OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "GrBicubicEffect.h" | 8 #include "GrBicubicEffect.h" |
9 #include "GrInvariantOutput.h" | 9 #include "GrInvariantOutput.h" |
10 #include "gl/builders/GrGLProgramBuilder.h" | 10 #include "gl/builders/GrGLProgramBuilder.h" |
11 | 11 |
12 #define DS(x) SkDoubleToScalar(x) | 12 #define DS(x) SkDoubleToScalar(x) |
13 | 13 |
14 const SkScalar GrBicubicEffect::gMitchellCoefficients[16] = { | 14 const SkScalar GrBicubicEffect::gMitchellCoefficients[16] = { |
15 DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0), | 15 DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0), |
16 DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0), | 16 DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0), |
17 DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0), | 17 DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0), |
18 DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS( 7.0 / 18.0), | 18 DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS( 7.0 / 18.0), |
19 }; | 19 }; |
20 | 20 |
21 | 21 |
22 class GrGLBicubicEffect : public GrGLFragmentProcessor { | 22 class GrGLBicubicEffect : public GrGLFragmentProcessor { |
23 public: | 23 public: |
24 GrGLBicubicEffect(const GrProcessor&); | 24 GrGLBicubicEffect(const GrProcessor&); |
25 | 25 |
26 virtual void emitCode(GrGLFPBuilder*, | 26 virtual void emitCode(EmitArgs&) override; |
27 const GrFragmentProcessor&, | |
28 const char* outputColor, | |
29 const char* inputColor, | |
30 const TransformedCoordsArray&, | |
31 const TextureSamplerArray&) override; | |
32 | 27 |
33 void setData(const GrGLProgramDataManager&, const GrProcessor&) override; | 28 void setData(const GrGLProgramDataManager&, const GrProcessor&) override; |
34 | 29 |
35 static inline void GenKey(const GrProcessor& effect, const GrGLSLCaps&, | 30 static inline void GenKey(const GrProcessor& effect, const GrGLSLCaps&, |
36 GrProcessorKeyBuilder* b) { | 31 GrProcessorKeyBuilder* b) { |
37 const GrTextureDomain& domain = effect.cast<GrBicubicEffect>().domain(); | 32 const GrTextureDomain& domain = effect.cast<GrBicubicEffect>().domain(); |
38 b->add32(GrTextureDomain::GLDomain::DomainKey(domain)); | 33 b->add32(GrTextureDomain::GLDomain::DomainKey(domain)); |
39 } | 34 } |
40 | 35 |
41 private: | 36 private: |
42 typedef GrGLProgramDataManager::UniformHandle UniformHandle; | 37 typedef GrGLProgramDataManager::UniformHandle UniformHandle; |
43 | 38 |
44 UniformHandle fCoefficientsUni; | 39 UniformHandle fCoefficientsUni; |
45 UniformHandle fImageIncrementUni; | 40 UniformHandle fImageIncrementUni; |
46 GrTextureDomain::GLDomain fDomain; | 41 GrTextureDomain::GLDomain fDomain; |
47 | 42 |
48 typedef GrGLFragmentProcessor INHERITED; | 43 typedef GrGLFragmentProcessor INHERITED; |
49 }; | 44 }; |
50 | 45 |
51 GrGLBicubicEffect::GrGLBicubicEffect(const GrProcessor&) { | 46 GrGLBicubicEffect::GrGLBicubicEffect(const GrProcessor&) { |
52 } | 47 } |
53 | 48 |
54 void GrGLBicubicEffect::emitCode(GrGLFPBuilder* builder, | 49 void GrGLBicubicEffect::emitCode(EmitArgs& args) { |
55 const GrFragmentProcessor& effect, | 50 const GrTextureDomain& domain = args.fFp.cast<GrBicubicEffect>().domain(); |
56 const char* outputColor, | |
57 const char* inputColor, | |
58 const TransformedCoordsArray& coords, | |
59 const TextureSamplerArray& samplers) { | |
60 const GrTextureDomain& domain = effect.cast<GrBicubicEffect>().domain(); | |
61 | 51 |
62 fCoefficientsUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibil
ity, | 52 fCoefficientsUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_V
isibility, |
63 kMat44f_GrSLType, kDefault_GrSLPrecis
ion, | 53 kMat44f_GrSLType, kDefault_GrSLPrecis
ion, |
64 "Coefficients"); | 54 "Coefficients"); |
65 fImageIncrementUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visib
ility, | 55 fImageIncrementUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment
_Visibility, |
66 kVec2f_GrSLType, kDefault_GrSLPreci
sion, | 56 kVec2f_GrSLType, kDefault_GrSLPreci
sion, |
67 "ImageIncrement"); | 57 "ImageIncrement"); |
68 | 58 |
69 const char* imgInc = builder->getUniformCStr(fImageIncrementUni); | 59 const char* imgInc = args.fBuilder->getUniformCStr(fImageIncrementUni); |
70 const char* coeff = builder->getUniformCStr(fCoefficientsUni); | 60 const char* coeff = args.fBuilder->getUniformCStr(fCoefficientsUni); |
71 | 61 |
72 SkString cubicBlendName; | 62 SkString cubicBlendName; |
73 | 63 |
74 static const GrGLShaderVar gCubicBlendArgs[] = { | 64 static const GrGLShaderVar gCubicBlendArgs[] = { |
75 GrGLShaderVar("coefficients", kMat44f_GrSLType), | 65 GrGLShaderVar("coefficients", kMat44f_GrSLType), |
76 GrGLShaderVar("t", kFloat_GrSLType), | 66 GrGLShaderVar("t", kFloat_GrSLType), |
77 GrGLShaderVar("c0", kVec4f_GrSLType), | 67 GrGLShaderVar("c0", kVec4f_GrSLType), |
78 GrGLShaderVar("c1", kVec4f_GrSLType), | 68 GrGLShaderVar("c1", kVec4f_GrSLType), |
79 GrGLShaderVar("c2", kVec4f_GrSLType), | 69 GrGLShaderVar("c2", kVec4f_GrSLType), |
80 GrGLShaderVar("c3", kVec4f_GrSLType), | 70 GrGLShaderVar("c3", kVec4f_GrSLType), |
81 }; | 71 }; |
82 GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); | 72 GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); |
83 SkString coords2D = fsBuilder->ensureFSCoords2D(coords, 0); | 73 SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0); |
84 fsBuilder->emitFunction(kVec4f_GrSLType, | 74 fsBuilder->emitFunction(kVec4f_GrSLType, |
85 "cubicBlend", | 75 "cubicBlend", |
86 SK_ARRAY_COUNT(gCubicBlendArgs), | 76 SK_ARRAY_COUNT(gCubicBlendArgs), |
87 gCubicBlendArgs, | 77 gCubicBlendArgs, |
88 "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n" | 78 "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n" |
89 "\tvec4 c = coefficients * ts;\n" | 79 "\tvec4 c = coefficients * ts;\n" |
90 "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;
\n", | 80 "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;
\n", |
91 &cubicBlendName); | 81 &cubicBlendName); |
92 fsBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_s
tr(), imgInc); | 82 fsBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_s
tr(), imgInc); |
93 // We unnormalize the coord in order to determine our fractional offset (f)
within the texel | 83 // We unnormalize the coord in order to determine our fractional offset (f)
within the texel |
94 // We then snap coord to a texel center and renormalize. The snap prevents c
ases where the | 84 // We then snap coord to a texel center and renormalize. The snap prevents c
ases where the |
95 // starting coords are near a texel boundary and accumulations of imgInc wou
ld cause us to skip/ | 85 // starting coords are near a texel boundary and accumulations of imgInc wou
ld cause us to skip/ |
96 // double hit a texel. | 86 // double hit a texel. |
97 fsBuilder->codeAppendf("\tcoord /= %s;\n", imgInc); | 87 fsBuilder->codeAppendf("\tcoord /= %s;\n", imgInc); |
98 fsBuilder->codeAppend("\tvec2 f = fract(coord);\n"); | 88 fsBuilder->codeAppend("\tvec2 f = fract(coord);\n"); |
99 fsBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc); | 89 fsBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc); |
100 fsBuilder->codeAppend("\tvec4 rowColors[4];\n"); | 90 fsBuilder->codeAppend("\tvec4 rowColors[4];\n"); |
101 for (int y = 0; y < 4; ++y) { | 91 for (int y = 0; y < 4; ++y) { |
102 for (int x = 0; x < 4; ++x) { | 92 for (int x = 0; x < 4; ++x) { |
103 SkString coord; | 93 SkString coord; |
104 coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1); | 94 coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1); |
105 SkString sampleVar; | 95 SkString sampleVar; |
106 sampleVar.printf("rowColors[%d]", x); | 96 sampleVar.printf("rowColors[%d]", x); |
107 fDomain.sampleTexture(fsBuilder, domain, sampleVar.c_str(), coord, s
amplers[0]); | 97 fDomain.sampleTexture(fsBuilder, domain, sampleVar.c_str(), coord, a
rgs.fSamplers[0]); |
108 } | 98 } |
109 fsBuilder->codeAppendf("\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors
[1], rowColors[2], rowColors[3]);\n", y, cubicBlendName.c_str(), coeff); | 99 fsBuilder->codeAppendf("\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors
[1], rowColors[2], rowColors[3]);\n", y, cubicBlendName.c_str(), coeff); |
110 } | 100 } |
111 SkString bicubicColor; | 101 SkString bicubicColor; |
112 bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), c
oeff); | 102 bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), c
oeff); |
113 fsBuilder->codeAppendf("\t%s = %s;\n", outputColor, (GrGLSLExpr4(bicubicColo
r.c_str()) * GrGLSLExpr4(inputColor)).c_str()); | 103 fsBuilder->codeAppendf("\t%s = %s;\n", args.fOutputColor,(GrGLSLExpr4(bicubi
cColor.c_str()) * |
| 104 GrGLSLExpr4(args.fInputColor)).c_str()); |
114 } | 105 } |
115 | 106 |
116 void GrGLBicubicEffect::setData(const GrGLProgramDataManager& pdman, | 107 void GrGLBicubicEffect::setData(const GrGLProgramDataManager& pdman, |
117 const GrProcessor& processor) { | 108 const GrProcessor& processor) { |
118 const GrBicubicEffect& bicubicEffect = processor.cast<GrBicubicEffect>(); | 109 const GrBicubicEffect& bicubicEffect = processor.cast<GrBicubicEffect>(); |
119 const GrTexture& texture = *processor.texture(0); | 110 const GrTexture& texture = *processor.texture(0); |
120 float imageIncrement[2]; | 111 float imageIncrement[2]; |
121 imageIncrement[0] = 1.0f / texture.width(); | 112 imageIncrement[0] = 1.0f / texture.width(); |
122 imageIncrement[1] = 1.0f / texture.height(); | 113 imageIncrement[1] = 1.0f / texture.height(); |
123 pdman.set2fv(fImageIncrementUni, 1, imageIncrement); | 114 pdman.set2fv(fImageIncrementUni, 1, imageIncrement); |
(...skipping 94 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
218 // Use bilerp to handle rotation or fractional translation. | 209 // Use bilerp to handle rotation or fractional translation. |
219 *filterMode = GrTextureParams::kBilerp_FilterMode; | 210 *filterMode = GrTextureParams::kBilerp_FilterMode; |
220 } | 211 } |
221 return false; | 212 return false; |
222 } | 213 } |
223 // When we use the bicubic filtering effect each sample is read from the tex
ture using | 214 // When we use the bicubic filtering effect each sample is read from the tex
ture using |
224 // nearest neighbor sampling. | 215 // nearest neighbor sampling. |
225 *filterMode = GrTextureParams::kNone_FilterMode; | 216 *filterMode = GrTextureParams::kNone_FilterMode; |
226 return true; | 217 return true; |
227 } | 218 } |
OLD | NEW |