Index: src/processor/exploitability_linux.cc |
=================================================================== |
--- src/processor/exploitability_linux.cc (revision 1474) |
+++ src/processor/exploitability_linux.cc (working copy) |
@@ -36,8 +36,6 @@ |
#include "processor/exploitability_linux.h" |
-#include <elf.h> |
- |
#include "google_breakpad/common/minidump_exception_linux.h" |
#include "google_breakpad/processor/call_stack.h" |
#include "google_breakpad/processor/process_state.h" |
@@ -111,10 +109,6 @@ |
return EXPLOITABILITY_ERR_PROCESSING; |
} |
- if (this->ArchitectureType() == UNSUPPORTED_ARCHITECTURE) { |
- BPLOG(INFO) << "Unsupported architecture."; |
- return EXPLOITABILITY_ERR_PROCESSING; |
- } |
// Getting the instruction pointer. |
if (!context->GetInstructionPointer(&instruction_ptr)) { |
BPLOG(INFO) << "Failed to retrieve instruction pointer."; |
@@ -131,151 +125,17 @@ |
return EXPLOITABILITY_INTERESTING; |
} |
-LinuxArchitectureType ExploitabilityLinux::ArchitectureType() { |
- // GetContextCPU() should have already been successfully called before |
- // calling this method. Thus there should be a raw exception stream for |
- // the minidump. |
- MinidumpException *exception = dump_->GetException(); |
- const DumpContext *dump_context = |
- exception ? |
- exception->GetContext() : NULL; |
- if (dump_context == NULL) { |
- BPLOG(INFO) << "No raw dump context."; |
- return UNSUPPORTED_ARCHITECTURE; |
- } |
- |
- // Check the architecture type. |
- switch (dump_context->GetContextCPU()) { |
- case MD_CONTEXT_ARM: |
- case MD_CONTEXT_X86: |
- return LINUX_32_BIT; |
- case MD_CONTEXT_ARM64: |
- case MD_CONTEXT_AMD64: |
- return LINUX_64_BIT; |
- default: |
- // This should not happen. The four architectures above should be |
- // the only Linux architectures. |
- BPLOG(INFO) << "Unsupported architecture."; |
- return UNSUPPORTED_ARCHITECTURE; |
- } |
-} |
- |
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) { |
- // Get memory mapping. Most minidumps will not contain a memory |
- // mapping, so processing will commonly resort to checking modules. |
- MinidumpMemoryInfoList *mem_info_list = dump_->GetMemoryInfoList(); |
- const MinidumpMemoryInfo *mem_info = |
- mem_info_list ? |
- mem_info_list->GetMemoryInfoForAddress(instruction_ptr) : NULL; |
- |
- // Check if the memory mapping at the instruction pointer is executable. |
- // If there is no memory mapping, processing will use modules as reference. |
- if (mem_info != NULL) { |
- return mem_info->IsExecutable(); |
- } |
- |
- // If the memory mapping retrieval fails, check the modules |
- // to see if the instruction pointer is inside a module. |
- MinidumpModuleList *minidump_module_list = dump_->GetModuleList(); |
- const MinidumpModule *minidump_module = |
- minidump_module_list ? |
- minidump_module_list->GetModuleForAddress(instruction_ptr) : NULL; |
- |
- // If the instruction pointer isn't in a module, return false. |
- if (minidump_module == NULL) { |
- return false; |
- } |
- |
- // Get ELF header data from the instruction pointer's module. |
- const uint64_t base_address = minidump_module->base_address(); |
- MinidumpMemoryList *memory_list = dump_->GetMemoryList(); |
- MinidumpMemoryRegion *memory_region = |
- memory_list ? |
- memory_list->GetMemoryRegionForAddress(base_address) : NULL; |
- |
- // The minidump does not have the correct memory region. |
- // This returns true because even though there is no memory data available, |
- // the evidence so far suggests that the instruction pointer is not at a |
- // bad location. |
- if (memory_region == NULL) { |
- return true; |
- } |
- |
- // Examine ELF headers. Depending on the architecture, the size of the |
- // ELF headers can differ. |
- LinuxArchitectureType architecture = this->ArchitectureType(); |
- if (architecture == LINUX_32_BIT) { |
- // Check if the ELF header is within the memory region and if the |
- // instruction pointer lies within the ELF header. |
- if (memory_region->GetSize() < sizeof(Elf32_Ehdr) || |
- instruction_ptr < base_address + sizeof(Elf32_Ehdr)) { |
- return false; |
- } |
- // Load 32-bit ELF header. |
- Elf32_Ehdr header; |
- this->LoadElfHeader(memory_region, base_address, &header); |
- // Check if the program header table is within the memory region, and |
- // validate that the program header entry size is correct. |
- if (header.e_phentsize != sizeof(Elf32_Phdr) || |
- memory_region->GetSize() < |
- header.e_phoff + |
- ((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) { |
- return false; |
- } |
- // Load 32-bit Program Header Table. |
- scoped_array<Elf32_Phdr> program_headers(new Elf32_Phdr[header.e_phnum]); |
- this->LoadElfHeaderTable(memory_region, |
- base_address + header.e_phoff, |
- header.e_phnum, |
- program_headers.get()); |
- // Find correct program header that corresponds to the instruction pointer. |
- for (int i = 0; i < header.e_phnum; i++) { |
- const Elf32_Phdr& program_header = program_headers[i]; |
- // Check if instruction pointer lies within this program header's region. |
- if (instruction_ptr >= program_header.p_vaddr && |
- instruction_ptr < program_header.p_vaddr + program_header.p_memsz) { |
- // Return whether this program header region is executable. |
- return program_header.p_flags & PF_X; |
- } |
- } |
- } else if (architecture == LINUX_64_BIT) { |
- // Check if the ELF header is within the memory region and if the |
- // instruction pointer lies within the ELF header. |
- if (memory_region->GetSize() < sizeof(Elf64_Ehdr) || |
- instruction_ptr < base_address + sizeof(Elf64_Ehdr)) { |
- return false; |
- } |
- // Load 64-bit ELF header. |
- Elf64_Ehdr header; |
- this->LoadElfHeader(memory_region, base_address, &header); |
- // Check if the program header table is within the memory region, and |
- // validate that the program header entry size is correct. |
- if (header.e_phentsize != sizeof(Elf64_Phdr) || |
- memory_region->GetSize() < |
- header.e_phoff + |
- ((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) { |
- return false; |
- } |
- // Load 64-bit Program Header Table. |
- scoped_array<Elf64_Phdr> program_headers(new Elf64_Phdr[header.e_phnum]); |
- this->LoadElfHeaderTable(memory_region, |
- base_address + header.e_phoff, |
- header.e_phnum, |
- program_headers.get()); |
- // Find correct program header that corresponds to the instruction pointer. |
- for (int i = 0; i < header.e_phnum; i++) { |
- const Elf64_Phdr& program_header = program_headers[i]; |
- // Check if instruction pointer lies within this program header's region. |
- if (instruction_ptr >= program_header.p_vaddr && |
- instruction_ptr < program_header.p_vaddr + program_header.p_memsz) { |
- // Return whether this program header region is executable. |
- return program_header.p_flags & PF_X; |
- } |
- } |
- } |
- |
- // The instruction pointer was not in an area identified by the ELF headers. |
- return false; |
+ // Get Linux memory mapping from /proc/self/maps. Checking whether the |
+ // region the instruction pointer is in has executable permission can tell |
+ // whether it is in a valid code region. If there is no mapping for the |
+ // instruction pointer, it is indicative that the instruction pointer is |
+ // not within a module, which implies that it is outside a valid area. |
+ MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList(); |
+ const MinidumpLinuxMaps *linux_maps = |
+ linux_maps_list ? |
+ linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL; |
+ return linux_maps ? linux_maps->IsExecutable() : false; |
} |
bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream |