| Index: src/opts/Sk4px_SSE2.h
|
| diff --git a/src/opts/Sk4px_SSE2.h b/src/opts/Sk4px_SSE2.h
|
| index 5e97abf308b3af30c3d6f3301c7101f0030a72c5..3809c5e47b5a955dfe6eeb794722c6950d8bb010 100644
|
| --- a/src/opts/Sk4px_SSE2.h
|
| +++ b/src/opts/Sk4px_SSE2.h
|
| @@ -93,79 +93,4 @@
|
| return Sk16b(_mm_andnot_si128(_mm_set1_epi32(0xFF << SK_A32_SHIFT), this->fVec));
|
| }
|
|
|
| -static inline __m128i widen_low_half_to_8888(__m128i v) {
|
| - // RGB565 format: |R....|G.....|B....|
|
| - // Bit: 16 11 5 0
|
| -
|
| - // First get each pixel into its own 32-bit lane.
|
| - // v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0
|
| - // spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
|
| - auto spread = _mm_unpacklo_epi16(v, _mm_setzero_si128());
|
| -
|
| - // Get each color independently, still in 565 precison but down at bit 0.
|
| - auto r5 = _mm_srli_epi32(spread, 11),
|
| - g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(spread, 5)),
|
| - b5 = _mm_and_si128(_mm_set1_epi32(31), spread);
|
| -
|
| - // Scale 565 precision up to 8-bit each, filling low 323 bits with high bits of each component.
|
| - auto r8 = _mm_or_si128(_mm_slli_epi32(r5, 3), _mm_srli_epi32(r5, 2)),
|
| - g8 = _mm_or_si128(_mm_slli_epi32(g6, 2), _mm_srli_epi32(g6, 4)),
|
| - b8 = _mm_or_si128(_mm_slli_epi32(b5, 3), _mm_srli_epi32(b5, 2));
|
| -
|
| - // Now put all the 8-bit components into SkPMColor order.
|
| - return _mm_or_si128(_mm_slli_epi32(r8, SK_R32_SHIFT), // TODO: one of these shifts is zero...
|
| - _mm_or_si128(_mm_slli_epi32(g8, SK_G32_SHIFT),
|
| - _mm_or_si128(_mm_slli_epi32(b8, SK_B32_SHIFT),
|
| - _mm_set1_epi32(0xFF << SK_A32_SHIFT))));
|
| -}
|
| -
|
| -static inline __m128i narrow_to_565(__m128i w) {
|
| - // Extract out top RGB 565 bits of each pixel, with no rounding.
|
| - auto r5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_R32_SHIFT + 3)),
|
| - g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(w, SK_G32_SHIFT + 2)),
|
| - b5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_B32_SHIFT + 3));
|
| -
|
| - // Now put the bits in place in the low 16-bits of each 32-bit lane.
|
| - auto spread = _mm_or_si128(_mm_slli_epi32(r5, 11),
|
| - _mm_or_si128(_mm_slli_epi32(g6, 5),
|
| - b5));
|
| -
|
| - // We want to pack the bottom 16-bits of spread down into the low half of the register, v.
|
| - // spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
|
| - // v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0
|
| -
|
| - // Ideally now we'd use _mm_packus_epi32(spread, <anything>) to pack v. But that's from SSE4.
|
| - // With only SSE2, we need to use _mm_packs_epi32. That does signed saturation, and
|
| - // we need to preserve all 16 bits. So we pretend our data is signed by sign-extending first.
|
| - // TODO: is it faster to just _mm_shuffle_epi8 this when we have SSSE3?
|
| - auto signExtended = _mm_srai_epi32(_mm_slli_epi32(spread, 16), 16);
|
| - auto v = _mm_packs_epi32(signExtended, signExtended);
|
| - return v;
|
| -}
|
| -
|
| -inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) {
|
| - return Sk16b(widen_low_half_to_8888(_mm_loadl_epi64((const __m128i*)src)));
|
| -}
|
| -inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) {
|
| - auto src2 = ((uint32_t)src[0] )
|
| - | ((uint32_t)src[1] << 16);
|
| - return Sk16b(widen_low_half_to_8888(_mm_cvtsi32_si128(src2)));
|
| -}
|
| -inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) {
|
| - return Sk16b(widen_low_half_to_8888(_mm_insert_epi16(_mm_setzero_si128(), src[0], 0)));
|
| -}
|
| -
|
| -inline void Sk4px::store4(SkPMColor16 dst[4]) const {
|
| - _mm_storel_epi64((__m128i*)dst, narrow_to_565(this->fVec));
|
| -}
|
| -inline void Sk4px::store2(SkPMColor16 dst[2]) const {
|
| - uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec));
|
| - dst[0] = dst2;
|
| - dst[1] = dst2 >> 16;
|
| -}
|
| -inline void Sk4px::store1(SkPMColor16 dst[1]) const {
|
| - uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec));
|
| - dst[0] = dst2;
|
| -}
|
| -
|
| } // namespace
|
|
|