delta, \Gamma}
|
| {\eload{e}{m}}
|
| @@ -315,6 +393,7 @@ well-typed.}
|
| {\Dynamic}
|
| }
|
|
|
| +\iftrans{
|
| \sstext{A dynamic method load is well typed so long as the term is well-typed.}{}
|
|
|
| \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
|
| @@ -330,6 +409,8 @@ well-typed.}
|
| {\Dynamic}
|
| }
|
|
|
| +}
|
| +
|
| \sstext{A field load from $\ethis$ is well-typed if the field name is present in the
|
| type of $\ethis$.}{}
|
|
|
| @@ -396,8 +477,6 @@ field is compatible with the type of the expression being assigned.}{}
|
| The synthesized type is the cast-to type. We require that the cast-to type be a
|
| ground type.}{}
|
|
|
| -\comment{TODO(leafp): specify ground types}
|
| -
|
| \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} \quad\quad \mbox{$\tau$ is ground}
|
| }
|
| {\yieldsOk{\Phi, \Delta, \Gamma}
|
| @@ -419,6 +498,8 @@ well-typed. We require that the cast to-type be a ground type.}{}
|
| {\Bool}
|
| }
|
|
|
| +\iftrans{
|
| +
|
| \sstext{A check expression is well-typed so long as the term being checked is
|
| well-typed. The synthesized type is the target type of the check.}{}
|
|
|
| @@ -432,6 +513,8 @@ well-typed. The synthesized type is the target type of the check.}{}
|
| {\tau}
|
| }
|
|
|
| +}
|
| +
|
| \subsection*{Declaration typing: $\declOk[d]{\Phi, \Delta, \Gamma}{\mathit{vd}}{\mathit{vd'}}{\Gamma'}$}
|
| \hrulefill\\
|
|
|
| @@ -554,3 +637,426 @@ component.}{}
|
| }
|
| {\stmtOk{\Phi, \Delta, \Gamma}{s_1;s_2}{\tau_r}{s_1';s_2'}{\Gamma''}
|
| }
|
| +
|
| +\subsection*{Class member typing: $\declOk[ce]{\Phi, \Delta, \Gamma}{\mathit{vd} : \mathit{ce}}{\mathit{vd}'}{\Gamma'}$}
|
| +\hrulefill\\
|
| +
|
| +\sstext{
|
| +
|
| +A class member is well-typed with a given signature ($\mathit{ce}$) taken from
|
| +the class hierarchy if the signature type matches the type on the definition,
|
| +and if the definition is well-typed.
|
| +
|
| +}
|
| +{
|
| +
|
| +Elaborating class members is done with respect to a signature. The field
|
| +translation simply translates the field as a variable declaration.
|
| +
|
| +}
|
| +
|
| +
|
| +\infrule{
|
| + \declOk[d]{\Phi, \Delta, \Gamma}
|
| + {\dvar{x:\opt{\tau}}{e}}
|
| + {\mathit{vd'}}
|
| + {\Gamma'}
|
| + }
|
| + {
|
| + \declOk[ce]{\Phi, \Delta, \Gamma}
|
| + {\dvar{x:\opt{\tau}}{e} : \fieldDecl{x}{\opt{\tau}}}
|
| + {\mathit{vd'}}
|
| + {\Gamma'}
|
| + }
|
| +
|
| +
|
| +\iftrans{
|
| +
|
| +Translating methods requires introducing guard expressions. The signature
|
| +provides an internal and an external type for the method. The external type is
|
| +the original declared type of the method, and is the signature which the method
|
| +presents to external clients. Because we implement covariant generics, clients
|
| +may see an instantiation of this signature which will allow them to violate the
|
| +contract expected by the implementation. To handle this, we rewrite the method
|
| +to match an internal signature which is in fact soundly covariant in the type
|
| +parameters (that is, all contravariant type parameters are replaced with
|
| +$\Dynamic$, and hence all remaining type parameters occur in properly covariant
|
| +positions). This property is enforced in the override checking relation: from
|
| +the perspective of this relation, there is simply another internal type which
|
| +defines how to wrap the method with guards.
|
| +
|
| +The translation insists that the internal and external types be function types
|
| +of the appropriate arity, and that the external type is equal to the type of the
|
| +declaration. The declaration is translated using the underlying function
|
| +definition translation, but is then wrapped with guards to enforce the type
|
| +contract, producing a valid function of the internal (covariant) type. The
|
| +original body of the function is wrapped in a lambda function, which is applied
|
| +using a dynamic call which checks that the arguments (which may have negative
|
| +occurrences of type variables which are treated as $\Dynamic$ in the internal
|
| +type) are appropriate for the actual body. The original function returns a type
|
| +$\tau_r$ which may be a super-type of the internal type (since negative
|
| +occurrences of type variables must be treated as dynamic), and so we insert a
|
| +check expression to guard against runtime type mismatches here.
|
| +
|
| +This is a very simplistic translation for now. We could choose, in the case
|
| +that the body returns a lambda, to push the checking down into the lambda
|
| +(essentially wrapping it in place).
|
| +
|
| +}
|
| +
|
| +\infrule{ \mathit{vd} = \dfun{\tau_r}{f}{x_0:\tau_0, \ldots, x_n:\tau_n}{s} \\
|
| + \sigma_e = \Arrow[+]{\tau_0, \ldots, \tau_n}{\tau_r}
|
| +\iftrans{\quad\quad
|
| + \sigma_i = \Arrow{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r}
|
| +} \\
|
| + \declOk[d]{\Phi, \Delta, \Gamma}
|
| + {\mathit{vd}}
|
| + {\dfun{\tau_r}{f}{x_0:\tau_0, \ldots, x_n:\tau_n}{s'}}
|
| + {\Gamma'}
|
| +\iftrans{\\
|
| + e_g = \elambda{x_0:\tau_0, \ldots, x_n:\tau_n}{\tau_r}{s'}\\
|
| + s_g = \sreturn{(\echeck{\edcall{e_g}{x_0 , \ldots, x_n}}{\upsilon_r})} \\
|
| + \mathit{vd}_g = \dfun{\upsilon_r}{f}{x_0:\upsilon_0, \ldots, x_n:\upsilon_n}{s_g}
|
| +}
|
| + }
|
| + {
|
| + \declOk[ce]{\Phi, \Delta, \Gamma}
|
| + {\mathit{vd} : \methodDecl{f}{\sigma_i}{\sigma_e}}
|
| + {\mathit{vd}_g}
|
| + {\Gamma'}
|
| + }
|
| +
|
| +\subsection*{Class declaration typing: $\declOk[c]{\Phi, \Gamma}{\mathit{cd}}{\mathit{cd'}}{\Gamma'}$}
|
| +\hrulefill\\
|
| +
|
| +\sstext{
|
| +
|
| +A class declaration is well-typed with a given signature ($\Sig$) taken from the
|
| +class hierarchy if the signature matches the definition, and if each member of
|
| +the class is well-typed with the corresponding signature from the class
|
| +signature. The members are checked with the generic type parameters bound in
|
| +the type context, and with the type of the current class set as the type of
|
| +$\ethis$ on the term context $\Gamma$.
|
| +
|
| +}
|
| +{
|
| +
|
| +Elaboration of a class requires that the class hierarchy $\Phi$ have a matching
|
| +signature for the class declaration. Each class member in the class is
|
| +elaborated using the corresponding class element from the signature.
|
| +
|
| +}
|
| +
|
| +
|
| +\infrule{\mathit{cd} = \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\mathit{vd}_0, \ldots, \mathit{vd}_n} \\
|
| + (C : \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\mathit{ce}_0, \ldots, \many{ce}_n}) \in \Phi \\
|
| + \Delta = \many{T} \quad
|
| + \Gamma_i =
|
| + \begin{cases}
|
| + \Gamma_{\TApp{C}{\many{T}}} & \mbox{if $\mathit{vd}_i$ is a method} \\
|
| + \Gamma & \mbox{if $\mathit{vd}_i$ is a field} \\
|
| + \end{cases}\\
|
| +
|
| + \declOk[ce]{\Phi, \Delta, \Gamma_i}{\mathit{vd}_i : \mathit{ce}_i}{\mathit{vd}'_i}{\Gamma'_i} \quad\quad
|
| + \mbox{for}\ i \in 0, \ldots, n
|
| +\iftrans{\\
|
| + \mathit{cd'} = \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\many{\mathit{vd'}}}
|
| +}
|
| + }
|
| + {\declOk[c]{\Phi, \Gamma}
|
| + {\mathit{cd}}
|
| + {\mathit{cd'}}{\Gamma'}
|
| + }
|
| +
|
| +\subsection*{Override checking:\\ \quad\quad$\overrideOk{\Phi}
|
| + {\TApp{C}{T_0, \ldots, T_n}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\mathit{ce}}$}
|
| +\hrulefill\\
|
| +
|
| +\sstext{
|
| +
|
| +The override checking relation is the primary relation that checks the
|
| +consistency of the class hierarchy. We assume a non-cyclic class hierarchy as a
|
| +syntactic pre-condition. The override check relation checks that in a class
|
| +declaration $\TApp{C}{T_0, \ldots, T_n}$ which extends $\TApp{G}{\tau_0, \ldots,
|
| + \tau_k}$, the definition of an element with signature $\mathit{ce}$ is valid.
|
| +
|
| +}{
|
| +
|
| +Override checking remains largely the same, with the exception of additional
|
| +consistency constraints on the internal signatures for methods.
|
| +
|
| +}
|
| +
|
| +\sstext{
|
| +
|
| +A field with the type elided is a valid override if the same field with type
|
| +$\Dynamic$ is valid.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\infrule{
|
| + \overrideOk{\Phi}
|
| + {\TApp{C}{T_0, \ldots, T_n}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\fieldDecl{x}{\Dynamic}}
|
| +
|
| + }
|
| + {
|
| + \overrideOk{\Phi}
|
| + {\TApp{C}{T_0, \ldots, T_n}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\fieldDecl{x}{\_}}
|
| + }
|
| +
|
| +\sstext{
|
| +
|
| +A field with a type $\tau$ is a valid override if it appears in the super type
|
| +with the same type.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\infrule{\fieldLookup{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{x}{\tau}
|
| + }
|
| + {
|
| + \overrideOk{\Phi}
|
| + {\TApp{C}{T_0, \ldots, T_n}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\fieldDecl{x}{\tau}}
|
| + }
|
| +
|
| +\sstext{
|
| +
|
| +A field with a type $\tau$ is a valid override if it does not appear in the super type.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\infrule{\fieldAbsent{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{x}
|
| + }
|
| + {
|
| + \overrideOk{\Phi}
|
| + {\TApp{C}{T_0, \ldots, T_n}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\fieldDecl{x}{\tau}}
|
| + }
|
| +
|
| +\sstext{
|
| +
|
| +A method with a type $\sigma$ is a valid override if it does not appear in the super type.
|
| +
|
| +}{
|
| +
|
| +For a non-override method, we require that the internal type $\tau$ be a subtype
|
| +of $\down{\sigma}$ where $\sigma$ is the declared type. Essentially, this
|
| +enforces the property that the initial declaration of a method in the hierarchy
|
| +has a covariant internal type.
|
| +
|
| +}
|
| +
|
| +\infrule{
|
| +\iftrans{
|
| + \Delta = T_0, \ldots, T_n \quad\quad
|
| + \subtypeOf{\Phi, \Delta}{\tau}{\down{\sigma}}\ \\
|
| +}
|
| + \methodAbsent{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{f}
|
| + }
|
| + {
|
| + \overrideOk{\Phi}
|
| + {\TApp{C}{T_0, \ldots, T_n}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\methodDecl{f}{\tau}{\sigma}}
|
| + }
|
| +
|
| +\sstext{
|
| +
|
| +A method with a type $\sigma$ is a valid override if it appears in the super
|
| +type, and $\sigma$ is a subtype of the type of the method in the super class.
|
| +
|
| +}{
|
| +
|
| +For a method override, we require two coherence conditions. As before, we
|
| +require that the internal type $\tau$ be a subtype of the $\down{\sigma}$ where
|
| +$\sigma$ is the external type. Moreover, we also insist that the external type
|
| +$\sigma$ be a subtype of the external type of the method in the superclass, and
|
| +that the internal type $\tau$ be a subtype of the internal type in the
|
| +superclass. Note that it this last consistency property that ensures that
|
| +covariant generics are ``poisonous'' in the sense that non-generic subclasses of
|
| +generic classes must still have additional checks. For example, a superclass
|
| +with a method of external type $\sigma_s = \Arrow{T}{T}$ will have internal type
|
| +$\tau_s = \Arrow{\Dynamic}{T}$. A subclass of an instantiation of this class
|
| +with $\Num$ can validly override this method with one of external type $\sigma =
|
| +\Arrow{\Num}{\Num}$. This is unsound in general since the argument occurrence
|
| +of $T$ in $\sigma_s$ is contra-variant. However, the additional consistency
|
| +requirement is that the internal type of the subclass method must be a subtype
|
| +of $\subst{\Num}{T}{\tau_s} = \Arrow{\Dynamic}{\Num}$. This enforces the
|
| +property that the overridden method must expect to be used at type
|
| +$\Arrow{\Dynamic}{\Num}$, and hence must check its arguments (and potentially
|
| +its return value as well in the higher-order case). This checking code is
|
| +inserted during the elaboration of class members above.
|
| +
|
| + }
|
| +
|
| +\infrule{
|
| +\iftrans{
|
| + \Delta = T_0, \ldots, T_n \quad\quad
|
| + \subtypeOf{\Phi, \Delta}{\tau}{\down{\sigma}}\ \\
|
| +}
|
| + \methodLookup{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{f}{\tau_s}{\sigma_s} \\
|
| +\iftrans{
|
| + \subtypeOf{\Phi, \Delta}{\tau}{\tau_s}\quad\quad
|
| +}
|
| + \subtypeOf{\Phi, \Delta}{\sigma}{\sigma_s}
|
| + }
|
| + {
|
| + \overrideOk{\Phi}
|
| + {\TApp{C}{T_0, \ldots, T_n}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\methodDecl{f}{\tau}{\sigma}}
|
| + }
|
| +
|
| +\subsection*{Toplevel declaration typing: $\declOk[t]{\Phi, \Gamma}{\mathit{td}}{\mathit{td'}}{\Gamma'}$}
|
| +\hrulefill\\
|
| +
|
| +\sstext{
|
| +
|
| +Top level variable declarations are well-typed if they are well-typed according
|
| +to their respective specific typing relations.
|
| +
|
| +}{
|
| +
|
| +Top level declaration elaboration falls through to the underlying variable and
|
| +class declaration code.
|
| +
|
| +}
|
| +
|
| +\infrule
|
| + {\declOk[d]{\Phi, \epsilon, \Gamma}{\mathit{vd}}{\mathit{vd'}}{\Gamma'}
|
| +
|
| + }
|
| + {\declOk[t]{\Phi, \Gamma}{\mathit{vd}}{\mathit{vd'}}{\Gamma'}
|
| + }
|
| +
|
| +\infrule
|
| + {\declOk[c]{\Phi, \Gamma}{\mathit{cd}}{\mathit{cd'}}{\Gamma'}
|
| +
|
| + }
|
| + {\declOk[t]{\Phi, \Gamma}{\mathit{cd}}{\mathit{cd'}}{\Gamma'}
|
| + }
|
| +
|
| +
|
| +\subsection*{Well-formed class signature: $\ok{\Phi}{\Sig}$}
|
| +\hrulefill\\
|
| +
|
| +\sstext{
|
| +
|
| +The well-formed class signature relation checks whether a class signature is
|
| +well-formed with respect to a given class hierarchy $\Phi$.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\sstext{
|
| +
|
| +The $\Object$ signature is always well-formed.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\axiom{\ok{\Phi}{\Object}
|
| + }
|
| +
|
| +\sstext{
|
| +
|
| +A signature for a class $C$ is well-formed if its super-class signature is
|
| +well-formed, and if every element in its signature is a valid override of the
|
| +super-class.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\infrule{\Sig = \dclass{\TApp{C}{\many{T}}}
|
| + {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| + {\mathit{ce}_0, \ldots, \mathit{ce}_n} \\
|
| + (G : \Sig') \in \Phi \quad\quad \ok{\Phi}{\Sig'} \\
|
| + \overrideOk{\Phi}{\TApp{C}{\many{T}}}{\TApp{G}{\tau_0, \ldots, \tau_k}}{\mathit{ce}_i}
|
| + \quad\quad
|
| + \mbox{for}\ \mathit{ce}_i \in \mathit{ce}_0, \ldots, \mathit{ce}_n
|
| + }
|
| + {\ok{\Phi}{\Sig}
|
| + }
|
| +
|
| +\subsection*{Well-formed class hierarchy: $\ok{}{\Phi}$}
|
| +\hrulefill\\
|
| +
|
| +\sstext{
|
| +
|
| +A class hierarchy is well-formed if all of the signatures in it are well-formed
|
| +with respect to it.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\infrule{\ok{\Phi}{\Sig}\ \mbox{for}\, \Sig\, \in \Phi
|
| + }
|
| + {\ok{}{\Phi}
|
| + }
|
| +
|
| +\subsection*{Program typing: $\programOk{\Phi}{P}{P'}$}
|
| +\hrulefill\\
|
| +
|
| +%%Definitions:
|
| +%%
|
| +%% \begin{eqnarray*}
|
| +%% \sigof{\mathit{vd}} & = &
|
| +%% \begin{cases}
|
| +%% \fieldDecl{x}{\tau} & \mbox{if}\ \mathit{vd} = \dvar{x:\tau}{e}\\
|
| +%% \fieldDecl{x}{\Dynamic} & \mbox{if}\ \mathit{vd} = \dvar{x:\_}{e}\\
|
| +%% \methodDecl{f}{\tau_f}{\Arrow[+]{\many{\tau}}{\sigma}} & \mbox{if}\ \mathit{vd} = \dfun{\sigma}{f}{\many{x:\tau}}{s}
|
| +%% \end{cases}\\
|
| +%% \sigof{\mathit{cd}} & = & C\, : \, \dclass{\TApp{C}{\many{T}}}
|
| +%% {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| +%% {\mathit{ce}_0, \ldots, \mathit{ce}_n} \\
|
| +%% \mbox{where} &&
|
| +%% \mathit{cd} = \dclass{\TApp{C}{\many{T}}}
|
| +%% {\TApp{G}{\tau_0, \ldots, \tau_k}}
|
| +%% {\mathit{vd}_0, \ldots, \mathit{vd}_n} \\
|
| +%% \mbox{and} &&
|
| +%% \mathit{ce}_i = \sigof{vd_i} \quad \mbox{for}\ i \in 0, \ldots, n
|
| +%%\end{eqnarray*}
|
| +
|
| +\sstext{
|
| +
|
| +Program well-formedness is defined with respect to a class hierarchy $\Phi$. It
|
| +is not specified how $\Phi$ is produced, but the well-formedness constraints in
|
| +the various judgments should constrain it appropriately. A program is
|
| +well-formed if each of the top level declarations in the program is well-formed
|
| +in a context in which all of the previous variable declarations have been
|
| +checked and inserted in the context, and if the body of the program is
|
| +well-formed in the final context. We allow classes to refer to each other in
|
| +any order, since $\Phi$ is pre-specified, but do not model out of order
|
| +definitions of top level variables and functions. We assume as a syntactic
|
| +property that the class hierarchy $\Phi$ is acyclic.
|
| +
|
| +}{
|
| +
|
| +}
|
| +
|
| +\infrule{ \Gamma_0 = \epsilon \quad\quad
|
| + \declOk[t]{\Phi, \Gamma_i}{\mathit{td}_i}{\mathit{td}'_i}{\Gamma_{i+1}} \quad
|
| + \mbox{for}\ i \in 0,\ldots,n\\
|
| + \stmtOk{\Phi, \epsilon, \Gamma_{n+1}}{s}{\tau}{s'}{\Gamma_{n+1}'}
|
| + }
|
| + { \programOk{\Phi}{\program{\mathit{td}_0, \ldots, \mathit{td}_n}{s}}
|
| + {\program{\mathit{td}'_0, \ldots, \mathit{td}'_n}{s'}}
|
| + }
|
|
|