Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(248)

Unified Diff: doc/definition/static-semantics.tex

Issue 1253143002: Static semantics v0.1 (Closed) Base URL: git@github.com:dart-lang/dev_compiler.git@master
Patch Set: Review fixes Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « doc/definition/macros.tex ('k') | doc/definition/strong-dart.pdf » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: doc/definition/static-semantics.tex
diff --git a/doc/definition/static-semantics.tex b/doc/definition/static-semantics.tex
index c54420120eb664a4fc8ec68bc755f3d80908882a..b103d95683914bdc59de4bc6d5369143d882fd72 100644
--- a/doc/definition/static-semantics.tex
+++ b/doc/definition/static-semantics.tex
@@ -1,3 +1,78 @@
+\subsection*{Field lookup}
+
+\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \\
+ \fieldDecl{x}{\tau} \in \many{\mathit{ce}}
+ }
+ {\fieldLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
+ }
+
+\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad x \notin \many{\mathit{ce}} \\
+ \fieldLookup{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{x}{\tau}
+ }
+ {\fieldLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}{\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
+ }
+
+
+\subsection*{Method lookup}
+
+\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \\
+ \methodDecl{m}{\tau}{\sigma} \in \many{\mathit{ce}}
+ }
+ {\methodLookup{\Phi}
+ {\TApp{C}{\tau_0, \ldots, \tau_n}}{m}
+ {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
+ {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\sigma}}
+ }
+
+\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad m \notin \many{\mathit{ce}} \\
+ \methodLookup{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{m}{\tau}{\sigma}
+ }
+ {\methodLookup{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{m}
+ {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\tau}}
+ {\subst{\tau_0, \ldots, \tau_n}{T_0, \ldots, T_n}{\sigma}}
+ }
+
+\subsection*{Method and field absence}
+
+\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad x \notin \many{\mathit{ce}} \\
+ \fieldAbsent{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{x}
+ }
+ {\fieldAbsent{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{x}
+ }
+
+\infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{\many{\mathit{ce}}}) \in \Phi \quad m \notin \many{\mathit{ce}} \\
+ \methodAbsent{\Phi}{\TApp{C'}{\upsilon_0, \ldots, \upsilon_k}}{m}{\tau}{\sigma}
+ }
+ {\methodAbsent{\Phi}{\TApp{C}{\tau_0, \ldots, \tau_n}}{m}
+ }
+
+\iftrans{
+
+\subsection*{Type translation}
+
+To translate covariant generics, we essentially want to treat all contravariant
+occurrences of type variables as $\Dynamic$. The type translation
+$\down{\tau}$ implements this. It is defined in terms of the dual operator
+$\up{\tau}$ which translates positive occurences of type variables as $\Dynamic$.
+
+\begin{eqnarray*}
+ \down{T} & = & T \\
+ \down{\Arrow[k]{\tau_0, \ldots, \tau_n}{\tau_r}} & = &
+ \Arrow[k]{\up{\tau_0}, \ldots, \up{\tau_n}}{\down{\tau_r}} \\
+ \down{\TApp{C}{\tau_0, \ldots, \tau_n}} & = & \TApp{C}{\down{\tau_0}, \ldots, \down{\tau_n}} \\
+ \down{\tau} & = & \tau\ \mbox{otherwise}
+\end{eqnarray*}
+
+\begin{eqnarray*}
+ \up{T} & = & \Dynamic \\
+ \up{\Arrow[k]{\tau_0, \ldots, \tau_n}{\tau_r}} & = &
+ \Arrow[k]{\down{\tau_0}, \ldots, \down{\tau_n}}{\up{\tau_r}} \\
+ \up{\TApp{C}{\tau_0, \ldots, \tau_n}} & = & \TApp{C}{\up{\tau_0}, \ldots, \up{\tau_n}} \\
+ \up{\tau} & = & \tau\ \mbox{if $\tau$ is base type.}
+\end{eqnarray*}
+
+
+}
\subsection*{Expression typing: $\yieldsOk{\Phi, \Delta, \Gamma}{e}{\opt{\tau}}{e'}{\tau'}$}
\hrulefill\\
@@ -88,12 +163,12 @@ contextual information if present and applicable, or $\Dynamic$ otherwise.
}
\infrule{\Gamma' = \extends{\Gamma}{\many{x}}{\many{\tau}} \quad\quad
- \yieldsOk{\Phi, \Delta, \Gamma'}{e}{\sigma}{e'}{\sigma'}
+ \stmtOk{\Phi, \Delta, \Gamma'}{s}{\sigma}{s'}{\Gamma'}
}
{\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{\many{x:\tau}}{\sigma}{e}}
+ {\elambda{\many{x:\tau}}{\sigma}{s}}
{\_}
- {\elambda{\many{x:\tau}}{\sigma}{e'}}
+ {\elambda{\many{x:\tau}}{\sigma}{s'}}
{\Arrow[-]{\many{\tau}}{\sigma}}
}
@@ -102,13 +177,13 @@ the argument type replaced with $\Dynamic$.}
{}
\infrule{\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\Dynamic, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
+ {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\Dynamic, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
{\opt{\tau}}
{e_f}
{\tau_f}
}
{\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
+ {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
{\opt{\tau}}
{e_f}
{\tau_f}
@@ -121,13 +196,13 @@ leaves this as a non-deterministic choice.}{}
\infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\
\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\upsilon_i, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
+ {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\upsilon_i, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
{\tau_c}
{e_f}
{\tau_f}
}
{\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{e}}
+ {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\tau_n}}{\opt{\sigma}}{s}}
{\tau_c}
{e_f}
{\tau_f}
@@ -137,13 +212,13 @@ leaves this as a non-deterministic choice.}{}
the return type replaced with $\Dynamic$.}{}
\infrule{\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{\many{x:\opt{\tau}}}{\Dynamic}{e}}
+ {\elambda{\many{x:\opt{\tau}}}{\Dynamic}{s}}
{\opt{\tau_c}}
{e_f}
{\tau_f}
}
{\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{\many{x:\opt{\tau}}}{\_}{e}}
+ {\elambda{\many{x:\opt{\tau}}}{\_}{s}}
{\opt{\tau_c}}
{e_f}
{\tau_f}
@@ -156,13 +231,13 @@ leaves this as a non-deterministic choice. }{}
\infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\
\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{\many{x:\opt{\tau}}}{\upsilon_r}{e}}
+ {\elambda{\many{x:\opt{\tau}}}{\upsilon_r}{s}}
{\tau_c}
{e_f}
{\tau_f}
}
{\yieldsOk{\Phi, \Delta, \Gamma}
- {\elambda{\many{x:\opt{\tau}}}{\_}{e}}
+ {\elambda{\many{x:\opt{\tau}}}{\_}{s}}
{\tau_c}
{e_f}
{\tau_f}
@@ -255,6 +330,7 @@ are well-typed at any type. }
{\Dynamic}
}
+\iftrans{
\sstext{A dynamic call expression is well-typed so long as the applicand and the
arguments are well-typed at any type.}{}
@@ -276,6 +352,8 @@ arguments are well-typed at any type.}{}
{\Dynamic}
}
+}
+
\sstext{A method load is well-typed if the term is well-typed, and the method name is
present in the type of the term.}{}
@@ -284,7 +362,7 @@ present in the type of the term.}{}
{\_}
{e'}
{\sigma} \quad\quad
- \methodLookup{\Phi}{\sigma}{m}{\tau}
+ \methodLookup{\Phi}{\sigma}{m}{\sigma}{\tau}
}
{\yieldsOk{\Phi, \Delta, \Gamma}
{\eload{e}{m}}
@@ -315,6 +393,7 @@ well-typed.}
{\Dynamic}
}
+\iftrans{
\sstext{A dynamic method load is well typed so long as the term is well-typed.}{}
\infrule{\yieldsOk{\Phi, \Delta, \Gamma}
@@ -330,6 +409,8 @@ well-typed.}
{\Dynamic}
}
+}
+
\sstext{A field load from $\ethis$ is well-typed if the field name is present in the
type of $\ethis$.}{}
@@ -396,8 +477,6 @@ field is compatible with the type of the expression being assigned.}{}
The synthesized type is the cast-to type. We require that the cast-to type be a
ground type.}{}
-\comment{TODO(leafp): specify ground types}
-
\infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} \quad\quad \mbox{$\tau$ is ground}
}
{\yieldsOk{\Phi, \Delta, \Gamma}
@@ -419,6 +498,8 @@ well-typed. We require that the cast to-type be a ground type.}{}
{\Bool}
}
+\iftrans{
+
\sstext{A check expression is well-typed so long as the term being checked is
well-typed. The synthesized type is the target type of the check.}{}
@@ -432,6 +513,8 @@ well-typed. The synthesized type is the target type of the check.}{}
{\tau}
}
+}
+
\subsection*{Declaration typing: $\declOk[d]{\Phi, \Delta, \Gamma}{\mathit{vd}}{\mathit{vd'}}{\Gamma'}$}
\hrulefill\\
@@ -554,3 +637,426 @@ component.}{}
}
{\stmtOk{\Phi, \Delta, \Gamma}{s_1;s_2}{\tau_r}{s_1';s_2'}{\Gamma''}
}
+
+\subsection*{Class member typing: $\declOk[ce]{\Phi, \Delta, \Gamma}{\mathit{vd} : \mathit{ce}}{\mathit{vd}'}{\Gamma'}$}
+\hrulefill\\
+
+\sstext{
+
+A class member is well-typed with a given signature ($\mathit{ce}$) taken from
+the class hierarchy if the signature type matches the type on the definition,
+and if the definition is well-typed.
+
+}
+{
+
+Elaborating class members is done with respect to a signature. The field
+translation simply translates the field as a variable declaration.
+
+}
+
+
+\infrule{
+ \declOk[d]{\Phi, \Delta, \Gamma}
+ {\dvar{x:\opt{\tau}}{e}}
+ {\mathit{vd'}}
+ {\Gamma'}
+ }
+ {
+ \declOk[ce]{\Phi, \Delta, \Gamma}
+ {\dvar{x:\opt{\tau}}{e} : \fieldDecl{x}{\opt{\tau}}}
+ {\mathit{vd'}}
+ {\Gamma'}
+ }
+
+
+\iftrans{
+
+Translating methods requires introducing guard expressions. The signature
+provides an internal and an external type for the method. The external type is
+the original declared type of the method, and is the signature which the method
+presents to external clients. Because we implement covariant generics, clients
+may see an instantiation of this signature which will allow them to violate the
+contract expected by the implementation. To handle this, we rewrite the method
+to match an internal signature which is in fact soundly covariant in the type
+parameters (that is, all contravariant type parameters are replaced with
+$\Dynamic$, and hence all remaining type parameters occur in properly covariant
+positions). This property is enforced in the override checking relation: from
+the perspective of this relation, there is simply another internal type which
+defines how to wrap the method with guards.
+
+The translation insists that the internal and external types be function types
+of the appropriate arity, and that the external type is equal to the type of the
+declaration. The declaration is translated using the underlying function
+definition translation, but is then wrapped with guards to enforce the type
+contract, producing a valid function of the internal (covariant) type. The
+original body of the function is wrapped in a lambda function, which is applied
+using a dynamic call which checks that the arguments (which may have negative
+occurrences of type variables which are treated as $\Dynamic$ in the internal
+type) are appropriate for the actual body. The original function returns a type
+$\tau_r$ which may be a super-type of the internal type (since negative
+occurrences of type variables must be treated as dynamic), and so we insert a
+check expression to guard against runtime type mismatches here.
+
+This is a very simplistic translation for now. We could choose, in the case
+that the body returns a lambda, to push the checking down into the lambda
+(essentially wrapping it in place).
+
+}
+
+\infrule{ \mathit{vd} = \dfun{\tau_r}{f}{x_0:\tau_0, \ldots, x_n:\tau_n}{s} \\
+ \sigma_e = \Arrow[+]{\tau_0, \ldots, \tau_n}{\tau_r}
+\iftrans{\quad\quad
+ \sigma_i = \Arrow{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r}
+} \\
+ \declOk[d]{\Phi, \Delta, \Gamma}
+ {\mathit{vd}}
+ {\dfun{\tau_r}{f}{x_0:\tau_0, \ldots, x_n:\tau_n}{s'}}
+ {\Gamma'}
+\iftrans{\\
+ e_g = \elambda{x_0:\tau_0, \ldots, x_n:\tau_n}{\tau_r}{s'}\\
+ s_g = \sreturn{(\echeck{\edcall{e_g}{x_0 , \ldots, x_n}}{\upsilon_r})} \\
+ \mathit{vd}_g = \dfun{\upsilon_r}{f}{x_0:\upsilon_0, \ldots, x_n:\upsilon_n}{s_g}
+}
+ }
+ {
+ \declOk[ce]{\Phi, \Delta, \Gamma}
+ {\mathit{vd} : \methodDecl{f}{\sigma_i}{\sigma_e}}
+ {\mathit{vd}_g}
+ {\Gamma'}
+ }
+
+\subsection*{Class declaration typing: $\declOk[c]{\Phi, \Gamma}{\mathit{cd}}{\mathit{cd'}}{\Gamma'}$}
+\hrulefill\\
+
+\sstext{
+
+A class declaration is well-typed with a given signature ($\Sig$) taken from the
+class hierarchy if the signature matches the definition, and if each member of
+the class is well-typed with the corresponding signature from the class
+signature. The members are checked with the generic type parameters bound in
+the type context, and with the type of the current class set as the type of
+$\ethis$ on the term context $\Gamma$.
+
+}
+{
+
+Elaboration of a class requires that the class hierarchy $\Phi$ have a matching
+signature for the class declaration. Each class member in the class is
+elaborated using the corresponding class element from the signature.
+
+}
+
+
+\infrule{\mathit{cd} = \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\mathit{vd}_0, \ldots, \mathit{vd}_n} \\
+ (C : \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\mathit{ce}_0, \ldots, \many{ce}_n}) \in \Phi \\
+ \Delta = \many{T} \quad
+ \Gamma_i =
+ \begin{cases}
+ \Gamma_{\TApp{C}{\many{T}}} & \mbox{if $\mathit{vd}_i$ is a method} \\
+ \Gamma & \mbox{if $\mathit{vd}_i$ is a field} \\
+ \end{cases}\\
+
+ \declOk[ce]{\Phi, \Delta, \Gamma_i}{\mathit{vd}_i : \mathit{ce}_i}{\mathit{vd}'_i}{\Gamma'_i} \quad\quad
+ \mbox{for}\ i \in 0, \ldots, n
+\iftrans{\\
+ \mathit{cd'} = \dclass{\TApp{C}{\many{T}}}{\TApp{G}{\many{\tau}}}{\many{\mathit{vd'}}}
+}
+ }
+ {\declOk[c]{\Phi, \Gamma}
+ {\mathit{cd}}
+ {\mathit{cd'}}{\Gamma'}
+ }
+
+\subsection*{Override checking:\\ \quad\quad$\overrideOk{\Phi}
+ {\TApp{C}{T_0, \ldots, T_n}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\mathit{ce}}$}
+\hrulefill\\
+
+\sstext{
+
+The override checking relation is the primary relation that checks the
+consistency of the class hierarchy. We assume a non-cyclic class hierarchy as a
+syntactic pre-condition. The override check relation checks that in a class
+declaration $\TApp{C}{T_0, \ldots, T_n}$ which extends $\TApp{G}{\tau_0, \ldots,
+ \tau_k}$, the definition of an element with signature $\mathit{ce}$ is valid.
+
+}{
+
+Override checking remains largely the same, with the exception of additional
+consistency constraints on the internal signatures for methods.
+
+}
+
+\sstext{
+
+A field with the type elided is a valid override if the same field with type
+$\Dynamic$ is valid.
+
+}{
+
+}
+
+\infrule{
+ \overrideOk{\Phi}
+ {\TApp{C}{T_0, \ldots, T_n}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\fieldDecl{x}{\Dynamic}}
+
+ }
+ {
+ \overrideOk{\Phi}
+ {\TApp{C}{T_0, \ldots, T_n}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\fieldDecl{x}{\_}}
+ }
+
+\sstext{
+
+A field with a type $\tau$ is a valid override if it appears in the super type
+with the same type.
+
+}{
+
+}
+
+\infrule{\fieldLookup{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{x}{\tau}
+ }
+ {
+ \overrideOk{\Phi}
+ {\TApp{C}{T_0, \ldots, T_n}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\fieldDecl{x}{\tau}}
+ }
+
+\sstext{
+
+A field with a type $\tau$ is a valid override if it does not appear in the super type.
+
+}{
+
+}
+
+\infrule{\fieldAbsent{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{x}
+ }
+ {
+ \overrideOk{\Phi}
+ {\TApp{C}{T_0, \ldots, T_n}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\fieldDecl{x}{\tau}}
+ }
+
+\sstext{
+
+A method with a type $\sigma$ is a valid override if it does not appear in the super type.
+
+}{
+
+For a non-override method, we require that the internal type $\tau$ be a subtype
+of $\down{\sigma}$ where $\sigma$ is the declared type. Essentially, this
+enforces the property that the initial declaration of a method in the hierarchy
+has a covariant internal type.
+
+}
+
+\infrule{
+\iftrans{
+ \Delta = T_0, \ldots, T_n \quad\quad
+ \subtypeOf{\Phi, \Delta}{\tau}{\down{\sigma}}\ \\
+}
+ \methodAbsent{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{f}
+ }
+ {
+ \overrideOk{\Phi}
+ {\TApp{C}{T_0, \ldots, T_n}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\methodDecl{f}{\tau}{\sigma}}
+ }
+
+\sstext{
+
+A method with a type $\sigma$ is a valid override if it appears in the super
+type, and $\sigma$ is a subtype of the type of the method in the super class.
+
+}{
+
+For a method override, we require two coherence conditions. As before, we
+require that the internal type $\tau$ be a subtype of the $\down{\sigma}$ where
+$\sigma$ is the external type. Moreover, we also insist that the external type
+$\sigma$ be a subtype of the external type of the method in the superclass, and
+that the internal type $\tau$ be a subtype of the internal type in the
+superclass. Note that it this last consistency property that ensures that
+covariant generics are ``poisonous'' in the sense that non-generic subclasses of
+generic classes must still have additional checks. For example, a superclass
+with a method of external type $\sigma_s = \Arrow{T}{T}$ will have internal type
+$\tau_s = \Arrow{\Dynamic}{T}$. A subclass of an instantiation of this class
+with $\Num$ can validly override this method with one of external type $\sigma =
+\Arrow{\Num}{\Num}$. This is unsound in general since the argument occurrence
+of $T$ in $\sigma_s$ is contra-variant. However, the additional consistency
+requirement is that the internal type of the subclass method must be a subtype
+of $\subst{\Num}{T}{\tau_s} = \Arrow{\Dynamic}{\Num}$. This enforces the
+property that the overridden method must expect to be used at type
+$\Arrow{\Dynamic}{\Num}$, and hence must check its arguments (and potentially
+its return value as well in the higher-order case). This checking code is
+inserted during the elaboration of class members above.
+
+ }
+
+\infrule{
+\iftrans{
+ \Delta = T_0, \ldots, T_n \quad\quad
+ \subtypeOf{\Phi, \Delta}{\tau}{\down{\sigma}}\ \\
+}
+ \methodLookup{\Phi}{\TApp{G}{\tau_0, \ldots, \tau_k}}{f}{\tau_s}{\sigma_s} \\
+\iftrans{
+ \subtypeOf{\Phi, \Delta}{\tau}{\tau_s}\quad\quad
+}
+ \subtypeOf{\Phi, \Delta}{\sigma}{\sigma_s}
+ }
+ {
+ \overrideOk{\Phi}
+ {\TApp{C}{T_0, \ldots, T_n}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\methodDecl{f}{\tau}{\sigma}}
+ }
+
+\subsection*{Toplevel declaration typing: $\declOk[t]{\Phi, \Gamma}{\mathit{td}}{\mathit{td'}}{\Gamma'}$}
+\hrulefill\\
+
+\sstext{
+
+Top level variable declarations are well-typed if they are well-typed according
+to their respective specific typing relations.
+
+}{
+
+Top level declaration elaboration falls through to the underlying variable and
+class declaration code.
+
+}
+
+\infrule
+ {\declOk[d]{\Phi, \epsilon, \Gamma}{\mathit{vd}}{\mathit{vd'}}{\Gamma'}
+
+ }
+ {\declOk[t]{\Phi, \Gamma}{\mathit{vd}}{\mathit{vd'}}{\Gamma'}
+ }
+
+\infrule
+ {\declOk[c]{\Phi, \Gamma}{\mathit{cd}}{\mathit{cd'}}{\Gamma'}
+
+ }
+ {\declOk[t]{\Phi, \Gamma}{\mathit{cd}}{\mathit{cd'}}{\Gamma'}
+ }
+
+
+\subsection*{Well-formed class signature: $\ok{\Phi}{\Sig}$}
+\hrulefill\\
+
+\sstext{
+
+The well-formed class signature relation checks whether a class signature is
+well-formed with respect to a given class hierarchy $\Phi$.
+
+}{
+
+}
+
+\sstext{
+
+The $\Object$ signature is always well-formed.
+
+}{
+
+}
+
+\axiom{\ok{\Phi}{\Object}
+ }
+
+\sstext{
+
+A signature for a class $C$ is well-formed if its super-class signature is
+well-formed, and if every element in its signature is a valid override of the
+super-class.
+
+}{
+
+}
+
+\infrule{\Sig = \dclass{\TApp{C}{\many{T}}}
+ {\TApp{G}{\tau_0, \ldots, \tau_k}}
+ {\mathit{ce}_0, \ldots, \mathit{ce}_n} \\
+ (G : \Sig') \in \Phi \quad\quad \ok{\Phi}{\Sig'} \\
+ \overrideOk{\Phi}{\TApp{C}{\many{T}}}{\TApp{G}{\tau_0, \ldots, \tau_k}}{\mathit{ce}_i}
+ \quad\quad
+ \mbox{for}\ \mathit{ce}_i \in \mathit{ce}_0, \ldots, \mathit{ce}_n
+ }
+ {\ok{\Phi}{\Sig}
+ }
+
+\subsection*{Well-formed class hierarchy: $\ok{}{\Phi}$}
+\hrulefill\\
+
+\sstext{
+
+A class hierarchy is well-formed if all of the signatures in it are well-formed
+with respect to it.
+
+}{
+
+}
+
+\infrule{\ok{\Phi}{\Sig}\ \mbox{for}\, \Sig\, \in \Phi
+ }
+ {\ok{}{\Phi}
+ }
+
+\subsection*{Program typing: $\programOk{\Phi}{P}{P'}$}
+\hrulefill\\
+
+%%Definitions:
+%%
+%% \begin{eqnarray*}
+%% \sigof{\mathit{vd}} & = &
+%% \begin{cases}
+%% \fieldDecl{x}{\tau} & \mbox{if}\ \mathit{vd} = \dvar{x:\tau}{e}\\
+%% \fieldDecl{x}{\Dynamic} & \mbox{if}\ \mathit{vd} = \dvar{x:\_}{e}\\
+%% \methodDecl{f}{\tau_f}{\Arrow[+]{\many{\tau}}{\sigma}} & \mbox{if}\ \mathit{vd} = \dfun{\sigma}{f}{\many{x:\tau}}{s}
+%% \end{cases}\\
+%% \sigof{\mathit{cd}} & = & C\, : \, \dclass{\TApp{C}{\many{T}}}
+%% {\TApp{G}{\tau_0, \ldots, \tau_k}}
+%% {\mathit{ce}_0, \ldots, \mathit{ce}_n} \\
+%% \mbox{where} &&
+%% \mathit{cd} = \dclass{\TApp{C}{\many{T}}}
+%% {\TApp{G}{\tau_0, \ldots, \tau_k}}
+%% {\mathit{vd}_0, \ldots, \mathit{vd}_n} \\
+%% \mbox{and} &&
+%% \mathit{ce}_i = \sigof{vd_i} \quad \mbox{for}\ i \in 0, \ldots, n
+%%\end{eqnarray*}
+
+\sstext{
+
+Program well-formedness is defined with respect to a class hierarchy $\Phi$. It
+is not specified how $\Phi$ is produced, but the well-formedness constraints in
+the various judgments should constrain it appropriately. A program is
+well-formed if each of the top level declarations in the program is well-formed
+in a context in which all of the previous variable declarations have been
+checked and inserted in the context, and if the body of the program is
+well-formed in the final context. We allow classes to refer to each other in
+any order, since $\Phi$ is pre-specified, but do not model out of order
+definitions of top level variables and functions. We assume as a syntactic
+property that the class hierarchy $\Phi$ is acyclic.
+
+}{
+
+}
+
+\infrule{ \Gamma_0 = \epsilon \quad\quad
+ \declOk[t]{\Phi, \Gamma_i}{\mathit{td}_i}{\mathit{td}'_i}{\Gamma_{i+1}} \quad
+ \mbox{for}\ i \in 0,\ldots,n\\
+ \stmtOk{\Phi, \epsilon, \Gamma_{n+1}}{s}{\tau}{s'}{\Gamma_{n+1}'}
+ }
+ { \programOk{\Phi}{\program{\mathit{td}_0, \ldots, \mathit{td}_n}{s}}
+ {\program{\mathit{td}'_0, \ldots, \mathit{td}'_n}{s'}}
+ }
« no previous file with comments | « doc/definition/macros.tex ('k') | doc/definition/strong-dart.pdf » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698