| Index: src/processor/exploitability_linux.cc
|
| ===================================================================
|
| --- src/processor/exploitability_linux.cc (revision 1474)
|
| +++ src/processor/exploitability_linux.cc (working copy)
|
| @@ -36,8 +36,6 @@
|
|
|
| #include "processor/exploitability_linux.h"
|
|
|
| -#include <elf.h>
|
| -
|
| #include "google_breakpad/common/minidump_exception_linux.h"
|
| #include "google_breakpad/processor/call_stack.h"
|
| #include "google_breakpad/processor/process_state.h"
|
| @@ -111,10 +109,6 @@
|
| return EXPLOITABILITY_ERR_PROCESSING;
|
| }
|
|
|
| - if (this->ArchitectureType() == UNSUPPORTED_ARCHITECTURE) {
|
| - BPLOG(INFO) << "Unsupported architecture.";
|
| - return EXPLOITABILITY_ERR_PROCESSING;
|
| - }
|
| // Getting the instruction pointer.
|
| if (!context->GetInstructionPointer(&instruction_ptr)) {
|
| BPLOG(INFO) << "Failed to retrieve instruction pointer.";
|
| @@ -131,151 +125,17 @@
|
| return EXPLOITABILITY_INTERESTING;
|
| }
|
|
|
| -LinuxArchitectureType ExploitabilityLinux::ArchitectureType() {
|
| - // GetContextCPU() should have already been successfully called before
|
| - // calling this method. Thus there should be a raw exception stream for
|
| - // the minidump.
|
| - MinidumpException *exception = dump_->GetException();
|
| - const DumpContext *dump_context =
|
| - exception ?
|
| - exception->GetContext() : NULL;
|
| - if (dump_context == NULL) {
|
| - BPLOG(INFO) << "No raw dump context.";
|
| - return UNSUPPORTED_ARCHITECTURE;
|
| - }
|
| -
|
| - // Check the architecture type.
|
| - switch (dump_context->GetContextCPU()) {
|
| - case MD_CONTEXT_ARM:
|
| - case MD_CONTEXT_X86:
|
| - return LINUX_32_BIT;
|
| - case MD_CONTEXT_ARM64:
|
| - case MD_CONTEXT_AMD64:
|
| - return LINUX_64_BIT;
|
| - default:
|
| - // This should not happen. The four architectures above should be
|
| - // the only Linux architectures.
|
| - BPLOG(INFO) << "Unsupported architecture.";
|
| - return UNSUPPORTED_ARCHITECTURE;
|
| - }
|
| -}
|
| -
|
| bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
|
| - // Get memory mapping. Most minidumps will not contain a memory
|
| - // mapping, so processing will commonly resort to checking modules.
|
| - MinidumpMemoryInfoList *mem_info_list = dump_->GetMemoryInfoList();
|
| - const MinidumpMemoryInfo *mem_info =
|
| - mem_info_list ?
|
| - mem_info_list->GetMemoryInfoForAddress(instruction_ptr) : NULL;
|
| -
|
| - // Check if the memory mapping at the instruction pointer is executable.
|
| - // If there is no memory mapping, processing will use modules as reference.
|
| - if (mem_info != NULL) {
|
| - return mem_info->IsExecutable();
|
| - }
|
| -
|
| - // If the memory mapping retrieval fails, check the modules
|
| - // to see if the instruction pointer is inside a module.
|
| - MinidumpModuleList *minidump_module_list = dump_->GetModuleList();
|
| - const MinidumpModule *minidump_module =
|
| - minidump_module_list ?
|
| - minidump_module_list->GetModuleForAddress(instruction_ptr) : NULL;
|
| -
|
| - // If the instruction pointer isn't in a module, return false.
|
| - if (minidump_module == NULL) {
|
| - return false;
|
| - }
|
| -
|
| - // Get ELF header data from the instruction pointer's module.
|
| - const uint64_t base_address = minidump_module->base_address();
|
| - MinidumpMemoryList *memory_list = dump_->GetMemoryList();
|
| - MinidumpMemoryRegion *memory_region =
|
| - memory_list ?
|
| - memory_list->GetMemoryRegionForAddress(base_address) : NULL;
|
| -
|
| - // The minidump does not have the correct memory region.
|
| - // This returns true because even though there is no memory data available,
|
| - // the evidence so far suggests that the instruction pointer is not at a
|
| - // bad location.
|
| - if (memory_region == NULL) {
|
| - return true;
|
| - }
|
| -
|
| - // Examine ELF headers. Depending on the architecture, the size of the
|
| - // ELF headers can differ.
|
| - LinuxArchitectureType architecture = this->ArchitectureType();
|
| - if (architecture == LINUX_32_BIT) {
|
| - // Check if the ELF header is within the memory region and if the
|
| - // instruction pointer lies within the ELF header.
|
| - if (memory_region->GetSize() < sizeof(Elf32_Ehdr) ||
|
| - instruction_ptr < base_address + sizeof(Elf32_Ehdr)) {
|
| - return false;
|
| - }
|
| - // Load 32-bit ELF header.
|
| - Elf32_Ehdr header;
|
| - this->LoadElfHeader(memory_region, base_address, &header);
|
| - // Check if the program header table is within the memory region, and
|
| - // validate that the program header entry size is correct.
|
| - if (header.e_phentsize != sizeof(Elf32_Phdr) ||
|
| - memory_region->GetSize() <
|
| - header.e_phoff +
|
| - ((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
|
| - return false;
|
| - }
|
| - // Load 32-bit Program Header Table.
|
| - scoped_array<Elf32_Phdr> program_headers(new Elf32_Phdr[header.e_phnum]);
|
| - this->LoadElfHeaderTable(memory_region,
|
| - base_address + header.e_phoff,
|
| - header.e_phnum,
|
| - program_headers.get());
|
| - // Find correct program header that corresponds to the instruction pointer.
|
| - for (int i = 0; i < header.e_phnum; i++) {
|
| - const Elf32_Phdr& program_header = program_headers[i];
|
| - // Check if instruction pointer lies within this program header's region.
|
| - if (instruction_ptr >= program_header.p_vaddr &&
|
| - instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
|
| - // Return whether this program header region is executable.
|
| - return program_header.p_flags & PF_X;
|
| - }
|
| - }
|
| - } else if (architecture == LINUX_64_BIT) {
|
| - // Check if the ELF header is within the memory region and if the
|
| - // instruction pointer lies within the ELF header.
|
| - if (memory_region->GetSize() < sizeof(Elf64_Ehdr) ||
|
| - instruction_ptr < base_address + sizeof(Elf64_Ehdr)) {
|
| - return false;
|
| - }
|
| - // Load 64-bit ELF header.
|
| - Elf64_Ehdr header;
|
| - this->LoadElfHeader(memory_region, base_address, &header);
|
| - // Check if the program header table is within the memory region, and
|
| - // validate that the program header entry size is correct.
|
| - if (header.e_phentsize != sizeof(Elf64_Phdr) ||
|
| - memory_region->GetSize() <
|
| - header.e_phoff +
|
| - ((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
|
| - return false;
|
| - }
|
| - // Load 64-bit Program Header Table.
|
| - scoped_array<Elf64_Phdr> program_headers(new Elf64_Phdr[header.e_phnum]);
|
| - this->LoadElfHeaderTable(memory_region,
|
| - base_address + header.e_phoff,
|
| - header.e_phnum,
|
| - program_headers.get());
|
| - // Find correct program header that corresponds to the instruction pointer.
|
| - for (int i = 0; i < header.e_phnum; i++) {
|
| - const Elf64_Phdr& program_header = program_headers[i];
|
| - // Check if instruction pointer lies within this program header's region.
|
| - if (instruction_ptr >= program_header.p_vaddr &&
|
| - instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
|
| - // Return whether this program header region is executable.
|
| - return program_header.p_flags & PF_X;
|
| - }
|
| - }
|
| - }
|
| -
|
| - // The instruction pointer was not in an area identified by the ELF headers.
|
| - return false;
|
| + // Get Linux memory mapping from /proc/self/maps. Checking whether the
|
| + // region the instruction pointer is in has executable permission can tell
|
| + // whether it is in a valid code region. If there is no mapping for the
|
| + // instruction pointer, it is indicative that the instruction pointer is
|
| + // not within a module, which implies that it is outside a valid area.
|
| + MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
|
| + const MinidumpLinuxMaps *linux_maps =
|
| + linux_maps_list ?
|
| + linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL;
|
| + return linux_maps ? linux_maps->IsExecutable() : false;
|
| }
|
|
|
| bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream
|
|
|