Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(44)

Side by Side Diff: src/x87/full-codegen-x87.cc

Issue 1248443003: Move Full-codegen into its own folder. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: rename define Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/x87/deoptimizer-x87.cc ('k') | test/cctest/compiler/function-tester.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_X87
8
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/compiler.h"
13 #include "src/debug.h"
14 #include "src/full-codegen.h"
15 #include "src/ic/ic.h"
16 #include "src/parser.h"
17 #include "src/scopes.h"
18
19 namespace v8 {
20 namespace internal {
21
22 #define __ ACCESS_MASM(masm_)
23
24
25 class JumpPatchSite BASE_EMBEDDED {
26 public:
27 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
28 #ifdef DEBUG
29 info_emitted_ = false;
30 #endif
31 }
32
33 ~JumpPatchSite() {
34 DCHECK(patch_site_.is_bound() == info_emitted_);
35 }
36
37 void EmitJumpIfNotSmi(Register reg,
38 Label* target,
39 Label::Distance distance = Label::kFar) {
40 __ test(reg, Immediate(kSmiTagMask));
41 EmitJump(not_carry, target, distance); // Always taken before patched.
42 }
43
44 void EmitJumpIfSmi(Register reg,
45 Label* target,
46 Label::Distance distance = Label::kFar) {
47 __ test(reg, Immediate(kSmiTagMask));
48 EmitJump(carry, target, distance); // Never taken before patched.
49 }
50
51 void EmitPatchInfo() {
52 if (patch_site_.is_bound()) {
53 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
54 DCHECK(is_uint8(delta_to_patch_site));
55 __ test(eax, Immediate(delta_to_patch_site));
56 #ifdef DEBUG
57 info_emitted_ = true;
58 #endif
59 } else {
60 __ nop(); // Signals no inlined code.
61 }
62 }
63
64 private:
65 // jc will be patched with jz, jnc will become jnz.
66 void EmitJump(Condition cc, Label* target, Label::Distance distance) {
67 DCHECK(!patch_site_.is_bound() && !info_emitted_);
68 DCHECK(cc == carry || cc == not_carry);
69 __ bind(&patch_site_);
70 __ j(cc, target, distance);
71 }
72
73 MacroAssembler* masm_;
74 Label patch_site_;
75 #ifdef DEBUG
76 bool info_emitted_;
77 #endif
78 };
79
80
81 // Generate code for a JS function. On entry to the function the receiver
82 // and arguments have been pushed on the stack left to right, with the
83 // return address on top of them. The actual argument count matches the
84 // formal parameter count expected by the function.
85 //
86 // The live registers are:
87 // o edi: the JS function object being called (i.e. ourselves)
88 // o esi: our context
89 // o ebp: our caller's frame pointer
90 // o esp: stack pointer (pointing to return address)
91 //
92 // The function builds a JS frame. Please see JavaScriptFrameConstants in
93 // frames-x87.h for its layout.
94 void FullCodeGenerator::Generate() {
95 CompilationInfo* info = info_;
96 profiling_counter_ = isolate()->factory()->NewCell(
97 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
98 SetFunctionPosition(function());
99 Comment cmnt(masm_, "[ function compiled by full code generator");
100
101 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
102
103 #ifdef DEBUG
104 if (strlen(FLAG_stop_at) > 0 &&
105 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
106 __ int3();
107 }
108 #endif
109
110 // Sloppy mode functions and builtins need to replace the receiver with the
111 // global proxy when called as functions (without an explicit receiver
112 // object).
113 if (is_sloppy(info->language_mode()) && !info->is_native() &&
114 info->MayUseThis()) {
115 Label ok;
116 // +1 for return address.
117 int receiver_offset = (info->scope()->num_parameters() + 1) * kPointerSize;
118 __ mov(ecx, Operand(esp, receiver_offset));
119
120 __ cmp(ecx, isolate()->factory()->undefined_value());
121 __ j(not_equal, &ok, Label::kNear);
122
123 __ mov(ecx, GlobalObjectOperand());
124 __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalProxyOffset));
125
126 __ mov(Operand(esp, receiver_offset), ecx);
127
128 __ bind(&ok);
129 }
130
131 // Open a frame scope to indicate that there is a frame on the stack. The
132 // MANUAL indicates that the scope shouldn't actually generate code to set up
133 // the frame (that is done below).
134 FrameScope frame_scope(masm_, StackFrame::MANUAL);
135
136 info->set_prologue_offset(masm_->pc_offset());
137 __ Prologue(info->IsCodePreAgingActive());
138 info->AddNoFrameRange(0, masm_->pc_offset());
139
140 { Comment cmnt(masm_, "[ Allocate locals");
141 int locals_count = info->scope()->num_stack_slots();
142 // Generators allocate locals, if any, in context slots.
143 DCHECK(!IsGeneratorFunction(info->function()->kind()) || locals_count == 0);
144 if (locals_count == 1) {
145 __ push(Immediate(isolate()->factory()->undefined_value()));
146 } else if (locals_count > 1) {
147 if (locals_count >= 128) {
148 Label ok;
149 __ mov(ecx, esp);
150 __ sub(ecx, Immediate(locals_count * kPointerSize));
151 ExternalReference stack_limit =
152 ExternalReference::address_of_real_stack_limit(isolate());
153 __ cmp(ecx, Operand::StaticVariable(stack_limit));
154 __ j(above_equal, &ok, Label::kNear);
155 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
156 __ bind(&ok);
157 }
158 __ mov(eax, Immediate(isolate()->factory()->undefined_value()));
159 const int kMaxPushes = 32;
160 if (locals_count >= kMaxPushes) {
161 int loop_iterations = locals_count / kMaxPushes;
162 __ mov(ecx, loop_iterations);
163 Label loop_header;
164 __ bind(&loop_header);
165 // Do pushes.
166 for (int i = 0; i < kMaxPushes; i++) {
167 __ push(eax);
168 }
169 __ dec(ecx);
170 __ j(not_zero, &loop_header, Label::kNear);
171 }
172 int remaining = locals_count % kMaxPushes;
173 // Emit the remaining pushes.
174 for (int i = 0; i < remaining; i++) {
175 __ push(eax);
176 }
177 }
178 }
179
180 bool function_in_register = true;
181
182 // Possibly allocate a local context.
183 if (info->scope()->num_heap_slots() > 0) {
184 Comment cmnt(masm_, "[ Allocate context");
185 bool need_write_barrier = true;
186 int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
187 // Argument to NewContext is the function, which is still in edi.
188 if (info->scope()->is_script_scope()) {
189 __ push(edi);
190 __ Push(info->scope()->GetScopeInfo(info->isolate()));
191 __ CallRuntime(Runtime::kNewScriptContext, 2);
192 } else if (slots <= FastNewContextStub::kMaximumSlots) {
193 FastNewContextStub stub(isolate(), slots);
194 __ CallStub(&stub);
195 // Result of FastNewContextStub is always in new space.
196 need_write_barrier = false;
197 } else {
198 __ push(edi);
199 __ CallRuntime(Runtime::kNewFunctionContext, 1);
200 }
201 function_in_register = false;
202 // Context is returned in eax. It replaces the context passed to us.
203 // It's saved in the stack and kept live in esi.
204 __ mov(esi, eax);
205 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
206
207 // Copy parameters into context if necessary.
208 int num_parameters = info->scope()->num_parameters();
209 int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
210 for (int i = first_parameter; i < num_parameters; i++) {
211 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
212 if (var->IsContextSlot()) {
213 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
214 (num_parameters - 1 - i) * kPointerSize;
215 // Load parameter from stack.
216 __ mov(eax, Operand(ebp, parameter_offset));
217 // Store it in the context.
218 int context_offset = Context::SlotOffset(var->index());
219 __ mov(Operand(esi, context_offset), eax);
220 // Update the write barrier. This clobbers eax and ebx.
221 if (need_write_barrier) {
222 __ RecordWriteContextSlot(esi, context_offset, eax, ebx,
223 kDontSaveFPRegs);
224 } else if (FLAG_debug_code) {
225 Label done;
226 __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
227 __ Abort(kExpectedNewSpaceObject);
228 __ bind(&done);
229 }
230 }
231 }
232 }
233
234 // Possibly set up a local binding to the this function which is used in
235 // derived constructors with super calls.
236 Variable* this_function_var = scope()->this_function_var();
237 if (this_function_var != nullptr) {
238 Comment cmnt(masm_, "[ This function");
239 if (!function_in_register) {
240 __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
241 // The write barrier clobbers register again, keep is marked as such.
242 }
243 SetVar(this_function_var, edi, ebx, edx);
244 }
245
246 Variable* new_target_var = scope()->new_target_var();
247 if (new_target_var != nullptr) {
248 Comment cmnt(masm_, "[ new.target");
249 __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
250 Label non_adaptor_frame;
251 __ cmp(Operand(eax, StandardFrameConstants::kContextOffset),
252 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
253 __ j(not_equal, &non_adaptor_frame);
254 __ mov(eax, Operand(eax, StandardFrameConstants::kCallerFPOffset));
255
256 __ bind(&non_adaptor_frame);
257 __ cmp(Operand(eax, StandardFrameConstants::kMarkerOffset),
258 Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
259
260 Label non_construct_frame, done;
261 __ j(not_equal, &non_construct_frame);
262
263 // Construct frame
264 __ mov(eax,
265 Operand(eax, ConstructFrameConstants::kOriginalConstructorOffset));
266 __ jmp(&done);
267
268 // Non-construct frame
269 __ bind(&non_construct_frame);
270 __ mov(eax, Immediate(isolate()->factory()->undefined_value()));
271
272 __ bind(&done);
273 SetVar(new_target_var, eax, ebx, edx);
274 }
275
276
277 // Possibly allocate RestParameters
278 int rest_index;
279 Variable* rest_param = scope()->rest_parameter(&rest_index);
280 if (rest_param) {
281 Comment cmnt(masm_, "[ Allocate rest parameter array");
282
283 int num_parameters = info->scope()->num_parameters();
284 int offset = num_parameters * kPointerSize;
285
286 __ lea(edx,
287 Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset));
288 __ push(edx);
289 __ push(Immediate(Smi::FromInt(num_parameters)));
290 __ push(Immediate(Smi::FromInt(rest_index)));
291 __ push(Immediate(Smi::FromInt(language_mode())));
292
293 RestParamAccessStub stub(isolate());
294 __ CallStub(&stub);
295
296 SetVar(rest_param, eax, ebx, edx);
297 }
298
299 Variable* arguments = scope()->arguments();
300 if (arguments != NULL) {
301 // Function uses arguments object.
302 Comment cmnt(masm_, "[ Allocate arguments object");
303 if (function_in_register) {
304 __ push(edi);
305 } else {
306 __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
307 }
308 // Receiver is just before the parameters on the caller's stack.
309 int num_parameters = info->scope()->num_parameters();
310 int offset = num_parameters * kPointerSize;
311 __ lea(edx,
312 Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset));
313 __ push(edx);
314 __ push(Immediate(Smi::FromInt(num_parameters)));
315 // Arguments to ArgumentsAccessStub:
316 // function, receiver address, parameter count.
317 // The stub will rewrite receiver and parameter count if the previous
318 // stack frame was an arguments adapter frame.
319 ArgumentsAccessStub::Type type;
320 if (is_strict(language_mode()) || !is_simple_parameter_list()) {
321 type = ArgumentsAccessStub::NEW_STRICT;
322 } else if (function()->has_duplicate_parameters()) {
323 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
324 } else {
325 type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
326 }
327
328 ArgumentsAccessStub stub(isolate(), type);
329 __ CallStub(&stub);
330
331 SetVar(arguments, eax, ebx, edx);
332 }
333
334 if (FLAG_trace) {
335 __ CallRuntime(Runtime::kTraceEnter, 0);
336 }
337
338 // Visit the declarations and body unless there is an illegal
339 // redeclaration.
340 if (scope()->HasIllegalRedeclaration()) {
341 Comment cmnt(masm_, "[ Declarations");
342 scope()->VisitIllegalRedeclaration(this);
343
344 } else {
345 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
346 { Comment cmnt(masm_, "[ Declarations");
347 VisitDeclarations(scope()->declarations());
348 }
349
350 { Comment cmnt(masm_, "[ Stack check");
351 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
352 Label ok;
353 ExternalReference stack_limit
354 = ExternalReference::address_of_stack_limit(isolate());
355 __ cmp(esp, Operand::StaticVariable(stack_limit));
356 __ j(above_equal, &ok, Label::kNear);
357 __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
358 __ bind(&ok);
359 }
360
361 { Comment cmnt(masm_, "[ Body");
362 DCHECK(loop_depth() == 0);
363 VisitStatements(function()->body());
364 DCHECK(loop_depth() == 0);
365 }
366 }
367
368 // Always emit a 'return undefined' in case control fell off the end of
369 // the body.
370 { Comment cmnt(masm_, "[ return <undefined>;");
371 __ mov(eax, isolate()->factory()->undefined_value());
372 EmitReturnSequence();
373 }
374 }
375
376
377 void FullCodeGenerator::ClearAccumulator() {
378 __ Move(eax, Immediate(Smi::FromInt(0)));
379 }
380
381
382 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
383 __ mov(ebx, Immediate(profiling_counter_));
384 __ sub(FieldOperand(ebx, Cell::kValueOffset),
385 Immediate(Smi::FromInt(delta)));
386 }
387
388
389 void FullCodeGenerator::EmitProfilingCounterReset() {
390 int reset_value = FLAG_interrupt_budget;
391 __ mov(ebx, Immediate(profiling_counter_));
392 __ mov(FieldOperand(ebx, Cell::kValueOffset),
393 Immediate(Smi::FromInt(reset_value)));
394 }
395
396
397 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
398 Label* back_edge_target) {
399 Comment cmnt(masm_, "[ Back edge bookkeeping");
400 Label ok;
401
402 DCHECK(back_edge_target->is_bound());
403 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
404 int weight = Min(kMaxBackEdgeWeight,
405 Max(1, distance / kCodeSizeMultiplier));
406 EmitProfilingCounterDecrement(weight);
407 __ j(positive, &ok, Label::kNear);
408 __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
409
410 // Record a mapping of this PC offset to the OSR id. This is used to find
411 // the AST id from the unoptimized code in order to use it as a key into
412 // the deoptimization input data found in the optimized code.
413 RecordBackEdge(stmt->OsrEntryId());
414
415 EmitProfilingCounterReset();
416
417 __ bind(&ok);
418 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
419 // Record a mapping of the OSR id to this PC. This is used if the OSR
420 // entry becomes the target of a bailout. We don't expect it to be, but
421 // we want it to work if it is.
422 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
423 }
424
425
426 void FullCodeGenerator::EmitReturnSequence() {
427 Comment cmnt(masm_, "[ Return sequence");
428 if (return_label_.is_bound()) {
429 __ jmp(&return_label_);
430 } else {
431 // Common return label
432 __ bind(&return_label_);
433 if (FLAG_trace) {
434 __ push(eax);
435 __ CallRuntime(Runtime::kTraceExit, 1);
436 }
437 // Pretend that the exit is a backwards jump to the entry.
438 int weight = 1;
439 if (info_->ShouldSelfOptimize()) {
440 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
441 } else {
442 int distance = masm_->pc_offset();
443 weight = Min(kMaxBackEdgeWeight,
444 Max(1, distance / kCodeSizeMultiplier));
445 }
446 EmitProfilingCounterDecrement(weight);
447 Label ok;
448 __ j(positive, &ok, Label::kNear);
449 __ push(eax);
450 __ call(isolate()->builtins()->InterruptCheck(),
451 RelocInfo::CODE_TARGET);
452 __ pop(eax);
453 EmitProfilingCounterReset();
454 __ bind(&ok);
455
456 SetReturnPosition(function());
457 int no_frame_start = masm_->pc_offset();
458 __ leave();
459
460 int arg_count = info_->scope()->num_parameters() + 1;
461 int arguments_bytes = arg_count * kPointerSize;
462 __ Ret(arguments_bytes, ecx);
463 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
464 }
465 }
466
467
468 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
469 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
470 MemOperand operand = codegen()->VarOperand(var, result_register());
471 // Memory operands can be pushed directly.
472 __ push(operand);
473 }
474
475
476 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
477 UNREACHABLE(); // Not used on X87.
478 }
479
480
481 void FullCodeGenerator::AccumulatorValueContext::Plug(
482 Heap::RootListIndex index) const {
483 UNREACHABLE(); // Not used on X87.
484 }
485
486
487 void FullCodeGenerator::StackValueContext::Plug(
488 Heap::RootListIndex index) const {
489 UNREACHABLE(); // Not used on X87.
490 }
491
492
493 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
494 UNREACHABLE(); // Not used on X87.
495 }
496
497
498 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
499 }
500
501
502 void FullCodeGenerator::AccumulatorValueContext::Plug(
503 Handle<Object> lit) const {
504 if (lit->IsSmi()) {
505 __ SafeMove(result_register(), Immediate(lit));
506 } else {
507 __ Move(result_register(), Immediate(lit));
508 }
509 }
510
511
512 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
513 if (lit->IsSmi()) {
514 __ SafePush(Immediate(lit));
515 } else {
516 __ push(Immediate(lit));
517 }
518 }
519
520
521 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
522 codegen()->PrepareForBailoutBeforeSplit(condition(),
523 true,
524 true_label_,
525 false_label_);
526 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
527 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
528 if (false_label_ != fall_through_) __ jmp(false_label_);
529 } else if (lit->IsTrue() || lit->IsJSObject()) {
530 if (true_label_ != fall_through_) __ jmp(true_label_);
531 } else if (lit->IsString()) {
532 if (String::cast(*lit)->length() == 0) {
533 if (false_label_ != fall_through_) __ jmp(false_label_);
534 } else {
535 if (true_label_ != fall_through_) __ jmp(true_label_);
536 }
537 } else if (lit->IsSmi()) {
538 if (Smi::cast(*lit)->value() == 0) {
539 if (false_label_ != fall_through_) __ jmp(false_label_);
540 } else {
541 if (true_label_ != fall_through_) __ jmp(true_label_);
542 }
543 } else {
544 // For simplicity we always test the accumulator register.
545 __ mov(result_register(), lit);
546 codegen()->DoTest(this);
547 }
548 }
549
550
551 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
552 Register reg) const {
553 DCHECK(count > 0);
554 __ Drop(count);
555 }
556
557
558 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
559 int count,
560 Register reg) const {
561 DCHECK(count > 0);
562 __ Drop(count);
563 __ Move(result_register(), reg);
564 }
565
566
567 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
568 Register reg) const {
569 DCHECK(count > 0);
570 if (count > 1) __ Drop(count - 1);
571 __ mov(Operand(esp, 0), reg);
572 }
573
574
575 void FullCodeGenerator::TestContext::DropAndPlug(int count,
576 Register reg) const {
577 DCHECK(count > 0);
578 // For simplicity we always test the accumulator register.
579 __ Drop(count);
580 __ Move(result_register(), reg);
581 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
582 codegen()->DoTest(this);
583 }
584
585
586 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
587 Label* materialize_false) const {
588 DCHECK(materialize_true == materialize_false);
589 __ bind(materialize_true);
590 }
591
592
593 void FullCodeGenerator::AccumulatorValueContext::Plug(
594 Label* materialize_true,
595 Label* materialize_false) const {
596 Label done;
597 __ bind(materialize_true);
598 __ mov(result_register(), isolate()->factory()->true_value());
599 __ jmp(&done, Label::kNear);
600 __ bind(materialize_false);
601 __ mov(result_register(), isolate()->factory()->false_value());
602 __ bind(&done);
603 }
604
605
606 void FullCodeGenerator::StackValueContext::Plug(
607 Label* materialize_true,
608 Label* materialize_false) const {
609 Label done;
610 __ bind(materialize_true);
611 __ push(Immediate(isolate()->factory()->true_value()));
612 __ jmp(&done, Label::kNear);
613 __ bind(materialize_false);
614 __ push(Immediate(isolate()->factory()->false_value()));
615 __ bind(&done);
616 }
617
618
619 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
620 Label* materialize_false) const {
621 DCHECK(materialize_true == true_label_);
622 DCHECK(materialize_false == false_label_);
623 }
624
625
626 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
627 Handle<Object> value = flag
628 ? isolate()->factory()->true_value()
629 : isolate()->factory()->false_value();
630 __ mov(result_register(), value);
631 }
632
633
634 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
635 Handle<Object> value = flag
636 ? isolate()->factory()->true_value()
637 : isolate()->factory()->false_value();
638 __ push(Immediate(value));
639 }
640
641
642 void FullCodeGenerator::TestContext::Plug(bool flag) const {
643 codegen()->PrepareForBailoutBeforeSplit(condition(),
644 true,
645 true_label_,
646 false_label_);
647 if (flag) {
648 if (true_label_ != fall_through_) __ jmp(true_label_);
649 } else {
650 if (false_label_ != fall_through_) __ jmp(false_label_);
651 }
652 }
653
654
655 void FullCodeGenerator::DoTest(Expression* condition,
656 Label* if_true,
657 Label* if_false,
658 Label* fall_through) {
659 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
660 CallIC(ic, condition->test_id());
661 __ test(result_register(), result_register());
662 // The stub returns nonzero for true.
663 Split(not_zero, if_true, if_false, fall_through);
664 }
665
666
667 void FullCodeGenerator::Split(Condition cc,
668 Label* if_true,
669 Label* if_false,
670 Label* fall_through) {
671 if (if_false == fall_through) {
672 __ j(cc, if_true);
673 } else if (if_true == fall_through) {
674 __ j(NegateCondition(cc), if_false);
675 } else {
676 __ j(cc, if_true);
677 __ jmp(if_false);
678 }
679 }
680
681
682 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
683 DCHECK(var->IsStackAllocated());
684 // Offset is negative because higher indexes are at lower addresses.
685 int offset = -var->index() * kPointerSize;
686 // Adjust by a (parameter or local) base offset.
687 if (var->IsParameter()) {
688 offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
689 } else {
690 offset += JavaScriptFrameConstants::kLocal0Offset;
691 }
692 return Operand(ebp, offset);
693 }
694
695
696 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
697 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
698 if (var->IsContextSlot()) {
699 int context_chain_length = scope()->ContextChainLength(var->scope());
700 __ LoadContext(scratch, context_chain_length);
701 return ContextOperand(scratch, var->index());
702 } else {
703 return StackOperand(var);
704 }
705 }
706
707
708 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
709 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
710 MemOperand location = VarOperand(var, dest);
711 __ mov(dest, location);
712 }
713
714
715 void FullCodeGenerator::SetVar(Variable* var,
716 Register src,
717 Register scratch0,
718 Register scratch1) {
719 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
720 DCHECK(!scratch0.is(src));
721 DCHECK(!scratch0.is(scratch1));
722 DCHECK(!scratch1.is(src));
723 MemOperand location = VarOperand(var, scratch0);
724 __ mov(location, src);
725
726 // Emit the write barrier code if the location is in the heap.
727 if (var->IsContextSlot()) {
728 int offset = Context::SlotOffset(var->index());
729 DCHECK(!scratch0.is(esi) && !src.is(esi) && !scratch1.is(esi));
730 __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
731 }
732 }
733
734
735 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
736 bool should_normalize,
737 Label* if_true,
738 Label* if_false) {
739 // Only prepare for bailouts before splits if we're in a test
740 // context. Otherwise, we let the Visit function deal with the
741 // preparation to avoid preparing with the same AST id twice.
742 if (!context()->IsTest() || !info_->IsOptimizable()) return;
743
744 Label skip;
745 if (should_normalize) __ jmp(&skip, Label::kNear);
746 PrepareForBailout(expr, TOS_REG);
747 if (should_normalize) {
748 __ cmp(eax, isolate()->factory()->true_value());
749 Split(equal, if_true, if_false, NULL);
750 __ bind(&skip);
751 }
752 }
753
754
755 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
756 // The variable in the declaration always resides in the current context.
757 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
758 if (generate_debug_code_) {
759 // Check that we're not inside a with or catch context.
760 __ mov(ebx, FieldOperand(esi, HeapObject::kMapOffset));
761 __ cmp(ebx, isolate()->factory()->with_context_map());
762 __ Check(not_equal, kDeclarationInWithContext);
763 __ cmp(ebx, isolate()->factory()->catch_context_map());
764 __ Check(not_equal, kDeclarationInCatchContext);
765 }
766 }
767
768
769 void FullCodeGenerator::VisitVariableDeclaration(
770 VariableDeclaration* declaration) {
771 // If it was not possible to allocate the variable at compile time, we
772 // need to "declare" it at runtime to make sure it actually exists in the
773 // local context.
774 VariableProxy* proxy = declaration->proxy();
775 VariableMode mode = declaration->mode();
776 Variable* variable = proxy->var();
777 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
778 switch (variable->location()) {
779 case VariableLocation::GLOBAL:
780 case VariableLocation::UNALLOCATED:
781 globals_->Add(variable->name(), zone());
782 globals_->Add(variable->binding_needs_init()
783 ? isolate()->factory()->the_hole_value()
784 : isolate()->factory()->undefined_value(), zone());
785 break;
786
787 case VariableLocation::PARAMETER:
788 case VariableLocation::LOCAL:
789 if (hole_init) {
790 Comment cmnt(masm_, "[ VariableDeclaration");
791 __ mov(StackOperand(variable),
792 Immediate(isolate()->factory()->the_hole_value()));
793 }
794 break;
795
796 case VariableLocation::CONTEXT:
797 if (hole_init) {
798 Comment cmnt(masm_, "[ VariableDeclaration");
799 EmitDebugCheckDeclarationContext(variable);
800 __ mov(ContextOperand(esi, variable->index()),
801 Immediate(isolate()->factory()->the_hole_value()));
802 // No write barrier since the hole value is in old space.
803 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
804 }
805 break;
806
807 case VariableLocation::LOOKUP: {
808 Comment cmnt(masm_, "[ VariableDeclaration");
809 __ push(esi);
810 __ push(Immediate(variable->name()));
811 // VariableDeclaration nodes are always introduced in one of four modes.
812 DCHECK(IsDeclaredVariableMode(mode));
813 PropertyAttributes attr =
814 IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
815 __ push(Immediate(Smi::FromInt(attr)));
816 // Push initial value, if any.
817 // Note: For variables we must not push an initial value (such as
818 // 'undefined') because we may have a (legal) redeclaration and we
819 // must not destroy the current value.
820 if (hole_init) {
821 __ push(Immediate(isolate()->factory()->the_hole_value()));
822 } else {
823 __ push(Immediate(Smi::FromInt(0))); // Indicates no initial value.
824 }
825 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
826 break;
827 }
828 }
829 }
830
831
832 void FullCodeGenerator::VisitFunctionDeclaration(
833 FunctionDeclaration* declaration) {
834 VariableProxy* proxy = declaration->proxy();
835 Variable* variable = proxy->var();
836 switch (variable->location()) {
837 case VariableLocation::GLOBAL:
838 case VariableLocation::UNALLOCATED: {
839 globals_->Add(variable->name(), zone());
840 Handle<SharedFunctionInfo> function =
841 Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
842 // Check for stack-overflow exception.
843 if (function.is_null()) return SetStackOverflow();
844 globals_->Add(function, zone());
845 break;
846 }
847
848 case VariableLocation::PARAMETER:
849 case VariableLocation::LOCAL: {
850 Comment cmnt(masm_, "[ FunctionDeclaration");
851 VisitForAccumulatorValue(declaration->fun());
852 __ mov(StackOperand(variable), result_register());
853 break;
854 }
855
856 case VariableLocation::CONTEXT: {
857 Comment cmnt(masm_, "[ FunctionDeclaration");
858 EmitDebugCheckDeclarationContext(variable);
859 VisitForAccumulatorValue(declaration->fun());
860 __ mov(ContextOperand(esi, variable->index()), result_register());
861 // We know that we have written a function, which is not a smi.
862 __ RecordWriteContextSlot(esi, Context::SlotOffset(variable->index()),
863 result_register(), ecx, kDontSaveFPRegs,
864 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
865 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
866 break;
867 }
868
869 case VariableLocation::LOOKUP: {
870 Comment cmnt(masm_, "[ FunctionDeclaration");
871 __ push(esi);
872 __ push(Immediate(variable->name()));
873 __ push(Immediate(Smi::FromInt(NONE)));
874 VisitForStackValue(declaration->fun());
875 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
876 break;
877 }
878 }
879 }
880
881
882 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
883 // Call the runtime to declare the globals.
884 __ push(esi); // The context is the first argument.
885 __ Push(pairs);
886 __ Push(Smi::FromInt(DeclareGlobalsFlags()));
887 __ CallRuntime(Runtime::kDeclareGlobals, 3);
888 // Return value is ignored.
889 }
890
891
892 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
893 // Call the runtime to declare the modules.
894 __ Push(descriptions);
895 __ CallRuntime(Runtime::kDeclareModules, 1);
896 // Return value is ignored.
897 }
898
899
900 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
901 Comment cmnt(masm_, "[ SwitchStatement");
902 Breakable nested_statement(this, stmt);
903 SetStatementPosition(stmt);
904
905 // Keep the switch value on the stack until a case matches.
906 VisitForStackValue(stmt->tag());
907 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
908
909 ZoneList<CaseClause*>* clauses = stmt->cases();
910 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
911
912 Label next_test; // Recycled for each test.
913 // Compile all the tests with branches to their bodies.
914 for (int i = 0; i < clauses->length(); i++) {
915 CaseClause* clause = clauses->at(i);
916 clause->body_target()->Unuse();
917
918 // The default is not a test, but remember it as final fall through.
919 if (clause->is_default()) {
920 default_clause = clause;
921 continue;
922 }
923
924 Comment cmnt(masm_, "[ Case comparison");
925 __ bind(&next_test);
926 next_test.Unuse();
927
928 // Compile the label expression.
929 VisitForAccumulatorValue(clause->label());
930
931 // Perform the comparison as if via '==='.
932 __ mov(edx, Operand(esp, 0)); // Switch value.
933 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
934 JumpPatchSite patch_site(masm_);
935 if (inline_smi_code) {
936 Label slow_case;
937 __ mov(ecx, edx);
938 __ or_(ecx, eax);
939 patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
940
941 __ cmp(edx, eax);
942 __ j(not_equal, &next_test);
943 __ Drop(1); // Switch value is no longer needed.
944 __ jmp(clause->body_target());
945 __ bind(&slow_case);
946 }
947
948 SetExpressionPosition(clause);
949 Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
950 strength(language_mode())).code();
951 CallIC(ic, clause->CompareId());
952 patch_site.EmitPatchInfo();
953
954 Label skip;
955 __ jmp(&skip, Label::kNear);
956 PrepareForBailout(clause, TOS_REG);
957 __ cmp(eax, isolate()->factory()->true_value());
958 __ j(not_equal, &next_test);
959 __ Drop(1);
960 __ jmp(clause->body_target());
961 __ bind(&skip);
962
963 __ test(eax, eax);
964 __ j(not_equal, &next_test);
965 __ Drop(1); // Switch value is no longer needed.
966 __ jmp(clause->body_target());
967 }
968
969 // Discard the test value and jump to the default if present, otherwise to
970 // the end of the statement.
971 __ bind(&next_test);
972 __ Drop(1); // Switch value is no longer needed.
973 if (default_clause == NULL) {
974 __ jmp(nested_statement.break_label());
975 } else {
976 __ jmp(default_clause->body_target());
977 }
978
979 // Compile all the case bodies.
980 for (int i = 0; i < clauses->length(); i++) {
981 Comment cmnt(masm_, "[ Case body");
982 CaseClause* clause = clauses->at(i);
983 __ bind(clause->body_target());
984 PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
985 VisitStatements(clause->statements());
986 }
987
988 __ bind(nested_statement.break_label());
989 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
990 }
991
992
993 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
994 Comment cmnt(masm_, "[ ForInStatement");
995 SetStatementPosition(stmt, SKIP_BREAK);
996
997 FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
998
999 Label loop, exit;
1000 ForIn loop_statement(this, stmt);
1001 increment_loop_depth();
1002
1003 // Get the object to enumerate over. If the object is null or undefined, skip
1004 // over the loop. See ECMA-262 version 5, section 12.6.4.
1005 SetExpressionAsStatementPosition(stmt->enumerable());
1006 VisitForAccumulatorValue(stmt->enumerable());
1007 __ cmp(eax, isolate()->factory()->undefined_value());
1008 __ j(equal, &exit);
1009 __ cmp(eax, isolate()->factory()->null_value());
1010 __ j(equal, &exit);
1011
1012 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1013
1014 // Convert the object to a JS object.
1015 Label convert, done_convert;
1016 __ JumpIfSmi(eax, &convert, Label::kNear);
1017 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1018 __ j(above_equal, &done_convert, Label::kNear);
1019 __ bind(&convert);
1020 __ push(eax);
1021 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1022 __ bind(&done_convert);
1023 PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
1024 __ push(eax);
1025
1026 // Check for proxies.
1027 Label call_runtime, use_cache, fixed_array;
1028 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1029 __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
1030 __ j(below_equal, &call_runtime);
1031
1032 // Check cache validity in generated code. This is a fast case for
1033 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1034 // guarantee cache validity, call the runtime system to check cache
1035 // validity or get the property names in a fixed array.
1036 __ CheckEnumCache(&call_runtime);
1037
1038 __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
1039 __ jmp(&use_cache, Label::kNear);
1040
1041 // Get the set of properties to enumerate.
1042 __ bind(&call_runtime);
1043 __ push(eax);
1044 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1045 PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
1046 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
1047 isolate()->factory()->meta_map());
1048 __ j(not_equal, &fixed_array);
1049
1050
1051 // We got a map in register eax. Get the enumeration cache from it.
1052 Label no_descriptors;
1053 __ bind(&use_cache);
1054
1055 __ EnumLength(edx, eax);
1056 __ cmp(edx, Immediate(Smi::FromInt(0)));
1057 __ j(equal, &no_descriptors);
1058
1059 __ LoadInstanceDescriptors(eax, ecx);
1060 __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheOffset));
1061 __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
1062
1063 // Set up the four remaining stack slots.
1064 __ push(eax); // Map.
1065 __ push(ecx); // Enumeration cache.
1066 __ push(edx); // Number of valid entries for the map in the enum cache.
1067 __ push(Immediate(Smi::FromInt(0))); // Initial index.
1068 __ jmp(&loop);
1069
1070 __ bind(&no_descriptors);
1071 __ add(esp, Immediate(kPointerSize));
1072 __ jmp(&exit);
1073
1074 // We got a fixed array in register eax. Iterate through that.
1075 Label non_proxy;
1076 __ bind(&fixed_array);
1077
1078 // No need for a write barrier, we are storing a Smi in the feedback vector.
1079 __ LoadHeapObject(ebx, FeedbackVector());
1080 int vector_index = FeedbackVector()->GetIndex(slot);
1081 __ mov(FieldOperand(ebx, FixedArray::OffsetOfElementAt(vector_index)),
1082 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1083
1084 __ mov(ebx, Immediate(Smi::FromInt(1))); // Smi indicates slow check
1085 __ mov(ecx, Operand(esp, 0 * kPointerSize)); // Get enumerated object
1086 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1087 __ CmpObjectType(ecx, LAST_JS_PROXY_TYPE, ecx);
1088 __ j(above, &non_proxy);
1089 __ Move(ebx, Immediate(Smi::FromInt(0))); // Zero indicates proxy
1090 __ bind(&non_proxy);
1091 __ push(ebx); // Smi
1092 __ push(eax); // Array
1093 __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
1094 __ push(eax); // Fixed array length (as smi).
1095 __ push(Immediate(Smi::FromInt(0))); // Initial index.
1096
1097 // Generate code for doing the condition check.
1098 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1099 __ bind(&loop);
1100 SetExpressionAsStatementPosition(stmt->each());
1101
1102 __ mov(eax, Operand(esp, 0 * kPointerSize)); // Get the current index.
1103 __ cmp(eax, Operand(esp, 1 * kPointerSize)); // Compare to the array length.
1104 __ j(above_equal, loop_statement.break_label());
1105
1106 // Get the current entry of the array into register ebx.
1107 __ mov(ebx, Operand(esp, 2 * kPointerSize));
1108 __ mov(ebx, FieldOperand(ebx, eax, times_2, FixedArray::kHeaderSize));
1109
1110 // Get the expected map from the stack or a smi in the
1111 // permanent slow case into register edx.
1112 __ mov(edx, Operand(esp, 3 * kPointerSize));
1113
1114 // Check if the expected map still matches that of the enumerable.
1115 // If not, we may have to filter the key.
1116 Label update_each;
1117 __ mov(ecx, Operand(esp, 4 * kPointerSize));
1118 __ cmp(edx, FieldOperand(ecx, HeapObject::kMapOffset));
1119 __ j(equal, &update_each, Label::kNear);
1120
1121 // For proxies, no filtering is done.
1122 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1123 DCHECK(Smi::FromInt(0) == 0);
1124 __ test(edx, edx);
1125 __ j(zero, &update_each);
1126
1127 // Convert the entry to a string or null if it isn't a property
1128 // anymore. If the property has been removed while iterating, we
1129 // just skip it.
1130 __ push(ecx); // Enumerable.
1131 __ push(ebx); // Current entry.
1132 __ CallRuntime(Runtime::kForInFilter, 2);
1133 PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
1134 __ cmp(eax, isolate()->factory()->undefined_value());
1135 __ j(equal, loop_statement.continue_label());
1136 __ mov(ebx, eax);
1137
1138 // Update the 'each' property or variable from the possibly filtered
1139 // entry in register ebx.
1140 __ bind(&update_each);
1141 __ mov(result_register(), ebx);
1142 // Perform the assignment as if via '='.
1143 { EffectContext context(this);
1144 EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
1145 PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
1146 }
1147
1148 // Generate code for the body of the loop.
1149 Visit(stmt->body());
1150
1151 // Generate code for going to the next element by incrementing the
1152 // index (smi) stored on top of the stack.
1153 __ bind(loop_statement.continue_label());
1154 __ add(Operand(esp, 0 * kPointerSize), Immediate(Smi::FromInt(1)));
1155
1156 EmitBackEdgeBookkeeping(stmt, &loop);
1157 __ jmp(&loop);
1158
1159 // Remove the pointers stored on the stack.
1160 __ bind(loop_statement.break_label());
1161 __ add(esp, Immediate(5 * kPointerSize));
1162
1163 // Exit and decrement the loop depth.
1164 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1165 __ bind(&exit);
1166 decrement_loop_depth();
1167 }
1168
1169
1170 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1171 bool pretenure) {
1172 // Use the fast case closure allocation code that allocates in new
1173 // space for nested functions that don't need literals cloning. If
1174 // we're running with the --always-opt or the --prepare-always-opt
1175 // flag, we need to use the runtime function so that the new function
1176 // we are creating here gets a chance to have its code optimized and
1177 // doesn't just get a copy of the existing unoptimized code.
1178 if (!FLAG_always_opt &&
1179 !FLAG_prepare_always_opt &&
1180 !pretenure &&
1181 scope()->is_function_scope() &&
1182 info->num_literals() == 0) {
1183 FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
1184 __ mov(ebx, Immediate(info));
1185 __ CallStub(&stub);
1186 } else {
1187 __ push(esi);
1188 __ push(Immediate(info));
1189 __ push(Immediate(pretenure
1190 ? isolate()->factory()->true_value()
1191 : isolate()->factory()->false_value()));
1192 __ CallRuntime(Runtime::kNewClosure, 3);
1193 }
1194 context()->Plug(eax);
1195 }
1196
1197
1198 void FullCodeGenerator::EmitSetHomeObjectIfNeeded(Expression* initializer,
1199 int offset,
1200 FeedbackVectorICSlot slot) {
1201 if (NeedsHomeObject(initializer)) {
1202 __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
1203 __ mov(StoreDescriptor::NameRegister(),
1204 Immediate(isolate()->factory()->home_object_symbol()));
1205 __ mov(StoreDescriptor::ValueRegister(),
1206 Operand(esp, offset * kPointerSize));
1207 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
1208 CallStoreIC();
1209 }
1210 }
1211
1212
1213 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1214 TypeofMode typeof_mode,
1215 Label* slow) {
1216 Register context = esi;
1217 Register temp = edx;
1218
1219 Scope* s = scope();
1220 while (s != NULL) {
1221 if (s->num_heap_slots() > 0) {
1222 if (s->calls_sloppy_eval()) {
1223 // Check that extension is NULL.
1224 __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
1225 Immediate(0));
1226 __ j(not_equal, slow);
1227 }
1228 // Load next context in chain.
1229 __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1230 // Walk the rest of the chain without clobbering esi.
1231 context = temp;
1232 }
1233 // If no outer scope calls eval, we do not need to check more
1234 // context extensions. If we have reached an eval scope, we check
1235 // all extensions from this point.
1236 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1237 s = s->outer_scope();
1238 }
1239
1240 if (s != NULL && s->is_eval_scope()) {
1241 // Loop up the context chain. There is no frame effect so it is
1242 // safe to use raw labels here.
1243 Label next, fast;
1244 if (!context.is(temp)) {
1245 __ mov(temp, context);
1246 }
1247 __ bind(&next);
1248 // Terminate at native context.
1249 __ cmp(FieldOperand(temp, HeapObject::kMapOffset),
1250 Immediate(isolate()->factory()->native_context_map()));
1251 __ j(equal, &fast, Label::kNear);
1252 // Check that extension is NULL.
1253 __ cmp(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0));
1254 __ j(not_equal, slow);
1255 // Load next context in chain.
1256 __ mov(temp, ContextOperand(temp, Context::PREVIOUS_INDEX));
1257 __ jmp(&next);
1258 __ bind(&fast);
1259 }
1260
1261 // All extension objects were empty and it is safe to use a normal global
1262 // load machinery.
1263 EmitGlobalVariableLoad(proxy, typeof_mode);
1264 }
1265
1266
1267 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1268 Label* slow) {
1269 DCHECK(var->IsContextSlot());
1270 Register context = esi;
1271 Register temp = ebx;
1272
1273 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1274 if (s->num_heap_slots() > 0) {
1275 if (s->calls_sloppy_eval()) {
1276 // Check that extension is NULL.
1277 __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
1278 Immediate(0));
1279 __ j(not_equal, slow);
1280 }
1281 __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1282 // Walk the rest of the chain without clobbering esi.
1283 context = temp;
1284 }
1285 }
1286 // Check that last extension is NULL.
1287 __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
1288 __ j(not_equal, slow);
1289
1290 // This function is used only for loads, not stores, so it's safe to
1291 // return an esi-based operand (the write barrier cannot be allowed to
1292 // destroy the esi register).
1293 return ContextOperand(context, var->index());
1294 }
1295
1296
1297 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1298 TypeofMode typeof_mode,
1299 Label* slow, Label* done) {
1300 // Generate fast-case code for variables that might be shadowed by
1301 // eval-introduced variables. Eval is used a lot without
1302 // introducing variables. In those cases, we do not want to
1303 // perform a runtime call for all variables in the scope
1304 // containing the eval.
1305 Variable* var = proxy->var();
1306 if (var->mode() == DYNAMIC_GLOBAL) {
1307 EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
1308 __ jmp(done);
1309 } else if (var->mode() == DYNAMIC_LOCAL) {
1310 Variable* local = var->local_if_not_shadowed();
1311 __ mov(eax, ContextSlotOperandCheckExtensions(local, slow));
1312 if (local->mode() == LET || local->mode() == CONST ||
1313 local->mode() == CONST_LEGACY) {
1314 __ cmp(eax, isolate()->factory()->the_hole_value());
1315 __ j(not_equal, done);
1316 if (local->mode() == CONST_LEGACY) {
1317 __ mov(eax, isolate()->factory()->undefined_value());
1318 } else { // LET || CONST
1319 __ push(Immediate(var->name()));
1320 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1321 }
1322 }
1323 __ jmp(done);
1324 }
1325 }
1326
1327
1328 void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
1329 TypeofMode typeof_mode) {
1330 Variable* var = proxy->var();
1331 DCHECK(var->IsUnallocatedOrGlobalSlot() ||
1332 (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
1333 if (var->IsGlobalSlot()) {
1334 DCHECK(var->index() > 0);
1335 DCHECK(var->IsStaticGlobalObjectProperty());
1336 // Each var occupies two slots in the context: for reads and writes.
1337 int slot_index = var->index();
1338 int depth = scope()->ContextChainLength(var->scope());
1339 __ mov(LoadGlobalViaContextDescriptor::DepthRegister(),
1340 Immediate(Smi::FromInt(depth)));
1341 __ mov(LoadGlobalViaContextDescriptor::SlotRegister(),
1342 Immediate(Smi::FromInt(slot_index)));
1343 __ mov(LoadGlobalViaContextDescriptor::NameRegister(), var->name());
1344 LoadGlobalViaContextStub stub(isolate(), depth);
1345 __ CallStub(&stub);
1346
1347 } else {
1348 __ mov(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1349 __ mov(LoadDescriptor::NameRegister(), var->name());
1350 __ mov(LoadDescriptor::SlotRegister(),
1351 Immediate(SmiFromSlot(proxy->VariableFeedbackSlot())));
1352 CallLoadIC(typeof_mode);
1353 }
1354 }
1355
1356
1357 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
1358 TypeofMode typeof_mode) {
1359 SetExpressionPosition(proxy);
1360 PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
1361 Variable* var = proxy->var();
1362
1363 // Three cases: global variables, lookup variables, and all other types of
1364 // variables.
1365 switch (var->location()) {
1366 case VariableLocation::GLOBAL:
1367 case VariableLocation::UNALLOCATED: {
1368 Comment cmnt(masm_, "[ Global variable");
1369 EmitGlobalVariableLoad(proxy, typeof_mode);
1370 context()->Plug(eax);
1371 break;
1372 }
1373
1374 case VariableLocation::PARAMETER:
1375 case VariableLocation::LOCAL:
1376 case VariableLocation::CONTEXT: {
1377 DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
1378 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
1379 : "[ Stack variable");
1380 if (var->binding_needs_init()) {
1381 // var->scope() may be NULL when the proxy is located in eval code and
1382 // refers to a potential outside binding. Currently those bindings are
1383 // always looked up dynamically, i.e. in that case
1384 // var->location() == LOOKUP.
1385 // always holds.
1386 DCHECK(var->scope() != NULL);
1387
1388 // Check if the binding really needs an initialization check. The check
1389 // can be skipped in the following situation: we have a LET or CONST
1390 // binding in harmony mode, both the Variable and the VariableProxy have
1391 // the same declaration scope (i.e. they are both in global code, in the
1392 // same function or in the same eval code) and the VariableProxy is in
1393 // the source physically located after the initializer of the variable.
1394 //
1395 // We cannot skip any initialization checks for CONST in non-harmony
1396 // mode because const variables may be declared but never initialized:
1397 // if (false) { const x; }; var y = x;
1398 //
1399 // The condition on the declaration scopes is a conservative check for
1400 // nested functions that access a binding and are called before the
1401 // binding is initialized:
1402 // function() { f(); let x = 1; function f() { x = 2; } }
1403 //
1404 bool skip_init_check;
1405 if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1406 skip_init_check = false;
1407 } else if (var->is_this()) {
1408 CHECK(info_->function() != nullptr &&
1409 (info_->function()->kind() & kSubclassConstructor) != 0);
1410 // TODO(dslomov): implement 'this' hole check elimination.
1411 skip_init_check = false;
1412 } else {
1413 // Check that we always have valid source position.
1414 DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1415 DCHECK(proxy->position() != RelocInfo::kNoPosition);
1416 skip_init_check = var->mode() != CONST_LEGACY &&
1417 var->initializer_position() < proxy->position();
1418 }
1419
1420 if (!skip_init_check) {
1421 // Let and const need a read barrier.
1422 Label done;
1423 GetVar(eax, var);
1424 __ cmp(eax, isolate()->factory()->the_hole_value());
1425 __ j(not_equal, &done, Label::kNear);
1426 if (var->mode() == LET || var->mode() == CONST) {
1427 // Throw a reference error when using an uninitialized let/const
1428 // binding in harmony mode.
1429 __ push(Immediate(var->name()));
1430 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1431 } else {
1432 // Uninitalized const bindings outside of harmony mode are unholed.
1433 DCHECK(var->mode() == CONST_LEGACY);
1434 __ mov(eax, isolate()->factory()->undefined_value());
1435 }
1436 __ bind(&done);
1437 context()->Plug(eax);
1438 break;
1439 }
1440 }
1441 context()->Plug(var);
1442 break;
1443 }
1444
1445 case VariableLocation::LOOKUP: {
1446 Comment cmnt(masm_, "[ Lookup variable");
1447 Label done, slow;
1448 // Generate code for loading from variables potentially shadowed
1449 // by eval-introduced variables.
1450 EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
1451 __ bind(&slow);
1452 __ push(esi); // Context.
1453 __ push(Immediate(var->name()));
1454 Runtime::FunctionId function_id =
1455 typeof_mode == NOT_INSIDE_TYPEOF
1456 ? Runtime::kLoadLookupSlot
1457 : Runtime::kLoadLookupSlotNoReferenceError;
1458 __ CallRuntime(function_id, 2);
1459 __ bind(&done);
1460 context()->Plug(eax);
1461 break;
1462 }
1463 }
1464 }
1465
1466
1467 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1468 Comment cmnt(masm_, "[ RegExpLiteral");
1469 Label materialized;
1470 // Registers will be used as follows:
1471 // edi = JS function.
1472 // ecx = literals array.
1473 // ebx = regexp literal.
1474 // eax = regexp literal clone.
1475 __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1476 __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset));
1477 int literal_offset =
1478 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1479 __ mov(ebx, FieldOperand(ecx, literal_offset));
1480 __ cmp(ebx, isolate()->factory()->undefined_value());
1481 __ j(not_equal, &materialized, Label::kNear);
1482
1483 // Create regexp literal using runtime function
1484 // Result will be in eax.
1485 __ push(ecx);
1486 __ push(Immediate(Smi::FromInt(expr->literal_index())));
1487 __ push(Immediate(expr->pattern()));
1488 __ push(Immediate(expr->flags()));
1489 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1490 __ mov(ebx, eax);
1491
1492 __ bind(&materialized);
1493 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1494 Label allocated, runtime_allocate;
1495 __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
1496 __ jmp(&allocated);
1497
1498 __ bind(&runtime_allocate);
1499 __ push(ebx);
1500 __ push(Immediate(Smi::FromInt(size)));
1501 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1502 __ pop(ebx);
1503
1504 __ bind(&allocated);
1505 // Copy the content into the newly allocated memory.
1506 // (Unroll copy loop once for better throughput).
1507 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
1508 __ mov(edx, FieldOperand(ebx, i));
1509 __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
1510 __ mov(FieldOperand(eax, i), edx);
1511 __ mov(FieldOperand(eax, i + kPointerSize), ecx);
1512 }
1513 if ((size % (2 * kPointerSize)) != 0) {
1514 __ mov(edx, FieldOperand(ebx, size - kPointerSize));
1515 __ mov(FieldOperand(eax, size - kPointerSize), edx);
1516 }
1517 context()->Plug(eax);
1518 }
1519
1520
1521 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1522 if (expression == NULL) {
1523 __ push(Immediate(isolate()->factory()->null_value()));
1524 } else {
1525 VisitForStackValue(expression);
1526 }
1527 }
1528
1529
1530 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1531 Comment cmnt(masm_, "[ ObjectLiteral");
1532
1533 Handle<FixedArray> constant_properties = expr->constant_properties();
1534 int flags = expr->ComputeFlags();
1535 // If any of the keys would store to the elements array, then we shouldn't
1536 // allow it.
1537 if (MustCreateObjectLiteralWithRuntime(expr)) {
1538 __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1539 __ push(FieldOperand(edi, JSFunction::kLiteralsOffset));
1540 __ push(Immediate(Smi::FromInt(expr->literal_index())));
1541 __ push(Immediate(constant_properties));
1542 __ push(Immediate(Smi::FromInt(flags)));
1543 __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1544 } else {
1545 __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1546 __ mov(eax, FieldOperand(edi, JSFunction::kLiteralsOffset));
1547 __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
1548 __ mov(ecx, Immediate(constant_properties));
1549 __ mov(edx, Immediate(Smi::FromInt(flags)));
1550 FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
1551 __ CallStub(&stub);
1552 }
1553 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1554
1555 // If result_saved is true the result is on top of the stack. If
1556 // result_saved is false the result is in eax.
1557 bool result_saved = false;
1558
1559 AccessorTable accessor_table(zone());
1560 int property_index = 0;
1561 // store_slot_index points to the vector IC slot for the next store IC used.
1562 // ObjectLiteral::ComputeFeedbackRequirements controls the allocation of slots
1563 // and must be updated if the number of store ICs emitted here changes.
1564 int store_slot_index = 0;
1565 for (; property_index < expr->properties()->length(); property_index++) {
1566 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1567 if (property->is_computed_name()) break;
1568 if (property->IsCompileTimeValue()) continue;
1569
1570 Literal* key = property->key()->AsLiteral();
1571 Expression* value = property->value();
1572 if (!result_saved) {
1573 __ push(eax); // Save result on the stack
1574 result_saved = true;
1575 }
1576 switch (property->kind()) {
1577 case ObjectLiteral::Property::CONSTANT:
1578 UNREACHABLE();
1579 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1580 DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
1581 // Fall through.
1582 case ObjectLiteral::Property::COMPUTED:
1583 // It is safe to use [[Put]] here because the boilerplate already
1584 // contains computed properties with an uninitialized value.
1585 if (key->value()->IsInternalizedString()) {
1586 if (property->emit_store()) {
1587 VisitForAccumulatorValue(value);
1588 DCHECK(StoreDescriptor::ValueRegister().is(eax));
1589 __ mov(StoreDescriptor::NameRegister(), Immediate(key->value()));
1590 __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0));
1591 if (FLAG_vector_stores) {
1592 EmitLoadStoreICSlot(expr->GetNthSlot(store_slot_index++));
1593 CallStoreIC();
1594 } else {
1595 CallStoreIC(key->LiteralFeedbackId());
1596 }
1597 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1598
1599 if (NeedsHomeObject(value)) {
1600 __ mov(StoreDescriptor::ReceiverRegister(), eax);
1601 __ mov(StoreDescriptor::NameRegister(),
1602 Immediate(isolate()->factory()->home_object_symbol()));
1603 __ mov(StoreDescriptor::ValueRegister(), Operand(esp, 0));
1604 if (FLAG_vector_stores) {
1605 EmitLoadStoreICSlot(expr->GetNthSlot(store_slot_index++));
1606 }
1607 CallStoreIC();
1608 }
1609 } else {
1610 VisitForEffect(value);
1611 }
1612 break;
1613 }
1614 __ push(Operand(esp, 0)); // Duplicate receiver.
1615 VisitForStackValue(key);
1616 VisitForStackValue(value);
1617 if (property->emit_store()) {
1618 EmitSetHomeObjectIfNeeded(
1619 value, 2, expr->SlotForHomeObject(value, &store_slot_index));
1620 __ push(Immediate(Smi::FromInt(SLOPPY))); // Language mode
1621 __ CallRuntime(Runtime::kSetProperty, 4);
1622 } else {
1623 __ Drop(3);
1624 }
1625 break;
1626 case ObjectLiteral::Property::PROTOTYPE:
1627 __ push(Operand(esp, 0)); // Duplicate receiver.
1628 VisitForStackValue(value);
1629 DCHECK(property->emit_store());
1630 __ CallRuntime(Runtime::kInternalSetPrototype, 2);
1631 break;
1632 case ObjectLiteral::Property::GETTER:
1633 if (property->emit_store()) {
1634 accessor_table.lookup(key)->second->getter = value;
1635 }
1636 break;
1637 case ObjectLiteral::Property::SETTER:
1638 if (property->emit_store()) {
1639 accessor_table.lookup(key)->second->setter = value;
1640 }
1641 break;
1642 }
1643 }
1644
1645 // Emit code to define accessors, using only a single call to the runtime for
1646 // each pair of corresponding getters and setters.
1647 for (AccessorTable::Iterator it = accessor_table.begin();
1648 it != accessor_table.end();
1649 ++it) {
1650 __ push(Operand(esp, 0)); // Duplicate receiver.
1651 VisitForStackValue(it->first);
1652 EmitAccessor(it->second->getter);
1653 EmitSetHomeObjectIfNeeded(
1654 it->second->getter, 2,
1655 expr->SlotForHomeObject(it->second->getter, &store_slot_index));
1656
1657 EmitAccessor(it->second->setter);
1658 EmitSetHomeObjectIfNeeded(
1659 it->second->setter, 3,
1660 expr->SlotForHomeObject(it->second->setter, &store_slot_index));
1661
1662 __ push(Immediate(Smi::FromInt(NONE)));
1663 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1664 }
1665
1666 // Object literals have two parts. The "static" part on the left contains no
1667 // computed property names, and so we can compute its map ahead of time; see
1668 // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
1669 // starts with the first computed property name, and continues with all
1670 // properties to its right. All the code from above initializes the static
1671 // component of the object literal, and arranges for the map of the result to
1672 // reflect the static order in which the keys appear. For the dynamic
1673 // properties, we compile them into a series of "SetOwnProperty" runtime
1674 // calls. This will preserve insertion order.
1675 for (; property_index < expr->properties()->length(); property_index++) {
1676 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1677
1678 Expression* value = property->value();
1679 if (!result_saved) {
1680 __ push(eax); // Save result on the stack
1681 result_saved = true;
1682 }
1683
1684 __ push(Operand(esp, 0)); // Duplicate receiver.
1685
1686 if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
1687 DCHECK(!property->is_computed_name());
1688 VisitForStackValue(value);
1689 DCHECK(property->emit_store());
1690 __ CallRuntime(Runtime::kInternalSetPrototype, 2);
1691 } else {
1692 EmitPropertyKey(property, expr->GetIdForProperty(property_index));
1693 VisitForStackValue(value);
1694 EmitSetHomeObjectIfNeeded(
1695 value, 2, expr->SlotForHomeObject(value, &store_slot_index));
1696
1697 switch (property->kind()) {
1698 case ObjectLiteral::Property::CONSTANT:
1699 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1700 case ObjectLiteral::Property::COMPUTED:
1701 if (property->emit_store()) {
1702 __ push(Immediate(Smi::FromInt(NONE)));
1703 __ CallRuntime(Runtime::kDefineDataPropertyUnchecked, 4);
1704 } else {
1705 __ Drop(3);
1706 }
1707 break;
1708
1709 case ObjectLiteral::Property::PROTOTYPE:
1710 UNREACHABLE();
1711 break;
1712
1713 case ObjectLiteral::Property::GETTER:
1714 __ push(Immediate(Smi::FromInt(NONE)));
1715 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4);
1716 break;
1717
1718 case ObjectLiteral::Property::SETTER:
1719 __ push(Immediate(Smi::FromInt(NONE)));
1720 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4);
1721 break;
1722 }
1723 }
1724 }
1725
1726 if (expr->has_function()) {
1727 DCHECK(result_saved);
1728 __ push(Operand(esp, 0));
1729 __ CallRuntime(Runtime::kToFastProperties, 1);
1730 }
1731
1732 if (result_saved) {
1733 context()->PlugTOS();
1734 } else {
1735 context()->Plug(eax);
1736 }
1737
1738 // Verify that compilation exactly consumed the number of store ic slots that
1739 // the ObjectLiteral node had to offer.
1740 DCHECK(!FLAG_vector_stores || store_slot_index == expr->slot_count());
1741 }
1742
1743
1744 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1745 Comment cmnt(masm_, "[ ArrayLiteral");
1746
1747 expr->BuildConstantElements(isolate());
1748 Handle<FixedArray> constant_elements = expr->constant_elements();
1749 bool has_constant_fast_elements =
1750 IsFastObjectElementsKind(expr->constant_elements_kind());
1751
1752 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1753 if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) {
1754 // If the only customer of allocation sites is transitioning, then
1755 // we can turn it off if we don't have anywhere else to transition to.
1756 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1757 }
1758
1759 if (MustCreateArrayLiteralWithRuntime(expr)) {
1760 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1761 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
1762 __ push(Immediate(Smi::FromInt(expr->literal_index())));
1763 __ push(Immediate(constant_elements));
1764 __ push(Immediate(Smi::FromInt(expr->ComputeFlags())));
1765 __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1766 } else {
1767 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1768 __ mov(eax, FieldOperand(ebx, JSFunction::kLiteralsOffset));
1769 __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index())));
1770 __ mov(ecx, Immediate(constant_elements));
1771 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1772 __ CallStub(&stub);
1773 }
1774 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1775
1776 bool result_saved = false; // Is the result saved to the stack?
1777 ZoneList<Expression*>* subexprs = expr->values();
1778 int length = subexprs->length();
1779
1780 // Emit code to evaluate all the non-constant subexpressions and to store
1781 // them into the newly cloned array.
1782 int array_index = 0;
1783 for (; array_index < length; array_index++) {
1784 Expression* subexpr = subexprs->at(array_index);
1785 if (subexpr->IsSpread()) break;
1786
1787 // If the subexpression is a literal or a simple materialized literal it
1788 // is already set in the cloned array.
1789 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1790
1791 if (!result_saved) {
1792 __ push(eax); // array literal.
1793 __ push(Immediate(Smi::FromInt(expr->literal_index())));
1794 result_saved = true;
1795 }
1796 VisitForAccumulatorValue(subexpr);
1797
1798 if (has_constant_fast_elements) {
1799 // Fast-case array literal with ElementsKind of FAST_*_ELEMENTS, they
1800 // cannot transition and don't need to call the runtime stub.
1801 int offset = FixedArray::kHeaderSize + (array_index * kPointerSize);
1802 __ mov(ebx, Operand(esp, kPointerSize)); // Copy of array literal.
1803 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
1804 // Store the subexpression value in the array's elements.
1805 __ mov(FieldOperand(ebx, offset), result_register());
1806 // Update the write barrier for the array store.
1807 __ RecordWriteField(ebx, offset, result_register(), ecx, kDontSaveFPRegs,
1808 EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
1809 } else {
1810 // Store the subexpression value in the array's elements.
1811 __ mov(ecx, Immediate(Smi::FromInt(array_index)));
1812 StoreArrayLiteralElementStub stub(isolate());
1813 __ CallStub(&stub);
1814 }
1815
1816 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1817 }
1818
1819 // In case the array literal contains spread expressions it has two parts. The
1820 // first part is the "static" array which has a literal index is handled
1821 // above. The second part is the part after the first spread expression
1822 // (inclusive) and these elements gets appended to the array. Note that the
1823 // number elements an iterable produces is unknown ahead of time.
1824 if (array_index < length && result_saved) {
1825 __ Drop(1); // literal index
1826 __ Pop(eax);
1827 result_saved = false;
1828 }
1829 for (; array_index < length; array_index++) {
1830 Expression* subexpr = subexprs->at(array_index);
1831
1832 __ Push(eax);
1833 if (subexpr->IsSpread()) {
1834 VisitForStackValue(subexpr->AsSpread()->expression());
1835 __ InvokeBuiltin(Builtins::CONCAT_ITERABLE_TO_ARRAY, CALL_FUNCTION);
1836 } else {
1837 VisitForStackValue(subexpr);
1838 __ CallRuntime(Runtime::kAppendElement, 2);
1839 }
1840
1841 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1842 }
1843
1844 if (result_saved) {
1845 __ Drop(1); // literal index
1846 context()->PlugTOS();
1847 } else {
1848 context()->Plug(eax);
1849 }
1850 }
1851
1852
1853 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1854 DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
1855
1856 Comment cmnt(masm_, "[ Assignment");
1857 SetExpressionPosition(expr, INSERT_BREAK);
1858
1859 Property* property = expr->target()->AsProperty();
1860 LhsKind assign_type = Property::GetAssignType(property);
1861
1862 // Evaluate LHS expression.
1863 switch (assign_type) {
1864 case VARIABLE:
1865 // Nothing to do here.
1866 break;
1867 case NAMED_SUPER_PROPERTY:
1868 VisitForStackValue(
1869 property->obj()->AsSuperPropertyReference()->this_var());
1870 VisitForAccumulatorValue(
1871 property->obj()->AsSuperPropertyReference()->home_object());
1872 __ push(result_register());
1873 if (expr->is_compound()) {
1874 __ push(MemOperand(esp, kPointerSize));
1875 __ push(result_register());
1876 }
1877 break;
1878 case NAMED_PROPERTY:
1879 if (expr->is_compound()) {
1880 // We need the receiver both on the stack and in the register.
1881 VisitForStackValue(property->obj());
1882 __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
1883 } else {
1884 VisitForStackValue(property->obj());
1885 }
1886 break;
1887 case KEYED_SUPER_PROPERTY:
1888 VisitForStackValue(
1889 property->obj()->AsSuperPropertyReference()->this_var());
1890 VisitForStackValue(
1891 property->obj()->AsSuperPropertyReference()->home_object());
1892 VisitForAccumulatorValue(property->key());
1893 __ Push(result_register());
1894 if (expr->is_compound()) {
1895 __ push(MemOperand(esp, 2 * kPointerSize));
1896 __ push(MemOperand(esp, 2 * kPointerSize));
1897 __ push(result_register());
1898 }
1899 break;
1900 case KEYED_PROPERTY: {
1901 if (expr->is_compound()) {
1902 VisitForStackValue(property->obj());
1903 VisitForStackValue(property->key());
1904 __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, kPointerSize));
1905 __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0));
1906 } else {
1907 VisitForStackValue(property->obj());
1908 VisitForStackValue(property->key());
1909 }
1910 break;
1911 }
1912 }
1913
1914 // For compound assignments we need another deoptimization point after the
1915 // variable/property load.
1916 if (expr->is_compound()) {
1917 AccumulatorValueContext result_context(this);
1918 { AccumulatorValueContext left_operand_context(this);
1919 switch (assign_type) {
1920 case VARIABLE:
1921 EmitVariableLoad(expr->target()->AsVariableProxy());
1922 PrepareForBailout(expr->target(), TOS_REG);
1923 break;
1924 case NAMED_SUPER_PROPERTY:
1925 EmitNamedSuperPropertyLoad(property);
1926 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1927 break;
1928 case NAMED_PROPERTY:
1929 EmitNamedPropertyLoad(property);
1930 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1931 break;
1932 case KEYED_SUPER_PROPERTY:
1933 EmitKeyedSuperPropertyLoad(property);
1934 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1935 break;
1936 case KEYED_PROPERTY:
1937 EmitKeyedPropertyLoad(property);
1938 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1939 break;
1940 }
1941 }
1942
1943 Token::Value op = expr->binary_op();
1944 __ push(eax); // Left operand goes on the stack.
1945 VisitForAccumulatorValue(expr->value());
1946
1947 if (ShouldInlineSmiCase(op)) {
1948 EmitInlineSmiBinaryOp(expr->binary_operation(),
1949 op,
1950 expr->target(),
1951 expr->value());
1952 } else {
1953 EmitBinaryOp(expr->binary_operation(), op);
1954 }
1955
1956 // Deoptimization point in case the binary operation may have side effects.
1957 PrepareForBailout(expr->binary_operation(), TOS_REG);
1958 } else {
1959 VisitForAccumulatorValue(expr->value());
1960 }
1961
1962 SetExpressionPosition(expr);
1963
1964 // Store the value.
1965 switch (assign_type) {
1966 case VARIABLE:
1967 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1968 expr->op(), expr->AssignmentSlot());
1969 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1970 context()->Plug(eax);
1971 break;
1972 case NAMED_PROPERTY:
1973 EmitNamedPropertyAssignment(expr);
1974 break;
1975 case NAMED_SUPER_PROPERTY:
1976 EmitNamedSuperPropertyStore(property);
1977 context()->Plug(result_register());
1978 break;
1979 case KEYED_SUPER_PROPERTY:
1980 EmitKeyedSuperPropertyStore(property);
1981 context()->Plug(result_register());
1982 break;
1983 case KEYED_PROPERTY:
1984 EmitKeyedPropertyAssignment(expr);
1985 break;
1986 }
1987 }
1988
1989
1990 void FullCodeGenerator::VisitYield(Yield* expr) {
1991 Comment cmnt(masm_, "[ Yield");
1992 SetExpressionPosition(expr);
1993
1994 // Evaluate yielded value first; the initial iterator definition depends on
1995 // this. It stays on the stack while we update the iterator.
1996 VisitForStackValue(expr->expression());
1997
1998 switch (expr->yield_kind()) {
1999 case Yield::kSuspend:
2000 // Pop value from top-of-stack slot; box result into result register.
2001 EmitCreateIteratorResult(false);
2002 __ push(result_register());
2003 // Fall through.
2004 case Yield::kInitial: {
2005 Label suspend, continuation, post_runtime, resume;
2006
2007 __ jmp(&suspend);
2008 __ bind(&continuation);
2009 __ RecordGeneratorContinuation();
2010 __ jmp(&resume);
2011
2012 __ bind(&suspend);
2013 VisitForAccumulatorValue(expr->generator_object());
2014 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
2015 __ mov(FieldOperand(eax, JSGeneratorObject::kContinuationOffset),
2016 Immediate(Smi::FromInt(continuation.pos())));
2017 __ mov(FieldOperand(eax, JSGeneratorObject::kContextOffset), esi);
2018 __ mov(ecx, esi);
2019 __ RecordWriteField(eax, JSGeneratorObject::kContextOffset, ecx, edx,
2020 kDontSaveFPRegs);
2021 __ lea(ebx, Operand(ebp, StandardFrameConstants::kExpressionsOffset));
2022 __ cmp(esp, ebx);
2023 __ j(equal, &post_runtime);
2024 __ push(eax); // generator object
2025 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2026 __ mov(context_register(),
2027 Operand(ebp, StandardFrameConstants::kContextOffset));
2028 __ bind(&post_runtime);
2029 __ pop(result_register());
2030 EmitReturnSequence();
2031
2032 __ bind(&resume);
2033 context()->Plug(result_register());
2034 break;
2035 }
2036
2037 case Yield::kFinal: {
2038 VisitForAccumulatorValue(expr->generator_object());
2039 __ mov(FieldOperand(result_register(),
2040 JSGeneratorObject::kContinuationOffset),
2041 Immediate(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
2042 // Pop value from top-of-stack slot, box result into result register.
2043 EmitCreateIteratorResult(true);
2044 EmitUnwindBeforeReturn();
2045 EmitReturnSequence();
2046 break;
2047 }
2048
2049 case Yield::kDelegating: {
2050 VisitForStackValue(expr->generator_object());
2051
2052 // Initial stack layout is as follows:
2053 // [sp + 1 * kPointerSize] iter
2054 // [sp + 0 * kPointerSize] g
2055
2056 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
2057 Label l_next, l_call, l_loop;
2058 Register load_receiver = LoadDescriptor::ReceiverRegister();
2059 Register load_name = LoadDescriptor::NameRegister();
2060
2061 // Initial send value is undefined.
2062 __ mov(eax, isolate()->factory()->undefined_value());
2063 __ jmp(&l_next);
2064
2065 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
2066 __ bind(&l_catch);
2067 __ mov(load_name, isolate()->factory()->throw_string()); // "throw"
2068 __ push(load_name); // "throw"
2069 __ push(Operand(esp, 2 * kPointerSize)); // iter
2070 __ push(eax); // exception
2071 __ jmp(&l_call);
2072
2073 // try { received = %yield result }
2074 // Shuffle the received result above a try handler and yield it without
2075 // re-boxing.
2076 __ bind(&l_try);
2077 __ pop(eax); // result
2078 int handler_index = NewHandlerTableEntry();
2079 EnterTryBlock(handler_index, &l_catch);
2080 const int try_block_size = TryCatch::kElementCount * kPointerSize;
2081 __ push(eax); // result
2082
2083 __ jmp(&l_suspend);
2084 __ bind(&l_continuation);
2085 __ RecordGeneratorContinuation();
2086 __ jmp(&l_resume);
2087
2088 __ bind(&l_suspend);
2089 const int generator_object_depth = kPointerSize + try_block_size;
2090 __ mov(eax, Operand(esp, generator_object_depth));
2091 __ push(eax); // g
2092 __ push(Immediate(Smi::FromInt(handler_index))); // handler-index
2093 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
2094 __ mov(FieldOperand(eax, JSGeneratorObject::kContinuationOffset),
2095 Immediate(Smi::FromInt(l_continuation.pos())));
2096 __ mov(FieldOperand(eax, JSGeneratorObject::kContextOffset), esi);
2097 __ mov(ecx, esi);
2098 __ RecordWriteField(eax, JSGeneratorObject::kContextOffset, ecx, edx,
2099 kDontSaveFPRegs);
2100 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
2101 __ mov(context_register(),
2102 Operand(ebp, StandardFrameConstants::kContextOffset));
2103 __ pop(eax); // result
2104 EmitReturnSequence();
2105 __ bind(&l_resume); // received in eax
2106 ExitTryBlock(handler_index);
2107
2108 // receiver = iter; f = iter.next; arg = received;
2109 __ bind(&l_next);
2110
2111 __ mov(load_name, isolate()->factory()->next_string());
2112 __ push(load_name); // "next"
2113 __ push(Operand(esp, 2 * kPointerSize)); // iter
2114 __ push(eax); // received
2115
2116 // result = receiver[f](arg);
2117 __ bind(&l_call);
2118 __ mov(load_receiver, Operand(esp, kPointerSize));
2119 __ mov(LoadDescriptor::SlotRegister(),
2120 Immediate(SmiFromSlot(expr->KeyedLoadFeedbackSlot())));
2121 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
2122 CallIC(ic, TypeFeedbackId::None());
2123 __ mov(edi, eax);
2124 __ mov(Operand(esp, 2 * kPointerSize), edi);
2125 SetCallPosition(expr, 1);
2126 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
2127 __ CallStub(&stub);
2128
2129 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2130 __ Drop(1); // The function is still on the stack; drop it.
2131
2132 // if (!result.done) goto l_try;
2133 __ bind(&l_loop);
2134 __ push(eax); // save result
2135 __ Move(load_receiver, eax); // result
2136 __ mov(load_name,
2137 isolate()->factory()->done_string()); // "done"
2138 __ mov(LoadDescriptor::SlotRegister(),
2139 Immediate(SmiFromSlot(expr->DoneFeedbackSlot())));
2140 CallLoadIC(NOT_INSIDE_TYPEOF); // result.done in eax
2141 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2142 CallIC(bool_ic);
2143 __ test(eax, eax);
2144 __ j(zero, &l_try);
2145
2146 // result.value
2147 __ pop(load_receiver); // result
2148 __ mov(load_name,
2149 isolate()->factory()->value_string()); // "value"
2150 __ mov(LoadDescriptor::SlotRegister(),
2151 Immediate(SmiFromSlot(expr->ValueFeedbackSlot())));
2152 CallLoadIC(NOT_INSIDE_TYPEOF); // result.value in eax
2153 context()->DropAndPlug(2, eax); // drop iter and g
2154 break;
2155 }
2156 }
2157 }
2158
2159
2160 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
2161 Expression *value,
2162 JSGeneratorObject::ResumeMode resume_mode) {
2163 // The value stays in eax, and is ultimately read by the resumed generator, as
2164 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2165 // is read to throw the value when the resumed generator is already closed.
2166 // ebx will hold the generator object until the activation has been resumed.
2167 VisitForStackValue(generator);
2168 VisitForAccumulatorValue(value);
2169 __ pop(ebx);
2170
2171 // Load suspended function and context.
2172 __ mov(esi, FieldOperand(ebx, JSGeneratorObject::kContextOffset));
2173 __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
2174
2175 // Push receiver.
2176 __ push(FieldOperand(ebx, JSGeneratorObject::kReceiverOffset));
2177
2178 // Push holes for arguments to generator function.
2179 __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2180 __ mov(edx,
2181 FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2182 __ mov(ecx, isolate()->factory()->the_hole_value());
2183 Label push_argument_holes, push_frame;
2184 __ bind(&push_argument_holes);
2185 __ sub(edx, Immediate(Smi::FromInt(1)));
2186 __ j(carry, &push_frame);
2187 __ push(ecx);
2188 __ jmp(&push_argument_holes);
2189
2190 // Enter a new JavaScript frame, and initialize its slots as they were when
2191 // the generator was suspended.
2192 Label resume_frame, done;
2193 __ bind(&push_frame);
2194 __ call(&resume_frame);
2195 __ jmp(&done);
2196 __ bind(&resume_frame);
2197 __ push(ebp); // Caller's frame pointer.
2198 __ mov(ebp, esp);
2199 __ push(esi); // Callee's context.
2200 __ push(edi); // Callee's JS Function.
2201
2202 // Load the operand stack size.
2203 __ mov(edx, FieldOperand(ebx, JSGeneratorObject::kOperandStackOffset));
2204 __ mov(edx, FieldOperand(edx, FixedArray::kLengthOffset));
2205 __ SmiUntag(edx);
2206
2207 // If we are sending a value and there is no operand stack, we can jump back
2208 // in directly.
2209 if (resume_mode == JSGeneratorObject::NEXT) {
2210 Label slow_resume;
2211 __ cmp(edx, Immediate(0));
2212 __ j(not_zero, &slow_resume);
2213 __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2214 __ mov(ecx, FieldOperand(ebx, JSGeneratorObject::kContinuationOffset));
2215 __ SmiUntag(ecx);
2216 __ add(edx, ecx);
2217 __ mov(FieldOperand(ebx, JSGeneratorObject::kContinuationOffset),
2218 Immediate(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
2219 __ jmp(edx);
2220 __ bind(&slow_resume);
2221 }
2222
2223 // Otherwise, we push holes for the operand stack and call the runtime to fix
2224 // up the stack and the handlers.
2225 Label push_operand_holes, call_resume;
2226 __ bind(&push_operand_holes);
2227 __ sub(edx, Immediate(1));
2228 __ j(carry, &call_resume);
2229 __ push(ecx);
2230 __ jmp(&push_operand_holes);
2231 __ bind(&call_resume);
2232 __ push(ebx);
2233 __ push(result_register());
2234 __ Push(Smi::FromInt(resume_mode));
2235 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
2236 // Not reached: the runtime call returns elsewhere.
2237 __ Abort(kGeneratorFailedToResume);
2238
2239 __ bind(&done);
2240 context()->Plug(result_register());
2241 }
2242
2243
2244 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2245 Label gc_required;
2246 Label allocated;
2247
2248 const int instance_size = 5 * kPointerSize;
2249 DCHECK_EQ(isolate()->native_context()->iterator_result_map()->instance_size(),
2250 instance_size);
2251
2252 __ Allocate(instance_size, eax, ecx, edx, &gc_required, TAG_OBJECT);
2253 __ jmp(&allocated);
2254
2255 __ bind(&gc_required);
2256 __ Push(Smi::FromInt(instance_size));
2257 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
2258 __ mov(context_register(),
2259 Operand(ebp, StandardFrameConstants::kContextOffset));
2260
2261 __ bind(&allocated);
2262 __ mov(ebx, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2263 __ mov(ebx, FieldOperand(ebx, GlobalObject::kNativeContextOffset));
2264 __ mov(ebx, ContextOperand(ebx, Context::ITERATOR_RESULT_MAP_INDEX));
2265 __ pop(ecx);
2266 __ mov(edx, isolate()->factory()->ToBoolean(done));
2267 __ mov(FieldOperand(eax, HeapObject::kMapOffset), ebx);
2268 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
2269 isolate()->factory()->empty_fixed_array());
2270 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
2271 isolate()->factory()->empty_fixed_array());
2272 __ mov(FieldOperand(eax, JSGeneratorObject::kResultValuePropertyOffset), ecx);
2273 __ mov(FieldOperand(eax, JSGeneratorObject::kResultDonePropertyOffset), edx);
2274
2275 // Only the value field needs a write barrier, as the other values are in the
2276 // root set.
2277 __ RecordWriteField(eax, JSGeneratorObject::kResultValuePropertyOffset, ecx,
2278 edx, kDontSaveFPRegs);
2279 }
2280
2281
2282 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2283 SetExpressionPosition(prop);
2284 Literal* key = prop->key()->AsLiteral();
2285 DCHECK(!key->value()->IsSmi());
2286 DCHECK(!prop->IsSuperAccess());
2287
2288 __ mov(LoadDescriptor::NameRegister(), Immediate(key->value()));
2289 __ mov(LoadDescriptor::SlotRegister(),
2290 Immediate(SmiFromSlot(prop->PropertyFeedbackSlot())));
2291 CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
2292 }
2293
2294
2295 void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
2296 // Stack: receiver, home_object.
2297 SetExpressionPosition(prop);
2298 Literal* key = prop->key()->AsLiteral();
2299 DCHECK(!key->value()->IsSmi());
2300 DCHECK(prop->IsSuperAccess());
2301
2302 __ push(Immediate(key->value()));
2303 __ push(Immediate(Smi::FromInt(language_mode())));
2304 __ CallRuntime(Runtime::kLoadFromSuper, 4);
2305 }
2306
2307
2308 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2309 SetExpressionPosition(prop);
2310 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
2311 __ mov(LoadDescriptor::SlotRegister(),
2312 Immediate(SmiFromSlot(prop->PropertyFeedbackSlot())));
2313 CallIC(ic);
2314 }
2315
2316
2317 void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
2318 // Stack: receiver, home_object, key.
2319 SetExpressionPosition(prop);
2320 __ push(Immediate(Smi::FromInt(language_mode())));
2321 __ CallRuntime(Runtime::kLoadKeyedFromSuper, 4);
2322 }
2323
2324
2325 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2326 Token::Value op,
2327 Expression* left,
2328 Expression* right) {
2329 // Do combined smi check of the operands. Left operand is on the
2330 // stack. Right operand is in eax.
2331 Label smi_case, done, stub_call;
2332 __ pop(edx);
2333 __ mov(ecx, eax);
2334 __ or_(eax, edx);
2335 JumpPatchSite patch_site(masm_);
2336 patch_site.EmitJumpIfSmi(eax, &smi_case, Label::kNear);
2337
2338 __ bind(&stub_call);
2339 __ mov(eax, ecx);
2340 Handle<Code> code =
2341 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2342 CallIC(code, expr->BinaryOperationFeedbackId());
2343 patch_site.EmitPatchInfo();
2344 __ jmp(&done, Label::kNear);
2345
2346 // Smi case.
2347 __ bind(&smi_case);
2348 __ mov(eax, edx); // Copy left operand in case of a stub call.
2349
2350 switch (op) {
2351 case Token::SAR:
2352 __ SmiUntag(ecx);
2353 __ sar_cl(eax); // No checks of result necessary
2354 __ and_(eax, Immediate(~kSmiTagMask));
2355 break;
2356 case Token::SHL: {
2357 Label result_ok;
2358 __ SmiUntag(eax);
2359 __ SmiUntag(ecx);
2360 __ shl_cl(eax);
2361 // Check that the *signed* result fits in a smi.
2362 __ cmp(eax, 0xc0000000);
2363 __ j(positive, &result_ok);
2364 __ SmiTag(ecx);
2365 __ jmp(&stub_call);
2366 __ bind(&result_ok);
2367 __ SmiTag(eax);
2368 break;
2369 }
2370 case Token::SHR: {
2371 Label result_ok;
2372 __ SmiUntag(eax);
2373 __ SmiUntag(ecx);
2374 __ shr_cl(eax);
2375 __ test(eax, Immediate(0xc0000000));
2376 __ j(zero, &result_ok);
2377 __ SmiTag(ecx);
2378 __ jmp(&stub_call);
2379 __ bind(&result_ok);
2380 __ SmiTag(eax);
2381 break;
2382 }
2383 case Token::ADD:
2384 __ add(eax, ecx);
2385 __ j(overflow, &stub_call);
2386 break;
2387 case Token::SUB:
2388 __ sub(eax, ecx);
2389 __ j(overflow, &stub_call);
2390 break;
2391 case Token::MUL: {
2392 __ SmiUntag(eax);
2393 __ imul(eax, ecx);
2394 __ j(overflow, &stub_call);
2395 __ test(eax, eax);
2396 __ j(not_zero, &done, Label::kNear);
2397 __ mov(ebx, edx);
2398 __ or_(ebx, ecx);
2399 __ j(negative, &stub_call);
2400 break;
2401 }
2402 case Token::BIT_OR:
2403 __ or_(eax, ecx);
2404 break;
2405 case Token::BIT_AND:
2406 __ and_(eax, ecx);
2407 break;
2408 case Token::BIT_XOR:
2409 __ xor_(eax, ecx);
2410 break;
2411 default:
2412 UNREACHABLE();
2413 }
2414
2415 __ bind(&done);
2416 context()->Plug(eax);
2417 }
2418
2419
2420 void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit,
2421 int* used_store_slots) {
2422 // Constructor is in eax.
2423 DCHECK(lit != NULL);
2424 __ push(eax);
2425
2426 // No access check is needed here since the constructor is created by the
2427 // class literal.
2428 Register scratch = ebx;
2429 __ mov(scratch, FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset));
2430 __ Push(scratch);
2431
2432 for (int i = 0; i < lit->properties()->length(); i++) {
2433 ObjectLiteral::Property* property = lit->properties()->at(i);
2434 Expression* value = property->value();
2435
2436 if (property->is_static()) {
2437 __ push(Operand(esp, kPointerSize)); // constructor
2438 } else {
2439 __ push(Operand(esp, 0)); // prototype
2440 }
2441 EmitPropertyKey(property, lit->GetIdForProperty(i));
2442
2443 // The static prototype property is read only. We handle the non computed
2444 // property name case in the parser. Since this is the only case where we
2445 // need to check for an own read only property we special case this so we do
2446 // not need to do this for every property.
2447 if (property->is_static() && property->is_computed_name()) {
2448 __ CallRuntime(Runtime::kThrowIfStaticPrototype, 1);
2449 __ push(eax);
2450 }
2451
2452 VisitForStackValue(value);
2453 EmitSetHomeObjectIfNeeded(value, 2,
2454 lit->SlotForHomeObject(value, used_store_slots));
2455
2456 switch (property->kind()) {
2457 case ObjectLiteral::Property::CONSTANT:
2458 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
2459 case ObjectLiteral::Property::PROTOTYPE:
2460 UNREACHABLE();
2461 case ObjectLiteral::Property::COMPUTED:
2462 __ CallRuntime(Runtime::kDefineClassMethod, 3);
2463 break;
2464
2465 case ObjectLiteral::Property::GETTER:
2466 __ push(Immediate(Smi::FromInt(DONT_ENUM)));
2467 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4);
2468 break;
2469
2470 case ObjectLiteral::Property::SETTER:
2471 __ push(Immediate(Smi::FromInt(DONT_ENUM)));
2472 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4);
2473 break;
2474 }
2475 }
2476
2477 // prototype
2478 __ CallRuntime(Runtime::kToFastProperties, 1);
2479
2480 // constructor
2481 __ CallRuntime(Runtime::kToFastProperties, 1);
2482
2483 if (is_strong(language_mode())) {
2484 __ mov(scratch,
2485 FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset));
2486 __ push(eax);
2487 __ push(scratch);
2488 // TODO(conradw): It would be more efficient to define the properties with
2489 // the right attributes the first time round.
2490 // Freeze the prototype.
2491 __ CallRuntime(Runtime::kObjectFreeze, 1);
2492 // Freeze the constructor.
2493 __ CallRuntime(Runtime::kObjectFreeze, 1);
2494 }
2495 }
2496
2497
2498 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
2499 __ pop(edx);
2500 Handle<Code> code =
2501 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2502 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
2503 CallIC(code, expr->BinaryOperationFeedbackId());
2504 patch_site.EmitPatchInfo();
2505 context()->Plug(eax);
2506 }
2507
2508
2509 void FullCodeGenerator::EmitAssignment(Expression* expr,
2510 FeedbackVectorICSlot slot) {
2511 DCHECK(expr->IsValidReferenceExpressionOrThis());
2512
2513 Property* prop = expr->AsProperty();
2514 LhsKind assign_type = Property::GetAssignType(prop);
2515
2516 switch (assign_type) {
2517 case VARIABLE: {
2518 Variable* var = expr->AsVariableProxy()->var();
2519 EffectContext context(this);
2520 EmitVariableAssignment(var, Token::ASSIGN, slot);
2521 break;
2522 }
2523 case NAMED_PROPERTY: {
2524 __ push(eax); // Preserve value.
2525 VisitForAccumulatorValue(prop->obj());
2526 __ Move(StoreDescriptor::ReceiverRegister(), eax);
2527 __ pop(StoreDescriptor::ValueRegister()); // Restore value.
2528 __ mov(StoreDescriptor::NameRegister(),
2529 prop->key()->AsLiteral()->value());
2530 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
2531 CallStoreIC();
2532 break;
2533 }
2534 case NAMED_SUPER_PROPERTY: {
2535 __ push(eax);
2536 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2537 VisitForAccumulatorValue(
2538 prop->obj()->AsSuperPropertyReference()->home_object());
2539 // stack: value, this; eax: home_object
2540 Register scratch = ecx;
2541 Register scratch2 = edx;
2542 __ mov(scratch, result_register()); // home_object
2543 __ mov(eax, MemOperand(esp, kPointerSize)); // value
2544 __ mov(scratch2, MemOperand(esp, 0)); // this
2545 __ mov(MemOperand(esp, kPointerSize), scratch2); // this
2546 __ mov(MemOperand(esp, 0), scratch); // home_object
2547 // stack: this, home_object. eax: value
2548 EmitNamedSuperPropertyStore(prop);
2549 break;
2550 }
2551 case KEYED_SUPER_PROPERTY: {
2552 __ push(eax);
2553 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2554 VisitForStackValue(
2555 prop->obj()->AsSuperPropertyReference()->home_object());
2556 VisitForAccumulatorValue(prop->key());
2557 Register scratch = ecx;
2558 Register scratch2 = edx;
2559 __ mov(scratch2, MemOperand(esp, 2 * kPointerSize)); // value
2560 // stack: value, this, home_object; eax: key, edx: value
2561 __ mov(scratch, MemOperand(esp, kPointerSize)); // this
2562 __ mov(MemOperand(esp, 2 * kPointerSize), scratch);
2563 __ mov(scratch, MemOperand(esp, 0)); // home_object
2564 __ mov(MemOperand(esp, kPointerSize), scratch);
2565 __ mov(MemOperand(esp, 0), eax);
2566 __ mov(eax, scratch2);
2567 // stack: this, home_object, key; eax: value.
2568 EmitKeyedSuperPropertyStore(prop);
2569 break;
2570 }
2571 case KEYED_PROPERTY: {
2572 __ push(eax); // Preserve value.
2573 VisitForStackValue(prop->obj());
2574 VisitForAccumulatorValue(prop->key());
2575 __ Move(StoreDescriptor::NameRegister(), eax);
2576 __ pop(StoreDescriptor::ReceiverRegister()); // Receiver.
2577 __ pop(StoreDescriptor::ValueRegister()); // Restore value.
2578 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
2579 Handle<Code> ic =
2580 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2581 CallIC(ic);
2582 break;
2583 }
2584 }
2585 context()->Plug(eax);
2586 }
2587
2588
2589 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2590 Variable* var, MemOperand location) {
2591 __ mov(location, eax);
2592 if (var->IsContextSlot()) {
2593 __ mov(edx, eax);
2594 int offset = Context::SlotOffset(var->index());
2595 __ RecordWriteContextSlot(ecx, offset, edx, ebx, kDontSaveFPRegs);
2596 }
2597 }
2598
2599
2600 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
2601 FeedbackVectorICSlot slot) {
2602 if (var->IsUnallocated()) {
2603 // Global var, const, or let.
2604 __ mov(StoreDescriptor::NameRegister(), var->name());
2605 __ mov(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand());
2606 if (FLAG_vector_stores) EmitLoadStoreICSlot(slot);
2607 CallStoreIC();
2608
2609 } else if (var->IsGlobalSlot()) {
2610 // Global var, const, or let.
2611 DCHECK(var->index() > 0);
2612 DCHECK(var->IsStaticGlobalObjectProperty());
2613 // Each var occupies two slots in the context: for reads and writes.
2614 int slot_index = var->index() + 1;
2615 int depth = scope()->ContextChainLength(var->scope());
2616 __ mov(StoreGlobalViaContextDescriptor::DepthRegister(),
2617 Immediate(Smi::FromInt(depth)));
2618 __ mov(StoreGlobalViaContextDescriptor::SlotRegister(),
2619 Immediate(Smi::FromInt(slot_index)));
2620 __ mov(StoreGlobalViaContextDescriptor::NameRegister(), var->name());
2621 DCHECK(StoreGlobalViaContextDescriptor::ValueRegister().is(eax));
2622 StoreGlobalViaContextStub stub(isolate(), depth, language_mode());
2623 __ CallStub(&stub);
2624
2625 } else if (var->mode() == LET && op != Token::INIT_LET) {
2626 // Non-initializing assignment to let variable needs a write barrier.
2627 DCHECK(!var->IsLookupSlot());
2628 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2629 Label assign;
2630 MemOperand location = VarOperand(var, ecx);
2631 __ mov(edx, location);
2632 __ cmp(edx, isolate()->factory()->the_hole_value());
2633 __ j(not_equal, &assign, Label::kNear);
2634 __ push(Immediate(var->name()));
2635 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2636 __ bind(&assign);
2637 EmitStoreToStackLocalOrContextSlot(var, location);
2638
2639 } else if (var->mode() == CONST && op != Token::INIT_CONST) {
2640 // Assignment to const variable needs a write barrier.
2641 DCHECK(!var->IsLookupSlot());
2642 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2643 Label const_error;
2644 MemOperand location = VarOperand(var, ecx);
2645 __ mov(edx, location);
2646 __ cmp(edx, isolate()->factory()->the_hole_value());
2647 __ j(not_equal, &const_error, Label::kNear);
2648 __ push(Immediate(var->name()));
2649 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2650 __ bind(&const_error);
2651 __ CallRuntime(Runtime::kThrowConstAssignError, 0);
2652
2653 } else if (var->is_this() && op == Token::INIT_CONST) {
2654 // Initializing assignment to const {this} needs a write barrier.
2655 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2656 Label uninitialized_this;
2657 MemOperand location = VarOperand(var, ecx);
2658 __ mov(edx, location);
2659 __ cmp(edx, isolate()->factory()->the_hole_value());
2660 __ j(equal, &uninitialized_this);
2661 __ push(Immediate(var->name()));
2662 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2663 __ bind(&uninitialized_this);
2664 EmitStoreToStackLocalOrContextSlot(var, location);
2665
2666 } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2667 if (var->IsLookupSlot()) {
2668 // Assignment to var.
2669 __ push(eax); // Value.
2670 __ push(esi); // Context.
2671 __ push(Immediate(var->name()));
2672 __ push(Immediate(Smi::FromInt(language_mode())));
2673 __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2674 } else {
2675 // Assignment to var or initializing assignment to let/const in harmony
2676 // mode.
2677 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2678 MemOperand location = VarOperand(var, ecx);
2679 if (generate_debug_code_ && op == Token::INIT_LET) {
2680 // Check for an uninitialized let binding.
2681 __ mov(edx, location);
2682 __ cmp(edx, isolate()->factory()->the_hole_value());
2683 __ Check(equal, kLetBindingReInitialization);
2684 }
2685 EmitStoreToStackLocalOrContextSlot(var, location);
2686 }
2687
2688 } else if (op == Token::INIT_CONST_LEGACY) {
2689 // Const initializers need a write barrier.
2690 DCHECK(var->mode() == CONST_LEGACY);
2691 DCHECK(!var->IsParameter()); // No const parameters.
2692 if (var->IsLookupSlot()) {
2693 __ push(eax);
2694 __ push(esi);
2695 __ push(Immediate(var->name()));
2696 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2697 } else {
2698 DCHECK(var->IsStackLocal() || var->IsContextSlot());
2699 Label skip;
2700 MemOperand location = VarOperand(var, ecx);
2701 __ mov(edx, location);
2702 __ cmp(edx, isolate()->factory()->the_hole_value());
2703 __ j(not_equal, &skip, Label::kNear);
2704 EmitStoreToStackLocalOrContextSlot(var, location);
2705 __ bind(&skip);
2706 }
2707
2708 } else {
2709 DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT_CONST_LEGACY);
2710 if (is_strict(language_mode())) {
2711 __ CallRuntime(Runtime::kThrowConstAssignError, 0);
2712 }
2713 // Silently ignore store in sloppy mode.
2714 }
2715 }
2716
2717
2718 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2719 // Assignment to a property, using a named store IC.
2720 // eax : value
2721 // esp[0] : receiver
2722 Property* prop = expr->target()->AsProperty();
2723 DCHECK(prop != NULL);
2724 DCHECK(prop->key()->IsLiteral());
2725
2726 __ mov(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value());
2727 __ pop(StoreDescriptor::ReceiverRegister());
2728 if (FLAG_vector_stores) {
2729 EmitLoadStoreICSlot(expr->AssignmentSlot());
2730 CallStoreIC();
2731 } else {
2732 CallStoreIC(expr->AssignmentFeedbackId());
2733 }
2734 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2735 context()->Plug(eax);
2736 }
2737
2738
2739 void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
2740 // Assignment to named property of super.
2741 // eax : value
2742 // stack : receiver ('this'), home_object
2743 DCHECK(prop != NULL);
2744 Literal* key = prop->key()->AsLiteral();
2745 DCHECK(key != NULL);
2746
2747 __ push(Immediate(key->value()));
2748 __ push(eax);
2749 __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
2750 : Runtime::kStoreToSuper_Sloppy),
2751 4);
2752 }
2753
2754
2755 void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
2756 // Assignment to named property of super.
2757 // eax : value
2758 // stack : receiver ('this'), home_object, key
2759
2760 __ push(eax);
2761 __ CallRuntime(
2762 (is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict
2763 : Runtime::kStoreKeyedToSuper_Sloppy),
2764 4);
2765 }
2766
2767
2768 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2769 // Assignment to a property, using a keyed store IC.
2770 // eax : value
2771 // esp[0] : key
2772 // esp[kPointerSize] : receiver
2773
2774 __ pop(StoreDescriptor::NameRegister()); // Key.
2775 __ pop(StoreDescriptor::ReceiverRegister());
2776 DCHECK(StoreDescriptor::ValueRegister().is(eax));
2777 Handle<Code> ic =
2778 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2779 if (FLAG_vector_stores) {
2780 EmitLoadStoreICSlot(expr->AssignmentSlot());
2781 CallIC(ic);
2782 } else {
2783 CallIC(ic, expr->AssignmentFeedbackId());
2784 }
2785
2786 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2787 context()->Plug(eax);
2788 }
2789
2790
2791 void FullCodeGenerator::VisitProperty(Property* expr) {
2792 Comment cmnt(masm_, "[ Property");
2793 SetExpressionPosition(expr);
2794
2795 Expression* key = expr->key();
2796
2797 if (key->IsPropertyName()) {
2798 if (!expr->IsSuperAccess()) {
2799 VisitForAccumulatorValue(expr->obj());
2800 __ Move(LoadDescriptor::ReceiverRegister(), result_register());
2801 EmitNamedPropertyLoad(expr);
2802 } else {
2803 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2804 VisitForStackValue(
2805 expr->obj()->AsSuperPropertyReference()->home_object());
2806 EmitNamedSuperPropertyLoad(expr);
2807 }
2808 } else {
2809 if (!expr->IsSuperAccess()) {
2810 VisitForStackValue(expr->obj());
2811 VisitForAccumulatorValue(expr->key());
2812 __ pop(LoadDescriptor::ReceiverRegister()); // Object.
2813 __ Move(LoadDescriptor::NameRegister(), result_register()); // Key.
2814 EmitKeyedPropertyLoad(expr);
2815 } else {
2816 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2817 VisitForStackValue(
2818 expr->obj()->AsSuperPropertyReference()->home_object());
2819 VisitForStackValue(expr->key());
2820 EmitKeyedSuperPropertyLoad(expr);
2821 }
2822 }
2823 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2824 context()->Plug(eax);
2825 }
2826
2827
2828 void FullCodeGenerator::CallIC(Handle<Code> code,
2829 TypeFeedbackId ast_id) {
2830 ic_total_count_++;
2831 __ call(code, RelocInfo::CODE_TARGET, ast_id);
2832 }
2833
2834
2835 // Code common for calls using the IC.
2836 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2837 Expression* callee = expr->expression();
2838
2839 CallICState::CallType call_type =
2840 callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
2841 // Get the target function.
2842 if (call_type == CallICState::FUNCTION) {
2843 { StackValueContext context(this);
2844 EmitVariableLoad(callee->AsVariableProxy());
2845 PrepareForBailout(callee, NO_REGISTERS);
2846 }
2847 // Push undefined as receiver. This is patched in the method prologue if it
2848 // is a sloppy mode method.
2849 __ push(Immediate(isolate()->factory()->undefined_value()));
2850 } else {
2851 // Load the function from the receiver.
2852 DCHECK(callee->IsProperty());
2853 DCHECK(!callee->AsProperty()->IsSuperAccess());
2854 __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
2855 EmitNamedPropertyLoad(callee->AsProperty());
2856 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2857 // Push the target function under the receiver.
2858 __ push(Operand(esp, 0));
2859 __ mov(Operand(esp, kPointerSize), eax);
2860 }
2861
2862 EmitCall(expr, call_type);
2863 }
2864
2865
2866 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2867 SetExpressionPosition(expr);
2868 Expression* callee = expr->expression();
2869 DCHECK(callee->IsProperty());
2870 Property* prop = callee->AsProperty();
2871 DCHECK(prop->IsSuperAccess());
2872
2873 Literal* key = prop->key()->AsLiteral();
2874 DCHECK(!key->value()->IsSmi());
2875 // Load the function from the receiver.
2876 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2877 VisitForStackValue(super_ref->home_object());
2878 VisitForAccumulatorValue(super_ref->this_var());
2879 __ push(eax);
2880 __ push(eax);
2881 __ push(Operand(esp, kPointerSize * 2));
2882 __ push(Immediate(key->value()));
2883 __ push(Immediate(Smi::FromInt(language_mode())));
2884 // Stack here:
2885 // - home_object
2886 // - this (receiver)
2887 // - this (receiver) <-- LoadFromSuper will pop here and below.
2888 // - home_object
2889 // - key
2890 // - language_mode
2891 __ CallRuntime(Runtime::kLoadFromSuper, 4);
2892
2893 // Replace home_object with target function.
2894 __ mov(Operand(esp, kPointerSize), eax);
2895
2896 // Stack here:
2897 // - target function
2898 // - this (receiver)
2899 EmitCall(expr, CallICState::METHOD);
2900 }
2901
2902
2903 // Code common for calls using the IC.
2904 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2905 Expression* key) {
2906 // Load the key.
2907 VisitForAccumulatorValue(key);
2908
2909 Expression* callee = expr->expression();
2910
2911 // Load the function from the receiver.
2912 DCHECK(callee->IsProperty());
2913 __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
2914 __ mov(LoadDescriptor::NameRegister(), eax);
2915 EmitKeyedPropertyLoad(callee->AsProperty());
2916 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2917
2918 // Push the target function under the receiver.
2919 __ push(Operand(esp, 0));
2920 __ mov(Operand(esp, kPointerSize), eax);
2921
2922 EmitCall(expr, CallICState::METHOD);
2923 }
2924
2925
2926 void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
2927 Expression* callee = expr->expression();
2928 DCHECK(callee->IsProperty());
2929 Property* prop = callee->AsProperty();
2930 DCHECK(prop->IsSuperAccess());
2931
2932 SetExpressionPosition(prop);
2933 // Load the function from the receiver.
2934 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2935 VisitForStackValue(super_ref->home_object());
2936 VisitForAccumulatorValue(super_ref->this_var());
2937 __ push(eax);
2938 __ push(eax);
2939 __ push(Operand(esp, kPointerSize * 2));
2940 VisitForStackValue(prop->key());
2941 __ push(Immediate(Smi::FromInt(language_mode())));
2942 // Stack here:
2943 // - home_object
2944 // - this (receiver)
2945 // - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
2946 // - home_object
2947 // - key
2948 // - language_mode
2949 __ CallRuntime(Runtime::kLoadKeyedFromSuper, 4);
2950
2951 // Replace home_object with target function.
2952 __ mov(Operand(esp, kPointerSize), eax);
2953
2954 // Stack here:
2955 // - target function
2956 // - this (receiver)
2957 EmitCall(expr, CallICState::METHOD);
2958 }
2959
2960
2961 void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
2962 // Load the arguments.
2963 ZoneList<Expression*>* args = expr->arguments();
2964 int arg_count = args->length();
2965 for (int i = 0; i < arg_count; i++) {
2966 VisitForStackValue(args->at(i));
2967 }
2968
2969 SetCallPosition(expr, arg_count);
2970 Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, call_type).code();
2971 __ Move(edx, Immediate(SmiFromSlot(expr->CallFeedbackICSlot())));
2972 __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
2973 // Don't assign a type feedback id to the IC, since type feedback is provided
2974 // by the vector above.
2975 CallIC(ic);
2976
2977 RecordJSReturnSite(expr);
2978
2979 // Restore context register.
2980 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2981
2982 context()->DropAndPlug(1, eax);
2983 }
2984
2985
2986 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2987 // Push copy of the first argument or undefined if it doesn't exist.
2988 if (arg_count > 0) {
2989 __ push(Operand(esp, arg_count * kPointerSize));
2990 } else {
2991 __ push(Immediate(isolate()->factory()->undefined_value()));
2992 }
2993
2994 // Push the enclosing function.
2995 __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2996
2997 // Push the language mode.
2998 __ push(Immediate(Smi::FromInt(language_mode())));
2999
3000 // Push the start position of the scope the calls resides in.
3001 __ push(Immediate(Smi::FromInt(scope()->start_position())));
3002
3003 // Do the runtime call.
3004 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
3005 }
3006
3007
3008 // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
3009 void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
3010 VariableProxy* callee = expr->expression()->AsVariableProxy();
3011 if (callee->var()->IsLookupSlot()) {
3012 Label slow, done;
3013 SetExpressionPosition(callee);
3014 // Generate code for loading from variables potentially shadowed by
3015 // eval-introduced variables.
3016 EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
3017
3018 __ bind(&slow);
3019 // Call the runtime to find the function to call (returned in eax) and
3020 // the object holding it (returned in edx).
3021 __ push(context_register());
3022 __ push(Immediate(callee->name()));
3023 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
3024 __ push(eax); // Function.
3025 __ push(edx); // Receiver.
3026 PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
3027
3028 // If fast case code has been generated, emit code to push the function
3029 // and receiver and have the slow path jump around this code.
3030 if (done.is_linked()) {
3031 Label call;
3032 __ jmp(&call, Label::kNear);
3033 __ bind(&done);
3034 // Push function.
3035 __ push(eax);
3036 // The receiver is implicitly the global receiver. Indicate this by
3037 // passing the hole to the call function stub.
3038 __ push(Immediate(isolate()->factory()->undefined_value()));
3039 __ bind(&call);
3040 }
3041 } else {
3042 VisitForStackValue(callee);
3043 // refEnv.WithBaseObject()
3044 __ push(Immediate(isolate()->factory()->undefined_value()));
3045 }
3046 }
3047
3048
3049 void FullCodeGenerator::VisitCall(Call* expr) {
3050 #ifdef DEBUG
3051 // We want to verify that RecordJSReturnSite gets called on all paths
3052 // through this function. Avoid early returns.
3053 expr->return_is_recorded_ = false;
3054 #endif
3055
3056 Comment cmnt(masm_, "[ Call");
3057 Expression* callee = expr->expression();
3058 Call::CallType call_type = expr->GetCallType(isolate());
3059
3060 if (call_type == Call::POSSIBLY_EVAL_CALL) {
3061 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
3062 // to resolve the function we need to call. Then we call the resolved
3063 // function using the given arguments.
3064 ZoneList<Expression*>* args = expr->arguments();
3065 int arg_count = args->length();
3066
3067 PushCalleeAndWithBaseObject(expr);
3068
3069 // Push the arguments.
3070 for (int i = 0; i < arg_count; i++) {
3071 VisitForStackValue(args->at(i));
3072 }
3073
3074 // Push a copy of the function (found below the arguments) and
3075 // resolve eval.
3076 __ push(Operand(esp, (arg_count + 1) * kPointerSize));
3077 EmitResolvePossiblyDirectEval(arg_count);
3078
3079 // Touch up the stack with the resolved function.
3080 __ mov(Operand(esp, (arg_count + 1) * kPointerSize), eax);
3081
3082 PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
3083
3084 SetCallPosition(expr, arg_count);
3085 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
3086 __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
3087 __ CallStub(&stub);
3088 RecordJSReturnSite(expr);
3089 // Restore context register.
3090 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
3091 context()->DropAndPlug(1, eax);
3092
3093 } else if (call_type == Call::GLOBAL_CALL) {
3094 EmitCallWithLoadIC(expr);
3095 } else if (call_type == Call::LOOKUP_SLOT_CALL) {
3096 // Call to a lookup slot (dynamically introduced variable).
3097 PushCalleeAndWithBaseObject(expr);
3098 EmitCall(expr);
3099 } else if (call_type == Call::PROPERTY_CALL) {
3100 Property* property = callee->AsProperty();
3101 bool is_named_call = property->key()->IsPropertyName();
3102 if (property->IsSuperAccess()) {
3103 if (is_named_call) {
3104 EmitSuperCallWithLoadIC(expr);
3105 } else {
3106 EmitKeyedSuperCallWithLoadIC(expr);
3107 }
3108 } else {
3109 VisitForStackValue(property->obj());
3110 if (is_named_call) {
3111 EmitCallWithLoadIC(expr);
3112 } else {
3113 EmitKeyedCallWithLoadIC(expr, property->key());
3114 }
3115 }
3116 } else if (call_type == Call::SUPER_CALL) {
3117 EmitSuperConstructorCall(expr);
3118 } else {
3119 DCHECK(call_type == Call::OTHER_CALL);
3120 // Call to an arbitrary expression not handled specially above.
3121 VisitForStackValue(callee);
3122 __ push(Immediate(isolate()->factory()->undefined_value()));
3123 // Emit function call.
3124 EmitCall(expr);
3125 }
3126
3127 #ifdef DEBUG
3128 // RecordJSReturnSite should have been called.
3129 DCHECK(expr->return_is_recorded_);
3130 #endif
3131 }
3132
3133
3134 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
3135 Comment cmnt(masm_, "[ CallNew");
3136 // According to ECMA-262, section 11.2.2, page 44, the function
3137 // expression in new calls must be evaluated before the
3138 // arguments.
3139
3140 // Push constructor on the stack. If it's not a function it's used as
3141 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
3142 // ignored.
3143 DCHECK(!expr->expression()->IsSuperPropertyReference());
3144 VisitForStackValue(expr->expression());
3145
3146 // Push the arguments ("left-to-right") on the stack.
3147 ZoneList<Expression*>* args = expr->arguments();
3148 int arg_count = args->length();
3149 for (int i = 0; i < arg_count; i++) {
3150 VisitForStackValue(args->at(i));
3151 }
3152
3153 // Call the construct call builtin that handles allocation and
3154 // constructor invocation.
3155 SetConstructCallPosition(expr);
3156
3157 // Load function and argument count into edi and eax.
3158 __ Move(eax, Immediate(arg_count));
3159 __ mov(edi, Operand(esp, arg_count * kPointerSize));
3160
3161 // Record call targets in unoptimized code.
3162 if (FLAG_pretenuring_call_new) {
3163 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
3164 DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() ==
3165 expr->CallNewFeedbackSlot().ToInt() + 1);
3166 }
3167
3168 __ LoadHeapObject(ebx, FeedbackVector());
3169 __ mov(edx, Immediate(SmiFromSlot(expr->CallNewFeedbackSlot())));
3170
3171 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
3172 __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
3173 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
3174 context()->Plug(eax);
3175 }
3176
3177
3178 void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
3179 SuperCallReference* super_call_ref =
3180 expr->expression()->AsSuperCallReference();
3181 DCHECK_NOT_NULL(super_call_ref);
3182
3183 EmitLoadSuperConstructor(super_call_ref);
3184 __ push(result_register());
3185
3186 // Push the arguments ("left-to-right") on the stack.
3187 ZoneList<Expression*>* args = expr->arguments();
3188 int arg_count = args->length();
3189 for (int i = 0; i < arg_count; i++) {
3190 VisitForStackValue(args->at(i));
3191 }
3192
3193 // Call the construct call builtin that handles allocation and
3194 // constructor invocation.
3195 SetConstructCallPosition(expr);
3196
3197 // Load original constructor into ecx.
3198 VisitForAccumulatorValue(super_call_ref->new_target_var());
3199 __ mov(ecx, result_register());
3200
3201 // Load function and argument count into edi and eax.
3202 __ Move(eax, Immediate(arg_count));
3203 __ mov(edi, Operand(esp, arg_count * kPointerSize));
3204
3205 // Record call targets in unoptimized code.
3206 if (FLAG_pretenuring_call_new) {
3207 UNREACHABLE();
3208 /* TODO(dslomov): support pretenuring.
3209 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
3210 DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() ==
3211 expr->CallNewFeedbackSlot().ToInt() + 1);
3212 */
3213 }
3214
3215 __ LoadHeapObject(ebx, FeedbackVector());
3216 __ mov(edx, Immediate(SmiFromSlot(expr->CallFeedbackSlot())));
3217
3218 CallConstructStub stub(isolate(), SUPER_CALL_RECORD_TARGET);
3219 __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
3220
3221 RecordJSReturnSite(expr);
3222
3223 context()->Plug(eax);
3224 }
3225
3226
3227 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
3228 ZoneList<Expression*>* args = expr->arguments();
3229 DCHECK(args->length() == 1);
3230
3231 VisitForAccumulatorValue(args->at(0));
3232
3233 Label materialize_true, materialize_false;
3234 Label* if_true = NULL;
3235 Label* if_false = NULL;
3236 Label* fall_through = NULL;
3237 context()->PrepareTest(&materialize_true, &materialize_false,
3238 &if_true, &if_false, &fall_through);
3239
3240 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3241 __ test(eax, Immediate(kSmiTagMask));
3242 Split(zero, if_true, if_false, fall_through);
3243
3244 context()->Plug(if_true, if_false);
3245 }
3246
3247
3248 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
3249 ZoneList<Expression*>* args = expr->arguments();
3250 DCHECK(args->length() == 1);
3251
3252 VisitForAccumulatorValue(args->at(0));
3253
3254 Label materialize_true, materialize_false;
3255 Label* if_true = NULL;
3256 Label* if_false = NULL;
3257 Label* fall_through = NULL;
3258 context()->PrepareTest(&materialize_true, &materialize_false,
3259 &if_true, &if_false, &fall_through);
3260
3261 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3262 __ test(eax, Immediate(kSmiTagMask | 0x80000000));
3263 Split(zero, if_true, if_false, fall_through);
3264
3265 context()->Plug(if_true, if_false);
3266 }
3267
3268
3269 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
3270 ZoneList<Expression*>* args = expr->arguments();
3271 DCHECK(args->length() == 1);
3272
3273 VisitForAccumulatorValue(args->at(0));
3274
3275 Label materialize_true, materialize_false;
3276 Label* if_true = NULL;
3277 Label* if_false = NULL;
3278 Label* fall_through = NULL;
3279 context()->PrepareTest(&materialize_true, &materialize_false,
3280 &if_true, &if_false, &fall_through);
3281
3282 __ JumpIfSmi(eax, if_false);
3283 __ cmp(eax, isolate()->factory()->null_value());
3284 __ j(equal, if_true);
3285 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3286 // Undetectable objects behave like undefined when tested with typeof.
3287 __ movzx_b(ecx, FieldOperand(ebx, Map::kBitFieldOffset));
3288 __ test(ecx, Immediate(1 << Map::kIsUndetectable));
3289 __ j(not_zero, if_false);
3290 __ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3291 __ cmp(ecx, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
3292 __ j(below, if_false);
3293 __ cmp(ecx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
3294 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3295 Split(below_equal, if_true, if_false, fall_through);
3296
3297 context()->Plug(if_true, if_false);
3298 }
3299
3300
3301 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
3302 ZoneList<Expression*>* args = expr->arguments();
3303 DCHECK(args->length() == 1);
3304
3305 VisitForAccumulatorValue(args->at(0));
3306
3307 Label materialize_true, materialize_false;
3308 Label* if_true = NULL;
3309 Label* if_false = NULL;
3310 Label* fall_through = NULL;
3311 context()->PrepareTest(&materialize_true, &materialize_false,
3312 &if_true, &if_false, &fall_through);
3313
3314 __ JumpIfSmi(eax, if_false);
3315 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ebx);
3316 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3317 Split(above_equal, if_true, if_false, fall_through);
3318
3319 context()->Plug(if_true, if_false);
3320 }
3321
3322
3323 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
3324 ZoneList<Expression*>* args = expr->arguments();
3325 DCHECK(args->length() == 1);
3326
3327 VisitForAccumulatorValue(args->at(0));
3328
3329 Label materialize_true, materialize_false;
3330 Label* if_true = NULL;
3331 Label* if_false = NULL;
3332 Label* fall_through = NULL;
3333 context()->PrepareTest(&materialize_true, &materialize_false,
3334 &if_true, &if_false, &fall_through);
3335
3336 __ JumpIfSmi(eax, if_false);
3337 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3338 __ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset));
3339 __ test(ebx, Immediate(1 << Map::kIsUndetectable));
3340 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3341 Split(not_zero, if_true, if_false, fall_through);
3342
3343 context()->Plug(if_true, if_false);
3344 }
3345
3346
3347 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
3348 CallRuntime* expr) {
3349 ZoneList<Expression*>* args = expr->arguments();
3350 DCHECK(args->length() == 1);
3351
3352 VisitForAccumulatorValue(args->at(0));
3353
3354 Label materialize_true, materialize_false, skip_lookup;
3355 Label* if_true = NULL;
3356 Label* if_false = NULL;
3357 Label* fall_through = NULL;
3358 context()->PrepareTest(&materialize_true, &materialize_false,
3359 &if_true, &if_false, &fall_through);
3360
3361 __ AssertNotSmi(eax);
3362
3363 // Check whether this map has already been checked to be safe for default
3364 // valueOf.
3365 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3366 __ test_b(FieldOperand(ebx, Map::kBitField2Offset),
3367 1 << Map::kStringWrapperSafeForDefaultValueOf);
3368 __ j(not_zero, &skip_lookup);
3369
3370 // Check for fast case object. Return false for slow case objects.
3371 __ mov(ecx, FieldOperand(eax, JSObject::kPropertiesOffset));
3372 __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
3373 __ cmp(ecx, isolate()->factory()->hash_table_map());
3374 __ j(equal, if_false);
3375
3376 // Look for valueOf string in the descriptor array, and indicate false if
3377 // found. Since we omit an enumeration index check, if it is added via a
3378 // transition that shares its descriptor array, this is a false positive.
3379 Label entry, loop, done;
3380
3381 // Skip loop if no descriptors are valid.
3382 __ NumberOfOwnDescriptors(ecx, ebx);
3383 __ cmp(ecx, 0);
3384 __ j(equal, &done);
3385
3386 __ LoadInstanceDescriptors(ebx, ebx);
3387 // ebx: descriptor array.
3388 // ecx: valid entries in the descriptor array.
3389 // Calculate the end of the descriptor array.
3390 STATIC_ASSERT(kSmiTag == 0);
3391 STATIC_ASSERT(kSmiTagSize == 1);
3392 STATIC_ASSERT(kPointerSize == 4);
3393 __ imul(ecx, ecx, DescriptorArray::kDescriptorSize);
3394 __ lea(ecx, Operand(ebx, ecx, times_4, DescriptorArray::kFirstOffset));
3395 // Calculate location of the first key name.
3396 __ add(ebx, Immediate(DescriptorArray::kFirstOffset));
3397 // Loop through all the keys in the descriptor array. If one of these is the
3398 // internalized string "valueOf" the result is false.
3399 __ jmp(&entry);
3400 __ bind(&loop);
3401 __ mov(edx, FieldOperand(ebx, 0));
3402 __ cmp(edx, isolate()->factory()->value_of_string());
3403 __ j(equal, if_false);
3404 __ add(ebx, Immediate(DescriptorArray::kDescriptorSize * kPointerSize));
3405 __ bind(&entry);
3406 __ cmp(ebx, ecx);
3407 __ j(not_equal, &loop);
3408
3409 __ bind(&done);
3410
3411 // Reload map as register ebx was used as temporary above.
3412 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3413
3414 // Set the bit in the map to indicate that there is no local valueOf field.
3415 __ or_(FieldOperand(ebx, Map::kBitField2Offset),
3416 Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
3417
3418 __ bind(&skip_lookup);
3419
3420 // If a valueOf property is not found on the object check that its
3421 // prototype is the un-modified String prototype. If not result is false.
3422 __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
3423 __ JumpIfSmi(ecx, if_false);
3424 __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
3425 __ mov(edx, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
3426 __ mov(edx,
3427 FieldOperand(edx, GlobalObject::kNativeContextOffset));
3428 __ cmp(ecx,
3429 ContextOperand(edx,
3430 Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
3431 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3432 Split(equal, if_true, if_false, fall_through);
3433
3434 context()->Plug(if_true, if_false);
3435 }
3436
3437
3438 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3439 ZoneList<Expression*>* args = expr->arguments();
3440 DCHECK(args->length() == 1);
3441
3442 VisitForAccumulatorValue(args->at(0));
3443
3444 Label materialize_true, materialize_false;
3445 Label* if_true = NULL;
3446 Label* if_false = NULL;
3447 Label* fall_through = NULL;
3448 context()->PrepareTest(&materialize_true, &materialize_false,
3449 &if_true, &if_false, &fall_through);
3450
3451 __ JumpIfSmi(eax, if_false);
3452 __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
3453 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3454 Split(equal, if_true, if_false, fall_through);
3455
3456 context()->Plug(if_true, if_false);
3457 }
3458
3459
3460 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3461 ZoneList<Expression*>* args = expr->arguments();
3462 DCHECK(args->length() == 1);
3463
3464 VisitForAccumulatorValue(args->at(0));
3465
3466 Label materialize_true, materialize_false;
3467 Label* if_true = NULL;
3468 Label* if_false = NULL;
3469 Label* fall_through = NULL;
3470 context()->PrepareTest(&materialize_true, &materialize_false,
3471 &if_true, &if_false, &fall_through);
3472
3473 Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
3474 __ CheckMap(eax, map, if_false, DO_SMI_CHECK);
3475 // Check if the exponent half is 0x80000000. Comparing against 1 and
3476 // checking for overflow is the shortest possible encoding.
3477 __ cmp(FieldOperand(eax, HeapNumber::kExponentOffset), Immediate(0x1));
3478 __ j(no_overflow, if_false);
3479 __ cmp(FieldOperand(eax, HeapNumber::kMantissaOffset), Immediate(0x0));
3480 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3481 Split(equal, if_true, if_false, fall_through);
3482
3483 context()->Plug(if_true, if_false);
3484 }
3485
3486
3487 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3488 ZoneList<Expression*>* args = expr->arguments();
3489 DCHECK(args->length() == 1);
3490
3491 VisitForAccumulatorValue(args->at(0));
3492
3493 Label materialize_true, materialize_false;
3494 Label* if_true = NULL;
3495 Label* if_false = NULL;
3496 Label* fall_through = NULL;
3497 context()->PrepareTest(&materialize_true, &materialize_false,
3498 &if_true, &if_false, &fall_through);
3499
3500 __ JumpIfSmi(eax, if_false);
3501 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
3502 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3503 Split(equal, if_true, if_false, fall_through);
3504
3505 context()->Plug(if_true, if_false);
3506 }
3507
3508
3509 void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
3510 ZoneList<Expression*>* args = expr->arguments();
3511 DCHECK(args->length() == 1);
3512
3513 VisitForAccumulatorValue(args->at(0));
3514
3515 Label materialize_true, materialize_false;
3516 Label* if_true = NULL;
3517 Label* if_false = NULL;
3518 Label* fall_through = NULL;
3519 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3520 &if_false, &fall_through);
3521
3522 __ JumpIfSmi(eax, if_false);
3523 __ CmpObjectType(eax, JS_TYPED_ARRAY_TYPE, ebx);
3524 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3525 Split(equal, if_true, if_false, fall_through);
3526
3527 context()->Plug(if_true, if_false);
3528 }
3529
3530
3531 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3532 ZoneList<Expression*>* args = expr->arguments();
3533 DCHECK(args->length() == 1);
3534
3535 VisitForAccumulatorValue(args->at(0));
3536
3537 Label materialize_true, materialize_false;
3538 Label* if_true = NULL;
3539 Label* if_false = NULL;
3540 Label* fall_through = NULL;
3541 context()->PrepareTest(&materialize_true, &materialize_false,
3542 &if_true, &if_false, &fall_through);
3543
3544 __ JumpIfSmi(eax, if_false);
3545 __ CmpObjectType(eax, JS_REGEXP_TYPE, ebx);
3546 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3547 Split(equal, if_true, if_false, fall_through);
3548
3549 context()->Plug(if_true, if_false);
3550 }
3551
3552
3553 void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
3554 ZoneList<Expression*>* args = expr->arguments();
3555 DCHECK(args->length() == 1);
3556
3557 VisitForAccumulatorValue(args->at(0));
3558
3559 Label materialize_true, materialize_false;
3560 Label* if_true = NULL;
3561 Label* if_false = NULL;
3562 Label* fall_through = NULL;
3563 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3564 &if_false, &fall_through);
3565
3566 __ JumpIfSmi(eax, if_false);
3567 Register map = ebx;
3568 __ mov(map, FieldOperand(eax, HeapObject::kMapOffset));
3569 __ CmpInstanceType(map, FIRST_JS_PROXY_TYPE);
3570 __ j(less, if_false);
3571 __ CmpInstanceType(map, LAST_JS_PROXY_TYPE);
3572 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3573 Split(less_equal, if_true, if_false, fall_through);
3574
3575 context()->Plug(if_true, if_false);
3576 }
3577
3578
3579 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
3580 DCHECK(expr->arguments()->length() == 0);
3581
3582 Label materialize_true, materialize_false;
3583 Label* if_true = NULL;
3584 Label* if_false = NULL;
3585 Label* fall_through = NULL;
3586 context()->PrepareTest(&materialize_true, &materialize_false,
3587 &if_true, &if_false, &fall_through);
3588
3589 // Get the frame pointer for the calling frame.
3590 __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3591
3592 // Skip the arguments adaptor frame if it exists.
3593 Label check_frame_marker;
3594 __ cmp(Operand(eax, StandardFrameConstants::kContextOffset),
3595 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3596 __ j(not_equal, &check_frame_marker);
3597 __ mov(eax, Operand(eax, StandardFrameConstants::kCallerFPOffset));
3598
3599 // Check the marker in the calling frame.
3600 __ bind(&check_frame_marker);
3601 __ cmp(Operand(eax, StandardFrameConstants::kMarkerOffset),
3602 Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
3603 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3604 Split(equal, if_true, if_false, fall_through);
3605
3606 context()->Plug(if_true, if_false);
3607 }
3608
3609
3610 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3611 ZoneList<Expression*>* args = expr->arguments();
3612 DCHECK(args->length() == 2);
3613
3614 // Load the two objects into registers and perform the comparison.
3615 VisitForStackValue(args->at(0));
3616 VisitForAccumulatorValue(args->at(1));
3617
3618 Label materialize_true, materialize_false;
3619 Label* if_true = NULL;
3620 Label* if_false = NULL;
3621 Label* fall_through = NULL;
3622 context()->PrepareTest(&materialize_true, &materialize_false,
3623 &if_true, &if_false, &fall_through);
3624
3625 __ pop(ebx);
3626 __ cmp(eax, ebx);
3627 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3628 Split(equal, if_true, if_false, fall_through);
3629
3630 context()->Plug(if_true, if_false);
3631 }
3632
3633
3634 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3635 ZoneList<Expression*>* args = expr->arguments();
3636 DCHECK(args->length() == 1);
3637
3638 // ArgumentsAccessStub expects the key in edx and the formal
3639 // parameter count in eax.
3640 VisitForAccumulatorValue(args->at(0));
3641 __ mov(edx, eax);
3642 __ Move(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
3643 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3644 __ CallStub(&stub);
3645 context()->Plug(eax);
3646 }
3647
3648
3649 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3650 DCHECK(expr->arguments()->length() == 0);
3651
3652 Label exit;
3653 // Get the number of formal parameters.
3654 __ Move(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
3655
3656 // Check if the calling frame is an arguments adaptor frame.
3657 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3658 __ cmp(Operand(ebx, StandardFrameConstants::kContextOffset),
3659 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3660 __ j(not_equal, &exit);
3661
3662 // Arguments adaptor case: Read the arguments length from the
3663 // adaptor frame.
3664 __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
3665
3666 __ bind(&exit);
3667 __ AssertSmi(eax);
3668 context()->Plug(eax);
3669 }
3670
3671
3672 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3673 ZoneList<Expression*>* args = expr->arguments();
3674 DCHECK(args->length() == 1);
3675 Label done, null, function, non_function_constructor;
3676
3677 VisitForAccumulatorValue(args->at(0));
3678
3679 // If the object is a smi, we return null.
3680 __ JumpIfSmi(eax, &null);
3681
3682 // Check that the object is a JS object but take special care of JS
3683 // functions to make sure they have 'Function' as their class.
3684 // Assume that there are only two callable types, and one of them is at
3685 // either end of the type range for JS object types. Saves extra comparisons.
3686 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3687 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, eax);
3688 // Map is now in eax.
3689 __ j(below, &null);
3690 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3691 FIRST_SPEC_OBJECT_TYPE + 1);
3692 __ j(equal, &function);
3693
3694 __ CmpInstanceType(eax, LAST_SPEC_OBJECT_TYPE);
3695 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3696 LAST_SPEC_OBJECT_TYPE - 1);
3697 __ j(equal, &function);
3698 // Assume that there is no larger type.
3699 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3700
3701 // Check if the constructor in the map is a JS function.
3702 __ GetMapConstructor(eax, eax, ebx);
3703 __ CmpInstanceType(ebx, JS_FUNCTION_TYPE);
3704 __ j(not_equal, &non_function_constructor);
3705
3706 // eax now contains the constructor function. Grab the
3707 // instance class name from there.
3708 __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
3709 __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kInstanceClassNameOffset));
3710 __ jmp(&done);
3711
3712 // Functions have class 'Function'.
3713 __ bind(&function);
3714 __ mov(eax, isolate()->factory()->Function_string());
3715 __ jmp(&done);
3716
3717 // Objects with a non-function constructor have class 'Object'.
3718 __ bind(&non_function_constructor);
3719 __ mov(eax, isolate()->factory()->Object_string());
3720 __ jmp(&done);
3721
3722 // Non-JS objects have class null.
3723 __ bind(&null);
3724 __ mov(eax, isolate()->factory()->null_value());
3725
3726 // All done.
3727 __ bind(&done);
3728
3729 context()->Plug(eax);
3730 }
3731
3732
3733 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3734 ZoneList<Expression*>* args = expr->arguments();
3735 DCHECK(args->length() == 1);
3736
3737 VisitForAccumulatorValue(args->at(0)); // Load the object.
3738
3739 Label done;
3740 // If the object is a smi return the object.
3741 __ JumpIfSmi(eax, &done, Label::kNear);
3742 // If the object is not a value type, return the object.
3743 __ CmpObjectType(eax, JS_VALUE_TYPE, ebx);
3744 __ j(not_equal, &done, Label::kNear);
3745 __ mov(eax, FieldOperand(eax, JSValue::kValueOffset));
3746
3747 __ bind(&done);
3748 context()->Plug(eax);
3749 }
3750
3751
3752 void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
3753 ZoneList<Expression*>* args = expr->arguments();
3754 DCHECK_EQ(1, args->length());
3755
3756 VisitForAccumulatorValue(args->at(0));
3757
3758 Label materialize_true, materialize_false;
3759 Label* if_true = nullptr;
3760 Label* if_false = nullptr;
3761 Label* fall_through = nullptr;
3762 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3763 &if_false, &fall_through);
3764
3765 __ JumpIfSmi(eax, if_false);
3766 __ CmpObjectType(eax, JS_DATE_TYPE, ebx);
3767 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3768 Split(equal, if_true, if_false, fall_through);
3769
3770 context()->Plug(if_true, if_false);
3771 }
3772
3773
3774 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3775 ZoneList<Expression*>* args = expr->arguments();
3776 DCHECK(args->length() == 2);
3777 DCHECK_NOT_NULL(args->at(1)->AsLiteral());
3778 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3779
3780 VisitForAccumulatorValue(args->at(0)); // Load the object.
3781
3782 Register object = eax;
3783 Register result = eax;
3784 Register scratch = ecx;
3785
3786 if (index->value() == 0) {
3787 __ mov(result, FieldOperand(object, JSDate::kValueOffset));
3788 } else {
3789 Label runtime, done;
3790 if (index->value() < JSDate::kFirstUncachedField) {
3791 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3792 __ mov(scratch, Operand::StaticVariable(stamp));
3793 __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
3794 __ j(not_equal, &runtime, Label::kNear);
3795 __ mov(result, FieldOperand(object, JSDate::kValueOffset +
3796 kPointerSize * index->value()));
3797 __ jmp(&done, Label::kNear);
3798 }
3799 __ bind(&runtime);
3800 __ PrepareCallCFunction(2, scratch);
3801 __ mov(Operand(esp, 0), object);
3802 __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
3803 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3804 __ bind(&done);
3805 }
3806
3807 context()->Plug(result);
3808 }
3809
3810
3811 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3812 ZoneList<Expression*>* args = expr->arguments();
3813 DCHECK_EQ(3, args->length());
3814
3815 Register string = eax;
3816 Register index = ebx;
3817 Register value = ecx;
3818
3819 VisitForStackValue(args->at(0)); // index
3820 VisitForStackValue(args->at(1)); // value
3821 VisitForAccumulatorValue(args->at(2)); // string
3822
3823 __ pop(value);
3824 __ pop(index);
3825
3826 if (FLAG_debug_code) {
3827 __ test(value, Immediate(kSmiTagMask));
3828 __ Check(zero, kNonSmiValue);
3829 __ test(index, Immediate(kSmiTagMask));
3830 __ Check(zero, kNonSmiValue);
3831 }
3832
3833 __ SmiUntag(value);
3834 __ SmiUntag(index);
3835
3836 if (FLAG_debug_code) {
3837 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3838 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3839 }
3840
3841 __ mov_b(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize),
3842 value);
3843 context()->Plug(string);
3844 }
3845
3846
3847 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3848 ZoneList<Expression*>* args = expr->arguments();
3849 DCHECK_EQ(3, args->length());
3850
3851 Register string = eax;
3852 Register index = ebx;
3853 Register value = ecx;
3854
3855 VisitForStackValue(args->at(0)); // index
3856 VisitForStackValue(args->at(1)); // value
3857 VisitForAccumulatorValue(args->at(2)); // string
3858 __ pop(value);
3859 __ pop(index);
3860
3861 if (FLAG_debug_code) {
3862 __ test(value, Immediate(kSmiTagMask));
3863 __ Check(zero, kNonSmiValue);
3864 __ test(index, Immediate(kSmiTagMask));
3865 __ Check(zero, kNonSmiValue);
3866 __ SmiUntag(index);
3867 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3868 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3869 __ SmiTag(index);
3870 }
3871
3872 __ SmiUntag(value);
3873 // No need to untag a smi for two-byte addressing.
3874 __ mov_w(FieldOperand(string, index, times_1, SeqTwoByteString::kHeaderSize),
3875 value);
3876 context()->Plug(string);
3877 }
3878
3879
3880 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3881 ZoneList<Expression*>* args = expr->arguments();
3882 DCHECK(args->length() == 2);
3883
3884 VisitForStackValue(args->at(0)); // Load the object.
3885 VisitForAccumulatorValue(args->at(1)); // Load the value.
3886 __ pop(ebx); // eax = value. ebx = object.
3887
3888 Label done;
3889 // If the object is a smi, return the value.
3890 __ JumpIfSmi(ebx, &done, Label::kNear);
3891
3892 // If the object is not a value type, return the value.
3893 __ CmpObjectType(ebx, JS_VALUE_TYPE, ecx);
3894 __ j(not_equal, &done, Label::kNear);
3895
3896 // Store the value.
3897 __ mov(FieldOperand(ebx, JSValue::kValueOffset), eax);
3898
3899 // Update the write barrier. Save the value as it will be
3900 // overwritten by the write barrier code and is needed afterward.
3901 __ mov(edx, eax);
3902 __ RecordWriteField(ebx, JSValue::kValueOffset, edx, ecx, kDontSaveFPRegs);
3903
3904 __ bind(&done);
3905 context()->Plug(eax);
3906 }
3907
3908
3909 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3910 ZoneList<Expression*>* args = expr->arguments();
3911 DCHECK_EQ(args->length(), 1);
3912
3913 // Load the argument into eax and call the stub.
3914 VisitForAccumulatorValue(args->at(0));
3915
3916 NumberToStringStub stub(isolate());
3917 __ CallStub(&stub);
3918 context()->Plug(eax);
3919 }
3920
3921
3922 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3923 ZoneList<Expression*>* args = expr->arguments();
3924 DCHECK(args->length() == 1);
3925
3926 VisitForAccumulatorValue(args->at(0));
3927
3928 Label done;
3929 StringCharFromCodeGenerator generator(eax, ebx);
3930 generator.GenerateFast(masm_);
3931 __ jmp(&done);
3932
3933 NopRuntimeCallHelper call_helper;
3934 generator.GenerateSlow(masm_, call_helper);
3935
3936 __ bind(&done);
3937 context()->Plug(ebx);
3938 }
3939
3940
3941 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3942 ZoneList<Expression*>* args = expr->arguments();
3943 DCHECK(args->length() == 2);
3944
3945 VisitForStackValue(args->at(0));
3946 VisitForAccumulatorValue(args->at(1));
3947
3948 Register object = ebx;
3949 Register index = eax;
3950 Register result = edx;
3951
3952 __ pop(object);
3953
3954 Label need_conversion;
3955 Label index_out_of_range;
3956 Label done;
3957 StringCharCodeAtGenerator generator(object,
3958 index,
3959 result,
3960 &need_conversion,
3961 &need_conversion,
3962 &index_out_of_range,
3963 STRING_INDEX_IS_NUMBER);
3964 generator.GenerateFast(masm_);
3965 __ jmp(&done);
3966
3967 __ bind(&index_out_of_range);
3968 // When the index is out of range, the spec requires us to return
3969 // NaN.
3970 __ Move(result, Immediate(isolate()->factory()->nan_value()));
3971 __ jmp(&done);
3972
3973 __ bind(&need_conversion);
3974 // Move the undefined value into the result register, which will
3975 // trigger conversion.
3976 __ Move(result, Immediate(isolate()->factory()->undefined_value()));
3977 __ jmp(&done);
3978
3979 NopRuntimeCallHelper call_helper;
3980 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3981
3982 __ bind(&done);
3983 context()->Plug(result);
3984 }
3985
3986
3987 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3988 ZoneList<Expression*>* args = expr->arguments();
3989 DCHECK(args->length() == 2);
3990
3991 VisitForStackValue(args->at(0));
3992 VisitForAccumulatorValue(args->at(1));
3993
3994 Register object = ebx;
3995 Register index = eax;
3996 Register scratch = edx;
3997 Register result = eax;
3998
3999 __ pop(object);
4000
4001 Label need_conversion;
4002 Label index_out_of_range;
4003 Label done;
4004 StringCharAtGenerator generator(object,
4005 index,
4006 scratch,
4007 result,
4008 &need_conversion,
4009 &need_conversion,
4010 &index_out_of_range,
4011 STRING_INDEX_IS_NUMBER);
4012 generator.GenerateFast(masm_);
4013 __ jmp(&done);
4014
4015 __ bind(&index_out_of_range);
4016 // When the index is out of range, the spec requires us to return
4017 // the empty string.
4018 __ Move(result, Immediate(isolate()->factory()->empty_string()));
4019 __ jmp(&done);
4020
4021 __ bind(&need_conversion);
4022 // Move smi zero into the result register, which will trigger
4023 // conversion.
4024 __ Move(result, Immediate(Smi::FromInt(0)));
4025 __ jmp(&done);
4026
4027 NopRuntimeCallHelper call_helper;
4028 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
4029
4030 __ bind(&done);
4031 context()->Plug(result);
4032 }
4033
4034
4035 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
4036 ZoneList<Expression*>* args = expr->arguments();
4037 DCHECK_EQ(2, args->length());
4038 VisitForStackValue(args->at(0));
4039 VisitForAccumulatorValue(args->at(1));
4040
4041 __ pop(edx);
4042 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
4043 __ CallStub(&stub);
4044 context()->Plug(eax);
4045 }
4046
4047
4048 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
4049 ZoneList<Expression*>* args = expr->arguments();
4050 DCHECK(args->length() >= 2);
4051
4052 int arg_count = args->length() - 2; // 2 ~ receiver and function.
4053 for (int i = 0; i < arg_count + 1; ++i) {
4054 VisitForStackValue(args->at(i));
4055 }
4056 VisitForAccumulatorValue(args->last()); // Function.
4057
4058 Label runtime, done;
4059 // Check for non-function argument (including proxy).
4060 __ JumpIfSmi(eax, &runtime);
4061 __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
4062 __ j(not_equal, &runtime);
4063
4064 // InvokeFunction requires the function in edi. Move it in there.
4065 __ mov(edi, result_register());
4066 ParameterCount count(arg_count);
4067 __ InvokeFunction(edi, count, CALL_FUNCTION, NullCallWrapper());
4068 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4069 __ jmp(&done);
4070
4071 __ bind(&runtime);
4072 __ push(eax);
4073 __ CallRuntime(Runtime::kCall, args->length());
4074 __ bind(&done);
4075
4076 context()->Plug(eax);
4077 }
4078
4079
4080 void FullCodeGenerator::EmitDefaultConstructorCallSuper(CallRuntime* expr) {
4081 ZoneList<Expression*>* args = expr->arguments();
4082 DCHECK(args->length() == 2);
4083
4084 // new.target
4085 VisitForStackValue(args->at(0));
4086
4087 // .this_function
4088 VisitForStackValue(args->at(1));
4089 __ CallRuntime(Runtime::kGetPrototype, 1);
4090 __ push(result_register());
4091
4092 // Load original constructor into ecx.
4093 __ mov(ecx, Operand(esp, 1 * kPointerSize));
4094
4095 // Check if the calling frame is an arguments adaptor frame.
4096 Label adaptor_frame, args_set_up, runtime;
4097 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
4098 __ mov(ebx, Operand(edx, StandardFrameConstants::kContextOffset));
4099 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4100 __ j(equal, &adaptor_frame);
4101 // default constructor has no arguments, so no adaptor frame means no args.
4102 __ mov(eax, Immediate(0));
4103 __ jmp(&args_set_up);
4104
4105 // Copy arguments from adaptor frame.
4106 {
4107 __ bind(&adaptor_frame);
4108 __ mov(ebx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
4109 __ SmiUntag(ebx);
4110
4111 __ mov(eax, ebx);
4112 __ lea(edx, Operand(edx, ebx, times_pointer_size,
4113 StandardFrameConstants::kCallerSPOffset));
4114 Label loop;
4115 __ bind(&loop);
4116 __ push(Operand(edx, -1 * kPointerSize));
4117 __ sub(edx, Immediate(kPointerSize));
4118 __ dec(ebx);
4119 __ j(not_zero, &loop);
4120 }
4121
4122 __ bind(&args_set_up);
4123
4124 __ mov(edi, Operand(esp, eax, times_pointer_size, 0));
4125 __ mov(ebx, Immediate(isolate()->factory()->undefined_value()));
4126 CallConstructStub stub(isolate(), SUPER_CONSTRUCTOR_CALL);
4127 __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
4128
4129 __ Drop(1);
4130
4131 context()->Plug(eax);
4132 }
4133
4134
4135 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
4136 // Load the arguments on the stack and call the stub.
4137 RegExpConstructResultStub stub(isolate());
4138 ZoneList<Expression*>* args = expr->arguments();
4139 DCHECK(args->length() == 3);
4140 VisitForStackValue(args->at(0));
4141 VisitForStackValue(args->at(1));
4142 VisitForAccumulatorValue(args->at(2));
4143 __ pop(ebx);
4144 __ pop(ecx);
4145 __ CallStub(&stub);
4146 context()->Plug(eax);
4147 }
4148
4149
4150 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
4151 ZoneList<Expression*>* args = expr->arguments();
4152 DCHECK_EQ(2, args->length());
4153
4154 DCHECK_NOT_NULL(args->at(0)->AsLiteral());
4155 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
4156
4157 Handle<FixedArray> jsfunction_result_caches(
4158 isolate()->native_context()->jsfunction_result_caches());
4159 if (jsfunction_result_caches->length() <= cache_id) {
4160 __ Abort(kAttemptToUseUndefinedCache);
4161 __ mov(eax, isolate()->factory()->undefined_value());
4162 context()->Plug(eax);
4163 return;
4164 }
4165
4166 VisitForAccumulatorValue(args->at(1));
4167
4168 Register key = eax;
4169 Register cache = ebx;
4170 Register tmp = ecx;
4171 __ mov(cache, ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX));
4172 __ mov(cache,
4173 FieldOperand(cache, GlobalObject::kNativeContextOffset));
4174 __ mov(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
4175 __ mov(cache,
4176 FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
4177
4178 Label done, not_found;
4179 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
4180 __ mov(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset));
4181 // tmp now holds finger offset as a smi.
4182 __ cmp(key, FixedArrayElementOperand(cache, tmp));
4183 __ j(not_equal, &not_found);
4184
4185 __ mov(eax, FixedArrayElementOperand(cache, tmp, 1));
4186 __ jmp(&done);
4187
4188 __ bind(&not_found);
4189 // Call runtime to perform the lookup.
4190 __ push(cache);
4191 __ push(key);
4192 __ CallRuntime(Runtime::kGetFromCacheRT, 2);
4193
4194 __ bind(&done);
4195 context()->Plug(eax);
4196 }
4197
4198
4199 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
4200 ZoneList<Expression*>* args = expr->arguments();
4201 DCHECK(args->length() == 1);
4202
4203 VisitForAccumulatorValue(args->at(0));
4204
4205 __ AssertString(eax);
4206
4207 Label materialize_true, materialize_false;
4208 Label* if_true = NULL;
4209 Label* if_false = NULL;
4210 Label* fall_through = NULL;
4211 context()->PrepareTest(&materialize_true, &materialize_false,
4212 &if_true, &if_false, &fall_through);
4213
4214 __ test(FieldOperand(eax, String::kHashFieldOffset),
4215 Immediate(String::kContainsCachedArrayIndexMask));
4216 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4217 Split(zero, if_true, if_false, fall_through);
4218
4219 context()->Plug(if_true, if_false);
4220 }
4221
4222
4223 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
4224 ZoneList<Expression*>* args = expr->arguments();
4225 DCHECK(args->length() == 1);
4226 VisitForAccumulatorValue(args->at(0));
4227
4228 __ AssertString(eax);
4229
4230 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
4231 __ IndexFromHash(eax, eax);
4232
4233 context()->Plug(eax);
4234 }
4235
4236
4237 void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
4238 Label bailout, done, one_char_separator, long_separator,
4239 non_trivial_array, not_size_one_array, loop,
4240 loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
4241
4242 ZoneList<Expression*>* args = expr->arguments();
4243 DCHECK(args->length() == 2);
4244 // We will leave the separator on the stack until the end of the function.
4245 VisitForStackValue(args->at(1));
4246 // Load this to eax (= array)
4247 VisitForAccumulatorValue(args->at(0));
4248 // All aliases of the same register have disjoint lifetimes.
4249 Register array = eax;
4250 Register elements = no_reg; // Will be eax.
4251
4252 Register index = edx;
4253
4254 Register string_length = ecx;
4255
4256 Register string = esi;
4257
4258 Register scratch = ebx;
4259
4260 Register array_length = edi;
4261 Register result_pos = no_reg; // Will be edi.
4262
4263 // Separator operand is already pushed.
4264 Operand separator_operand = Operand(esp, 2 * kPointerSize);
4265 Operand result_operand = Operand(esp, 1 * kPointerSize);
4266 Operand array_length_operand = Operand(esp, 0);
4267 __ sub(esp, Immediate(2 * kPointerSize));
4268 __ cld();
4269 // Check that the array is a JSArray
4270 __ JumpIfSmi(array, &bailout);
4271 __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
4272 __ j(not_equal, &bailout);
4273
4274 // Check that the array has fast elements.
4275 __ CheckFastElements(scratch, &bailout);
4276
4277 // If the array has length zero, return the empty string.
4278 __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset));
4279 __ SmiUntag(array_length);
4280 __ j(not_zero, &non_trivial_array);
4281 __ mov(result_operand, isolate()->factory()->empty_string());
4282 __ jmp(&done);
4283
4284 // Save the array length.
4285 __ bind(&non_trivial_array);
4286 __ mov(array_length_operand, array_length);
4287
4288 // Save the FixedArray containing array's elements.
4289 // End of array's live range.
4290 elements = array;
4291 __ mov(elements, FieldOperand(array, JSArray::kElementsOffset));
4292 array = no_reg;
4293
4294
4295 // Check that all array elements are sequential one-byte strings, and
4296 // accumulate the sum of their lengths, as a smi-encoded value.
4297 __ Move(index, Immediate(0));
4298 __ Move(string_length, Immediate(0));
4299 // Loop condition: while (index < length).
4300 // Live loop registers: index, array_length, string,
4301 // scratch, string_length, elements.
4302 if (generate_debug_code_) {
4303 __ cmp(index, array_length);
4304 __ Assert(less, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
4305 }
4306 __ bind(&loop);
4307 __ mov(string, FieldOperand(elements,
4308 index,
4309 times_pointer_size,
4310 FixedArray::kHeaderSize));
4311 __ JumpIfSmi(string, &bailout);
4312 __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
4313 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
4314 __ and_(scratch, Immediate(
4315 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
4316 __ cmp(scratch, kStringTag | kOneByteStringTag | kSeqStringTag);
4317 __ j(not_equal, &bailout);
4318 __ add(string_length,
4319 FieldOperand(string, SeqOneByteString::kLengthOffset));
4320 __ j(overflow, &bailout);
4321 __ add(index, Immediate(1));
4322 __ cmp(index, array_length);
4323 __ j(less, &loop);
4324
4325 // If array_length is 1, return elements[0], a string.
4326 __ cmp(array_length, 1);
4327 __ j(not_equal, &not_size_one_array);
4328 __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize));
4329 __ mov(result_operand, scratch);
4330 __ jmp(&done);
4331
4332 __ bind(&not_size_one_array);
4333
4334 // End of array_length live range.
4335 result_pos = array_length;
4336 array_length = no_reg;
4337
4338 // Live registers:
4339 // string_length: Sum of string lengths, as a smi.
4340 // elements: FixedArray of strings.
4341
4342 // Check that the separator is a flat one-byte string.
4343 __ mov(string, separator_operand);
4344 __ JumpIfSmi(string, &bailout);
4345 __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
4346 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
4347 __ and_(scratch, Immediate(
4348 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
4349 __ cmp(scratch, kStringTag | kOneByteStringTag | kSeqStringTag);
4350 __ j(not_equal, &bailout);
4351
4352 // Add (separator length times array_length) - separator length
4353 // to string_length.
4354 __ mov(scratch, separator_operand);
4355 __ mov(scratch, FieldOperand(scratch, SeqOneByteString::kLengthOffset));
4356 __ sub(string_length, scratch); // May be negative, temporarily.
4357 __ imul(scratch, array_length_operand);
4358 __ j(overflow, &bailout);
4359 __ add(string_length, scratch);
4360 __ j(overflow, &bailout);
4361
4362 __ shr(string_length, 1);
4363 // Live registers and stack values:
4364 // string_length
4365 // elements
4366 __ AllocateOneByteString(result_pos, string_length, scratch, index, string,
4367 &bailout);
4368 __ mov(result_operand, result_pos);
4369 __ lea(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize));
4370
4371
4372 __ mov(string, separator_operand);
4373 __ cmp(FieldOperand(string, SeqOneByteString::kLengthOffset),
4374 Immediate(Smi::FromInt(1)));
4375 __ j(equal, &one_char_separator);
4376 __ j(greater, &long_separator);
4377
4378
4379 // Empty separator case
4380 __ mov(index, Immediate(0));
4381 __ jmp(&loop_1_condition);
4382 // Loop condition: while (index < length).
4383 __ bind(&loop_1);
4384 // Each iteration of the loop concatenates one string to the result.
4385 // Live values in registers:
4386 // index: which element of the elements array we are adding to the result.
4387 // result_pos: the position to which we are currently copying characters.
4388 // elements: the FixedArray of strings we are joining.
4389
4390 // Get string = array[index].
4391 __ mov(string, FieldOperand(elements, index,
4392 times_pointer_size,
4393 FixedArray::kHeaderSize));
4394 __ mov(string_length,
4395 FieldOperand(string, String::kLengthOffset));
4396 __ shr(string_length, 1);
4397 __ lea(string,
4398 FieldOperand(string, SeqOneByteString::kHeaderSize));
4399 __ CopyBytes(string, result_pos, string_length, scratch);
4400 __ add(index, Immediate(1));
4401 __ bind(&loop_1_condition);
4402 __ cmp(index, array_length_operand);
4403 __ j(less, &loop_1); // End while (index < length).
4404 __ jmp(&done);
4405
4406
4407
4408 // One-character separator case
4409 __ bind(&one_char_separator);
4410 // Replace separator with its one-byte character value.
4411 __ mov_b(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize));
4412 __ mov_b(separator_operand, scratch);
4413
4414 __ Move(index, Immediate(0));
4415 // Jump into the loop after the code that copies the separator, so the first
4416 // element is not preceded by a separator
4417 __ jmp(&loop_2_entry);
4418 // Loop condition: while (index < length).
4419 __ bind(&loop_2);
4420 // Each iteration of the loop concatenates one string to the result.
4421 // Live values in registers:
4422 // index: which element of the elements array we are adding to the result.
4423 // result_pos: the position to which we are currently copying characters.
4424
4425 // Copy the separator character to the result.
4426 __ mov_b(scratch, separator_operand);
4427 __ mov_b(Operand(result_pos, 0), scratch);
4428 __ inc(result_pos);
4429
4430 __ bind(&loop_2_entry);
4431 // Get string = array[index].
4432 __ mov(string, FieldOperand(elements, index,
4433 times_pointer_size,
4434 FixedArray::kHeaderSize));
4435 __ mov(string_length,
4436 FieldOperand(string, String::kLengthOffset));
4437 __ shr(string_length, 1);
4438 __ lea(string,
4439 FieldOperand(string, SeqOneByteString::kHeaderSize));
4440 __ CopyBytes(string, result_pos, string_length, scratch);
4441 __ add(index, Immediate(1));
4442
4443 __ cmp(index, array_length_operand);
4444 __ j(less, &loop_2); // End while (index < length).
4445 __ jmp(&done);
4446
4447
4448 // Long separator case (separator is more than one character).
4449 __ bind(&long_separator);
4450
4451 __ Move(index, Immediate(0));
4452 // Jump into the loop after the code that copies the separator, so the first
4453 // element is not preceded by a separator
4454 __ jmp(&loop_3_entry);
4455 // Loop condition: while (index < length).
4456 __ bind(&loop_3);
4457 // Each iteration of the loop concatenates one string to the result.
4458 // Live values in registers:
4459 // index: which element of the elements array we are adding to the result.
4460 // result_pos: the position to which we are currently copying characters.
4461
4462 // Copy the separator to the result.
4463 __ mov(string, separator_operand);
4464 __ mov(string_length,
4465 FieldOperand(string, String::kLengthOffset));
4466 __ shr(string_length, 1);
4467 __ lea(string,
4468 FieldOperand(string, SeqOneByteString::kHeaderSize));
4469 __ CopyBytes(string, result_pos, string_length, scratch);
4470
4471 __ bind(&loop_3_entry);
4472 // Get string = array[index].
4473 __ mov(string, FieldOperand(elements, index,
4474 times_pointer_size,
4475 FixedArray::kHeaderSize));
4476 __ mov(string_length,
4477 FieldOperand(string, String::kLengthOffset));
4478 __ shr(string_length, 1);
4479 __ lea(string,
4480 FieldOperand(string, SeqOneByteString::kHeaderSize));
4481 __ CopyBytes(string, result_pos, string_length, scratch);
4482 __ add(index, Immediate(1));
4483
4484 __ cmp(index, array_length_operand);
4485 __ j(less, &loop_3); // End while (index < length).
4486 __ jmp(&done);
4487
4488
4489 __ bind(&bailout);
4490 __ mov(result_operand, isolate()->factory()->undefined_value());
4491 __ bind(&done);
4492 __ mov(eax, result_operand);
4493 // Drop temp values from the stack, and restore context register.
4494 __ add(esp, Immediate(3 * kPointerSize));
4495
4496 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4497 context()->Plug(eax);
4498 }
4499
4500
4501 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
4502 DCHECK(expr->arguments()->length() == 0);
4503 ExternalReference debug_is_active =
4504 ExternalReference::debug_is_active_address(isolate());
4505 __ movzx_b(eax, Operand::StaticVariable(debug_is_active));
4506 __ SmiTag(eax);
4507 context()->Plug(eax);
4508 }
4509
4510
4511 void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
4512 // Push the builtins object as receiver.
4513 __ mov(eax, GlobalObjectOperand());
4514 __ push(FieldOperand(eax, GlobalObject::kBuiltinsOffset));
4515
4516 // Load the function from the receiver.
4517 __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
4518 __ mov(LoadDescriptor::NameRegister(), Immediate(expr->name()));
4519 __ mov(LoadDescriptor::SlotRegister(),
4520 Immediate(SmiFromSlot(expr->CallRuntimeFeedbackSlot())));
4521 CallLoadIC(NOT_INSIDE_TYPEOF);
4522 }
4523
4524
4525 void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
4526 ZoneList<Expression*>* args = expr->arguments();
4527 int arg_count = args->length();
4528
4529 SetCallPosition(expr, arg_count);
4530 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
4531 __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
4532 __ CallStub(&stub);
4533 }
4534
4535
4536 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
4537 ZoneList<Expression*>* args = expr->arguments();
4538 int arg_count = args->length();
4539
4540 if (expr->is_jsruntime()) {
4541 Comment cmnt(masm_, "[ CallRuntime");
4542 EmitLoadJSRuntimeFunction(expr);
4543
4544 // Push the target function under the receiver.
4545 __ push(Operand(esp, 0));
4546 __ mov(Operand(esp, kPointerSize), eax);
4547
4548 // Push the arguments ("left-to-right").
4549 for (int i = 0; i < arg_count; i++) {
4550 VisitForStackValue(args->at(i));
4551 }
4552
4553 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
4554 EmitCallJSRuntimeFunction(expr);
4555
4556 // Restore context register.
4557 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4558 context()->DropAndPlug(1, eax);
4559
4560 } else {
4561 const Runtime::Function* function = expr->function();
4562 switch (function->function_id) {
4563 #define CALL_INTRINSIC_GENERATOR(Name) \
4564 case Runtime::kInline##Name: { \
4565 Comment cmnt(masm_, "[ Inline" #Name); \
4566 return Emit##Name(expr); \
4567 }
4568 FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
4569 #undef CALL_INTRINSIC_GENERATOR
4570 default: {
4571 Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
4572 // Push the arguments ("left-to-right").
4573 for (int i = 0; i < arg_count; i++) {
4574 VisitForStackValue(args->at(i));
4575 }
4576
4577 // Call the C runtime function.
4578 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
4579 __ CallRuntime(expr->function(), arg_count);
4580 context()->Plug(eax);
4581 }
4582 }
4583 }
4584 }
4585
4586
4587 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4588 switch (expr->op()) {
4589 case Token::DELETE: {
4590 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4591 Property* property = expr->expression()->AsProperty();
4592 VariableProxy* proxy = expr->expression()->AsVariableProxy();
4593
4594 if (property != NULL) {
4595 VisitForStackValue(property->obj());
4596 VisitForStackValue(property->key());
4597 __ push(Immediate(Smi::FromInt(language_mode())));
4598 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4599 context()->Plug(eax);
4600 } else if (proxy != NULL) {
4601 Variable* var = proxy->var();
4602 // Delete of an unqualified identifier is disallowed in strict mode but
4603 // "delete this" is allowed.
4604 bool is_this = var->HasThisName(isolate());
4605 DCHECK(is_sloppy(language_mode()) || is_this);
4606 if (var->IsUnallocatedOrGlobalSlot()) {
4607 __ push(GlobalObjectOperand());
4608 __ push(Immediate(var->name()));
4609 __ push(Immediate(Smi::FromInt(SLOPPY)));
4610 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4611 context()->Plug(eax);
4612 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4613 // Result of deleting non-global variables is false. 'this' is
4614 // not really a variable, though we implement it as one. The
4615 // subexpression does not have side effects.
4616 context()->Plug(is_this);
4617 } else {
4618 // Non-global variable. Call the runtime to try to delete from the
4619 // context where the variable was introduced.
4620 __ push(context_register());
4621 __ push(Immediate(var->name()));
4622 __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
4623 context()->Plug(eax);
4624 }
4625 } else {
4626 // Result of deleting non-property, non-variable reference is true.
4627 // The subexpression may have side effects.
4628 VisitForEffect(expr->expression());
4629 context()->Plug(true);
4630 }
4631 break;
4632 }
4633
4634 case Token::VOID: {
4635 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
4636 VisitForEffect(expr->expression());
4637 context()->Plug(isolate()->factory()->undefined_value());
4638 break;
4639 }
4640
4641 case Token::NOT: {
4642 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
4643 if (context()->IsEffect()) {
4644 // Unary NOT has no side effects so it's only necessary to visit the
4645 // subexpression. Match the optimizing compiler by not branching.
4646 VisitForEffect(expr->expression());
4647 } else if (context()->IsTest()) {
4648 const TestContext* test = TestContext::cast(context());
4649 // The labels are swapped for the recursive call.
4650 VisitForControl(expr->expression(),
4651 test->false_label(),
4652 test->true_label(),
4653 test->fall_through());
4654 context()->Plug(test->true_label(), test->false_label());
4655 } else {
4656 // We handle value contexts explicitly rather than simply visiting
4657 // for control and plugging the control flow into the context,
4658 // because we need to prepare a pair of extra administrative AST ids
4659 // for the optimizing compiler.
4660 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4661 Label materialize_true, materialize_false, done;
4662 VisitForControl(expr->expression(),
4663 &materialize_false,
4664 &materialize_true,
4665 &materialize_true);
4666 __ bind(&materialize_true);
4667 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4668 if (context()->IsAccumulatorValue()) {
4669 __ mov(eax, isolate()->factory()->true_value());
4670 } else {
4671 __ Push(isolate()->factory()->true_value());
4672 }
4673 __ jmp(&done, Label::kNear);
4674 __ bind(&materialize_false);
4675 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4676 if (context()->IsAccumulatorValue()) {
4677 __ mov(eax, isolate()->factory()->false_value());
4678 } else {
4679 __ Push(isolate()->factory()->false_value());
4680 }
4681 __ bind(&done);
4682 }
4683 break;
4684 }
4685
4686 case Token::TYPEOF: {
4687 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4688 {
4689 AccumulatorValueContext context(this);
4690 VisitForTypeofValue(expr->expression());
4691 }
4692 __ mov(ebx, eax);
4693 TypeofStub typeof_stub(isolate());
4694 __ CallStub(&typeof_stub);
4695 context()->Plug(eax);
4696 break;
4697 }
4698
4699 default:
4700 UNREACHABLE();
4701 }
4702 }
4703
4704
4705 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
4706 DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
4707
4708 Comment cmnt(masm_, "[ CountOperation");
4709
4710 Property* prop = expr->expression()->AsProperty();
4711 LhsKind assign_type = Property::GetAssignType(prop);
4712
4713 // Evaluate expression and get value.
4714 if (assign_type == VARIABLE) {
4715 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4716 AccumulatorValueContext context(this);
4717 EmitVariableLoad(expr->expression()->AsVariableProxy());
4718 } else {
4719 // Reserve space for result of postfix operation.
4720 if (expr->is_postfix() && !context()->IsEffect()) {
4721 __ push(Immediate(Smi::FromInt(0)));
4722 }
4723 switch (assign_type) {
4724 case NAMED_PROPERTY: {
4725 // Put the object both on the stack and in the register.
4726 VisitForStackValue(prop->obj());
4727 __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0));
4728 EmitNamedPropertyLoad(prop);
4729 break;
4730 }
4731
4732 case NAMED_SUPER_PROPERTY: {
4733 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
4734 VisitForAccumulatorValue(
4735 prop->obj()->AsSuperPropertyReference()->home_object());
4736 __ push(result_register());
4737 __ push(MemOperand(esp, kPointerSize));
4738 __ push(result_register());
4739 EmitNamedSuperPropertyLoad(prop);
4740 break;
4741 }
4742
4743 case KEYED_SUPER_PROPERTY: {
4744 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
4745 VisitForStackValue(
4746 prop->obj()->AsSuperPropertyReference()->home_object());
4747 VisitForAccumulatorValue(prop->key());
4748 __ push(result_register());
4749 __ push(MemOperand(esp, 2 * kPointerSize));
4750 __ push(MemOperand(esp, 2 * kPointerSize));
4751 __ push(result_register());
4752 EmitKeyedSuperPropertyLoad(prop);
4753 break;
4754 }
4755
4756 case KEYED_PROPERTY: {
4757 VisitForStackValue(prop->obj());
4758 VisitForStackValue(prop->key());
4759 __ mov(LoadDescriptor::ReceiverRegister(),
4760 Operand(esp, kPointerSize)); // Object.
4761 __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0)); // Key.
4762 EmitKeyedPropertyLoad(prop);
4763 break;
4764 }
4765
4766 case VARIABLE:
4767 UNREACHABLE();
4768 }
4769 }
4770
4771 // We need a second deoptimization point after loading the value
4772 // in case evaluating the property load my have a side effect.
4773 if (assign_type == VARIABLE) {
4774 PrepareForBailout(expr->expression(), TOS_REG);
4775 } else {
4776 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4777 }
4778
4779 // Inline smi case if we are in a loop.
4780 Label done, stub_call;
4781 JumpPatchSite patch_site(masm_);
4782 if (ShouldInlineSmiCase(expr->op())) {
4783 Label slow;
4784 patch_site.EmitJumpIfNotSmi(eax, &slow, Label::kNear);
4785
4786 // Save result for postfix expressions.
4787 if (expr->is_postfix()) {
4788 if (!context()->IsEffect()) {
4789 // Save the result on the stack. If we have a named or keyed property
4790 // we store the result under the receiver that is currently on top
4791 // of the stack.
4792 switch (assign_type) {
4793 case VARIABLE:
4794 __ push(eax);
4795 break;
4796 case NAMED_PROPERTY:
4797 __ mov(Operand(esp, kPointerSize), eax);
4798 break;
4799 case NAMED_SUPER_PROPERTY:
4800 __ mov(Operand(esp, 2 * kPointerSize), eax);
4801 break;
4802 case KEYED_PROPERTY:
4803 __ mov(Operand(esp, 2 * kPointerSize), eax);
4804 break;
4805 case KEYED_SUPER_PROPERTY:
4806 __ mov(Operand(esp, 3 * kPointerSize), eax);
4807 break;
4808 }
4809 }
4810 }
4811
4812 if (expr->op() == Token::INC) {
4813 __ add(eax, Immediate(Smi::FromInt(1)));
4814 } else {
4815 __ sub(eax, Immediate(Smi::FromInt(1)));
4816 }
4817 __ j(no_overflow, &done, Label::kNear);
4818 // Call stub. Undo operation first.
4819 if (expr->op() == Token::INC) {
4820 __ sub(eax, Immediate(Smi::FromInt(1)));
4821 } else {
4822 __ add(eax, Immediate(Smi::FromInt(1)));
4823 }
4824 __ jmp(&stub_call, Label::kNear);
4825 __ bind(&slow);
4826 }
4827 if (!is_strong(language_mode())) {
4828 ToNumberStub convert_stub(isolate());
4829 __ CallStub(&convert_stub);
4830 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4831 }
4832
4833 // Save result for postfix expressions.
4834 if (expr->is_postfix()) {
4835 if (!context()->IsEffect()) {
4836 // Save the result on the stack. If we have a named or keyed property
4837 // we store the result under the receiver that is currently on top
4838 // of the stack.
4839 switch (assign_type) {
4840 case VARIABLE:
4841 __ push(eax);
4842 break;
4843 case NAMED_PROPERTY:
4844 __ mov(Operand(esp, kPointerSize), eax);
4845 break;
4846 case NAMED_SUPER_PROPERTY:
4847 __ mov(Operand(esp, 2 * kPointerSize), eax);
4848 break;
4849 case KEYED_PROPERTY:
4850 __ mov(Operand(esp, 2 * kPointerSize), eax);
4851 break;
4852 case KEYED_SUPER_PROPERTY:
4853 __ mov(Operand(esp, 3 * kPointerSize), eax);
4854 break;
4855 }
4856 }
4857 }
4858
4859 SetExpressionPosition(expr);
4860
4861 // Call stub for +1/-1.
4862 __ bind(&stub_call);
4863 __ mov(edx, eax);
4864 __ mov(eax, Immediate(Smi::FromInt(1)));
4865 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op(),
4866 strength(language_mode())).code();
4867 CallIC(code, expr->CountBinOpFeedbackId());
4868 patch_site.EmitPatchInfo();
4869 __ bind(&done);
4870
4871 if (is_strong(language_mode())) {
4872 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4873 }
4874 // Store the value returned in eax.
4875 switch (assign_type) {
4876 case VARIABLE:
4877 if (expr->is_postfix()) {
4878 // Perform the assignment as if via '='.
4879 { EffectContext context(this);
4880 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4881 Token::ASSIGN, expr->CountSlot());
4882 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4883 context.Plug(eax);
4884 }
4885 // For all contexts except EffectContext We have the result on
4886 // top of the stack.
4887 if (!context()->IsEffect()) {
4888 context()->PlugTOS();
4889 }
4890 } else {
4891 // Perform the assignment as if via '='.
4892 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4893 Token::ASSIGN, expr->CountSlot());
4894 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4895 context()->Plug(eax);
4896 }
4897 break;
4898 case NAMED_PROPERTY: {
4899 __ mov(StoreDescriptor::NameRegister(),
4900 prop->key()->AsLiteral()->value());
4901 __ pop(StoreDescriptor::ReceiverRegister());
4902 if (FLAG_vector_stores) {
4903 EmitLoadStoreICSlot(expr->CountSlot());
4904 CallStoreIC();
4905 } else {
4906 CallStoreIC(expr->CountStoreFeedbackId());
4907 }
4908 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4909 if (expr->is_postfix()) {
4910 if (!context()->IsEffect()) {
4911 context()->PlugTOS();
4912 }
4913 } else {
4914 context()->Plug(eax);
4915 }
4916 break;
4917 }
4918 case NAMED_SUPER_PROPERTY: {
4919 EmitNamedSuperPropertyStore(prop);
4920 if (expr->is_postfix()) {
4921 if (!context()->IsEffect()) {
4922 context()->PlugTOS();
4923 }
4924 } else {
4925 context()->Plug(eax);
4926 }
4927 break;
4928 }
4929 case KEYED_SUPER_PROPERTY: {
4930 EmitKeyedSuperPropertyStore(prop);
4931 if (expr->is_postfix()) {
4932 if (!context()->IsEffect()) {
4933 context()->PlugTOS();
4934 }
4935 } else {
4936 context()->Plug(eax);
4937 }
4938 break;
4939 }
4940 case KEYED_PROPERTY: {
4941 __ pop(StoreDescriptor::NameRegister());
4942 __ pop(StoreDescriptor::ReceiverRegister());
4943 Handle<Code> ic =
4944 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
4945 if (FLAG_vector_stores) {
4946 EmitLoadStoreICSlot(expr->CountSlot());
4947 CallIC(ic);
4948 } else {
4949 CallIC(ic, expr->CountStoreFeedbackId());
4950 }
4951 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4952 if (expr->is_postfix()) {
4953 // Result is on the stack
4954 if (!context()->IsEffect()) {
4955 context()->PlugTOS();
4956 }
4957 } else {
4958 context()->Plug(eax);
4959 }
4960 break;
4961 }
4962 }
4963 }
4964
4965
4966 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4967 Expression* sub_expr,
4968 Handle<String> check) {
4969 Label materialize_true, materialize_false;
4970 Label* if_true = NULL;
4971 Label* if_false = NULL;
4972 Label* fall_through = NULL;
4973 context()->PrepareTest(&materialize_true, &materialize_false,
4974 &if_true, &if_false, &fall_through);
4975
4976 { AccumulatorValueContext context(this);
4977 VisitForTypeofValue(sub_expr);
4978 }
4979 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4980
4981 Factory* factory = isolate()->factory();
4982 if (String::Equals(check, factory->number_string())) {
4983 __ JumpIfSmi(eax, if_true);
4984 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
4985 isolate()->factory()->heap_number_map());
4986 Split(equal, if_true, if_false, fall_through);
4987 } else if (String::Equals(check, factory->string_string())) {
4988 __ JumpIfSmi(eax, if_false);
4989 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx);
4990 __ j(above_equal, if_false);
4991 // Check for undetectable objects => false.
4992 __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
4993 1 << Map::kIsUndetectable);
4994 Split(zero, if_true, if_false, fall_through);
4995 } else if (String::Equals(check, factory->symbol_string())) {
4996 __ JumpIfSmi(eax, if_false);
4997 __ CmpObjectType(eax, SYMBOL_TYPE, edx);
4998 Split(equal, if_true, if_false, fall_through);
4999 } else if (String::Equals(check, factory->float32x4_string())) {
5000 __ JumpIfSmi(eax, if_false);
5001 __ CmpObjectType(eax, FLOAT32X4_TYPE, edx);
5002 Split(equal, if_true, if_false, fall_through);
5003 } else if (String::Equals(check, factory->boolean_string())) {
5004 __ cmp(eax, isolate()->factory()->true_value());
5005 __ j(equal, if_true);
5006 __ cmp(eax, isolate()->factory()->false_value());
5007 Split(equal, if_true, if_false, fall_through);
5008 } else if (String::Equals(check, factory->undefined_string())) {
5009 __ cmp(eax, isolate()->factory()->undefined_value());
5010 __ j(equal, if_true);
5011 __ JumpIfSmi(eax, if_false);
5012 // Check for undetectable objects => true.
5013 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
5014 __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset));
5015 __ test(ecx, Immediate(1 << Map::kIsUndetectable));
5016 Split(not_zero, if_true, if_false, fall_through);
5017 } else if (String::Equals(check, factory->function_string())) {
5018 __ JumpIfSmi(eax, if_false);
5019 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5020 __ CmpObjectType(eax, JS_FUNCTION_TYPE, edx);
5021 __ j(equal, if_true);
5022 __ CmpInstanceType(edx, JS_FUNCTION_PROXY_TYPE);
5023 Split(equal, if_true, if_false, fall_through);
5024 } else if (String::Equals(check, factory->object_string())) {
5025 __ JumpIfSmi(eax, if_false);
5026 __ cmp(eax, isolate()->factory()->null_value());
5027 __ j(equal, if_true);
5028 __ CmpObjectType(eax, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, edx);
5029 __ j(below, if_false);
5030 __ CmpInstanceType(edx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5031 __ j(above, if_false);
5032 // Check for undetectable objects => false.
5033 __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
5034 1 << Map::kIsUndetectable);
5035 Split(zero, if_true, if_false, fall_through);
5036 } else {
5037 if (if_false != fall_through) __ jmp(if_false);
5038 }
5039 context()->Plug(if_true, if_false);
5040 }
5041
5042
5043 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
5044 Comment cmnt(masm_, "[ CompareOperation");
5045 SetExpressionPosition(expr);
5046
5047 // First we try a fast inlined version of the compare when one of
5048 // the operands is a literal.
5049 if (TryLiteralCompare(expr)) return;
5050
5051 // Always perform the comparison for its control flow. Pack the result
5052 // into the expression's context after the comparison is performed.
5053 Label materialize_true, materialize_false;
5054 Label* if_true = NULL;
5055 Label* if_false = NULL;
5056 Label* fall_through = NULL;
5057 context()->PrepareTest(&materialize_true, &materialize_false,
5058 &if_true, &if_false, &fall_through);
5059
5060 Token::Value op = expr->op();
5061 VisitForStackValue(expr->left());
5062 switch (op) {
5063 case Token::IN:
5064 VisitForStackValue(expr->right());
5065 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
5066 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
5067 __ cmp(eax, isolate()->factory()->true_value());
5068 Split(equal, if_true, if_false, fall_through);
5069 break;
5070
5071 case Token::INSTANCEOF: {
5072 VisitForStackValue(expr->right());
5073 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
5074 __ CallStub(&stub);
5075 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
5076 __ test(eax, eax);
5077 // The stub returns 0 for true.
5078 Split(zero, if_true, if_false, fall_through);
5079 break;
5080 }
5081
5082 default: {
5083 VisitForAccumulatorValue(expr->right());
5084 Condition cc = CompareIC::ComputeCondition(op);
5085 __ pop(edx);
5086
5087 bool inline_smi_code = ShouldInlineSmiCase(op);
5088 JumpPatchSite patch_site(masm_);
5089 if (inline_smi_code) {
5090 Label slow_case;
5091 __ mov(ecx, edx);
5092 __ or_(ecx, eax);
5093 patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
5094 __ cmp(edx, eax);
5095 Split(cc, if_true, if_false, NULL);
5096 __ bind(&slow_case);
5097 }
5098
5099 Handle<Code> ic = CodeFactory::CompareIC(
5100 isolate(), op, strength(language_mode())).code();
5101 CallIC(ic, expr->CompareOperationFeedbackId());
5102 patch_site.EmitPatchInfo();
5103
5104 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
5105 __ test(eax, eax);
5106 Split(cc, if_true, if_false, fall_through);
5107 }
5108 }
5109
5110 // Convert the result of the comparison into one expected for this
5111 // expression's context.
5112 context()->Plug(if_true, if_false);
5113 }
5114
5115
5116 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
5117 Expression* sub_expr,
5118 NilValue nil) {
5119 Label materialize_true, materialize_false;
5120 Label* if_true = NULL;
5121 Label* if_false = NULL;
5122 Label* fall_through = NULL;
5123 context()->PrepareTest(&materialize_true, &materialize_false,
5124 &if_true, &if_false, &fall_through);
5125
5126 VisitForAccumulatorValue(sub_expr);
5127 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
5128
5129 Handle<Object> nil_value = nil == kNullValue
5130 ? isolate()->factory()->null_value()
5131 : isolate()->factory()->undefined_value();
5132 if (expr->op() == Token::EQ_STRICT) {
5133 __ cmp(eax, nil_value);
5134 Split(equal, if_true, if_false, fall_through);
5135 } else {
5136 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
5137 CallIC(ic, expr->CompareOperationFeedbackId());
5138 __ test(eax, eax);
5139 Split(not_zero, if_true, if_false, fall_through);
5140 }
5141 context()->Plug(if_true, if_false);
5142 }
5143
5144
5145 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
5146 __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
5147 context()->Plug(eax);
5148 }
5149
5150
5151 Register FullCodeGenerator::result_register() {
5152 return eax;
5153 }
5154
5155
5156 Register FullCodeGenerator::context_register() {
5157 return esi;
5158 }
5159
5160
5161 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
5162 DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
5163 __ mov(Operand(ebp, frame_offset), value);
5164 }
5165
5166
5167 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
5168 __ mov(dst, ContextOperand(esi, context_index));
5169 }
5170
5171
5172 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
5173 Scope* declaration_scope = scope()->DeclarationScope();
5174 if (declaration_scope->is_script_scope() ||
5175 declaration_scope->is_module_scope()) {
5176 // Contexts nested in the native context have a canonical empty function
5177 // as their closure, not the anonymous closure containing the global
5178 // code. Pass a smi sentinel and let the runtime look up the empty
5179 // function.
5180 __ push(Immediate(Smi::FromInt(0)));
5181 } else if (declaration_scope->is_eval_scope()) {
5182 // Contexts nested inside eval code have the same closure as the context
5183 // calling eval, not the anonymous closure containing the eval code.
5184 // Fetch it from the context.
5185 __ push(ContextOperand(esi, Context::CLOSURE_INDEX));
5186 } else {
5187 DCHECK(declaration_scope->is_function_scope());
5188 __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
5189 }
5190 }
5191
5192
5193 // ----------------------------------------------------------------------------
5194 // Non-local control flow support.
5195
5196 void FullCodeGenerator::EnterFinallyBlock() {
5197 // Cook return address on top of stack (smi encoded Code* delta)
5198 DCHECK(!result_register().is(edx));
5199 __ pop(edx);
5200 __ sub(edx, Immediate(masm_->CodeObject()));
5201 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5202 STATIC_ASSERT(kSmiTag == 0);
5203 __ SmiTag(edx);
5204 __ push(edx);
5205
5206 // Store result register while executing finally block.
5207 __ push(result_register());
5208
5209 // Store pending message while executing finally block.
5210 ExternalReference pending_message_obj =
5211 ExternalReference::address_of_pending_message_obj(isolate());
5212 __ mov(edx, Operand::StaticVariable(pending_message_obj));
5213 __ push(edx);
5214
5215 ClearPendingMessage();
5216 }
5217
5218
5219 void FullCodeGenerator::ExitFinallyBlock() {
5220 DCHECK(!result_register().is(edx));
5221 // Restore pending message from stack.
5222 __ pop(edx);
5223 ExternalReference pending_message_obj =
5224 ExternalReference::address_of_pending_message_obj(isolate());
5225 __ mov(Operand::StaticVariable(pending_message_obj), edx);
5226
5227 // Restore result register from stack.
5228 __ pop(result_register());
5229
5230 // Uncook return address.
5231 __ pop(edx);
5232 __ SmiUntag(edx);
5233 __ add(edx, Immediate(masm_->CodeObject()));
5234 __ jmp(edx);
5235 }
5236
5237
5238 void FullCodeGenerator::ClearPendingMessage() {
5239 DCHECK(!result_register().is(edx));
5240 ExternalReference pending_message_obj =
5241 ExternalReference::address_of_pending_message_obj(isolate());
5242 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
5243 __ mov(Operand::StaticVariable(pending_message_obj), edx);
5244 }
5245
5246
5247 void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorICSlot slot) {
5248 DCHECK(FLAG_vector_stores && !slot.IsInvalid());
5249 __ mov(VectorStoreICTrampolineDescriptor::SlotRegister(),
5250 Immediate(SmiFromSlot(slot)));
5251 }
5252
5253
5254 #undef __
5255
5256
5257 static const byte kJnsInstruction = 0x79;
5258 static const byte kJnsOffset = 0x11;
5259 static const byte kNopByteOne = 0x66;
5260 static const byte kNopByteTwo = 0x90;
5261 #ifdef DEBUG
5262 static const byte kCallInstruction = 0xe8;
5263 #endif
5264
5265
5266 void BackEdgeTable::PatchAt(Code* unoptimized_code,
5267 Address pc,
5268 BackEdgeState target_state,
5269 Code* replacement_code) {
5270 Address call_target_address = pc - kIntSize;
5271 Address jns_instr_address = call_target_address - 3;
5272 Address jns_offset_address = call_target_address - 2;
5273
5274 switch (target_state) {
5275 case INTERRUPT:
5276 // sub <profiling_counter>, <delta> ;; Not changed
5277 // jns ok
5278 // call <interrupt stub>
5279 // ok:
5280 *jns_instr_address = kJnsInstruction;
5281 *jns_offset_address = kJnsOffset;
5282 break;
5283 case ON_STACK_REPLACEMENT:
5284 case OSR_AFTER_STACK_CHECK:
5285 // sub <profiling_counter>, <delta> ;; Not changed
5286 // nop
5287 // nop
5288 // call <on-stack replacment>
5289 // ok:
5290 *jns_instr_address = kNopByteOne;
5291 *jns_offset_address = kNopByteTwo;
5292 break;
5293 }
5294
5295 Assembler::set_target_address_at(call_target_address,
5296 unoptimized_code,
5297 replacement_code->entry());
5298 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
5299 unoptimized_code, call_target_address, replacement_code);
5300 }
5301
5302
5303 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
5304 Isolate* isolate,
5305 Code* unoptimized_code,
5306 Address pc) {
5307 Address call_target_address = pc - kIntSize;
5308 Address jns_instr_address = call_target_address - 3;
5309 DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
5310
5311 if (*jns_instr_address == kJnsInstruction) {
5312 DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
5313 DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
5314 Assembler::target_address_at(call_target_address,
5315 unoptimized_code));
5316 return INTERRUPT;
5317 }
5318
5319 DCHECK_EQ(kNopByteOne, *jns_instr_address);
5320 DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
5321
5322 if (Assembler::target_address_at(call_target_address, unoptimized_code) ==
5323 isolate->builtins()->OnStackReplacement()->entry()) {
5324 return ON_STACK_REPLACEMENT;
5325 }
5326
5327 DCHECK_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
5328 Assembler::target_address_at(call_target_address,
5329 unoptimized_code));
5330 return OSR_AFTER_STACK_CHECK;
5331 }
5332
5333
5334 } // namespace internal
5335 } // namespace v8
5336
5337 #endif // V8_TARGET_ARCH_X87
OLDNEW
« no previous file with comments | « src/x87/deoptimizer-x87.cc ('k') | test/cctest/compiler/function-tester.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698