| Index: third_party/android_prediction/suggest/core/layout/proximity_info_state_utils.cpp
|
| diff --git a/third_party/android_prediction/suggest/core/layout/proximity_info_state_utils.cpp b/third_party/android_prediction/suggest/core/layout/proximity_info_state_utils.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..d80be6263fe16678158450b2d26baec33065885a
|
| --- /dev/null
|
| +++ b/third_party/android_prediction/suggest/core/layout/proximity_info_state_utils.cpp
|
| @@ -0,0 +1,1015 @@
|
| +/*
|
| + * Copyright (C) 2013 The Android Open Source Project
|
| + *
|
| + * Licensed under the Apache License, Version 2.0 (the "License");
|
| + * you may not use this file except in compliance with the License.
|
| + * You may obtain a copy of the License at
|
| + *
|
| + * http://www.apache.org/licenses/LICENSE-2.0
|
| + *
|
| + * Unless required by applicable law or agreed to in writing, software
|
| + * distributed under the License is distributed on an "AS IS" BASIS,
|
| + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| + * See the License for the specific language governing permissions and
|
| + * limitations under the License.
|
| + */
|
| +
|
| +#include "third_party/android_prediction/suggest/core/layout/proximity_info_state_utils.h"
|
| +
|
| +#include <algorithm>
|
| +#include <cmath>
|
| +#include <cstring> // for memset()
|
| +#include <sstream> // for debug prints
|
| +#include <unordered_map>
|
| +#include <vector>
|
| +
|
| +#include "third_party/android_prediction/defines.h"
|
| +#include "third_party/android_prediction/suggest/core/layout/geometry_utils.h"
|
| +#include "third_party/android_prediction/suggest/core/layout/normal_distribution_2d.h"
|
| +#include "third_party/android_prediction/suggest/core/layout/proximity_info.h"
|
| +#include "third_party/android_prediction/suggest/core/layout/proximity_info_params.h"
|
| +
|
| +namespace latinime {
|
| +
|
| +/* static */ int ProximityInfoStateUtils::trimLastTwoTouchPoints(std::vector<int> *sampledInputXs,
|
| + std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes,
|
| + std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) {
|
| + const int nextStartIndex = (*sampledInputIndice)[sampledInputIndice->size() - 2];
|
| + popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
|
| + sampledInputIndice);
|
| + popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
|
| + sampledInputIndice);
|
| + return nextStartIndex;
|
| +}
|
| +
|
| +/* static */ int ProximityInfoStateUtils::updateTouchPoints(
|
| + const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
|
| + const int *const inputProximities, const int *const inputXCoordinates,
|
| + const int *const inputYCoordinates, const int *const times, const int *const pointerIds,
|
| + const int inputSize, const bool isGeometric, const int pointerId,
|
| + const int pushTouchPointStartIndex, std::vector<int> *sampledInputXs,
|
| + std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes,
|
| + std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) {
|
| + if (DEBUG_SAMPLING_POINTS) {
|
| + if (times) {
|
| + for (int i = 0; i < inputSize; ++i) {
|
| + AKLOGI("(%d) x %d, y %d, time %d",
|
| + i, inputXCoordinates[i], inputYCoordinates[i], times[i]);
|
| + }
|
| + }
|
| + }
|
| +#ifdef DO_ASSERT_TEST
|
| + if (times) {
|
| + for (int i = 0; i < inputSize; ++i) {
|
| + if (i > 0) {
|
| + if (times[i] < times[i - 1]) {
|
| + AKLOGI("Invalid time sequence. %d, %d", times[i - 1], times[i]);
|
| + ASSERT(false);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +#endif
|
| + const bool proximityOnly = !isGeometric
|
| + && (inputXCoordinates[0] < 0 || inputYCoordinates[0] < 0);
|
| + int lastInputIndex = pushTouchPointStartIndex;
|
| + for (int i = lastInputIndex; i < inputSize; ++i) {
|
| + const int pid = pointerIds ? pointerIds[i] : 0;
|
| + if (pointerId == pid) {
|
| + lastInputIndex = i;
|
| + }
|
| + }
|
| + if (DEBUG_GEO_FULL) {
|
| + AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex);
|
| + }
|
| + // Working space to save near keys distances for current, prev and prevprev input point.
|
| + NearKeysDistanceMap nearKeysDistances[3];
|
| + // These pointers are swapped for each inputs points.
|
| + NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
|
| + NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
|
| + NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
|
| + // "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
|
| + // the threshold we save that point, reset sumAngle. This aims to keep the figure of
|
| + // the curve.
|
| + float sumAngle = 0.0f;
|
| +
|
| + for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
|
| + // Assuming pointerId == 0 if pointerIds is null.
|
| + const int pid = pointerIds ? pointerIds[i] : 0;
|
| + if (DEBUG_GEO_FULL) {
|
| + AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid);
|
| + }
|
| + if (pointerId == pid) {
|
| + const int c = isGeometric ?
|
| + NOT_A_COORDINATE : getPrimaryCodePointAt(inputProximities, i);
|
| + const int x = proximityOnly ? NOT_A_COORDINATE : inputXCoordinates[i];
|
| + const int y = proximityOnly ? NOT_A_COORDINATE : inputYCoordinates[i];
|
| + const int time = times ? times[i] : -1;
|
| +
|
| + if (i > 1) {
|
| + const float prevAngle = GeometryUtils::getAngle(
|
| + inputXCoordinates[i - 2], inputYCoordinates[i - 2],
|
| + inputXCoordinates[i - 1], inputYCoordinates[i - 1]);
|
| + const float currentAngle = GeometryUtils::getAngle(
|
| + inputXCoordinates[i - 1], inputYCoordinates[i - 1], x, y);
|
| + sumAngle += GeometryUtils::getAngleDiff(prevAngle, currentAngle);
|
| + }
|
| +
|
| + if (pushTouchPoint(proximityInfo, maxPointToKeyLength, i, c, x, y, time,
|
| + isGeometric, isGeometric /* doSampling */, i == lastInputIndex,
|
| + sumAngle, currentNearKeysDistances, prevNearKeysDistances,
|
| + prevPrevNearKeysDistances, sampledInputXs, sampledInputYs, sampledInputTimes,
|
| + sampledLengthCache, sampledInputIndice)) {
|
| + // Previous point information was popped.
|
| + NearKeysDistanceMap *tmp = prevNearKeysDistances;
|
| + prevNearKeysDistances = currentNearKeysDistances;
|
| + currentNearKeysDistances = tmp;
|
| + } else {
|
| + NearKeysDistanceMap *tmp = prevPrevNearKeysDistances;
|
| + prevPrevNearKeysDistances = prevNearKeysDistances;
|
| + prevNearKeysDistances = currentNearKeysDistances;
|
| + currentNearKeysDistances = tmp;
|
| + sumAngle = 0.0f;
|
| + }
|
| + }
|
| + }
|
| + return sampledInputXs->size();
|
| +}
|
| +
|
| +/* static */ const int *ProximityInfoStateUtils::getProximityCodePointsAt(
|
| + const int *const inputProximities, const int index) {
|
| + return inputProximities + (index * MAX_PROXIMITY_CHARS_SIZE);
|
| +}
|
| +
|
| +/* static */ int ProximityInfoStateUtils::getPrimaryCodePointAt(const int *const inputProximities,
|
| + const int index) {
|
| + return getProximityCodePointsAt(inputProximities, index)[0];
|
| +}
|
| +
|
| +/* static */ void ProximityInfoStateUtils::initPrimaryInputWord(const int inputSize,
|
| + const int *const inputProximities, int *primaryInputWord) {
|
| + memset(primaryInputWord, 0, sizeof(primaryInputWord[0]) * MAX_WORD_LENGTH);
|
| + for (int i = 0; i < inputSize; ++i) {
|
| + primaryInputWord[i] = getPrimaryCodePointAt(inputProximities, i);
|
| + }
|
| +}
|
| +
|
| +/* static */ float ProximityInfoStateUtils::calculateSquaredDistanceFromSweetSpotCenter(
|
| + const ProximityInfo *const proximityInfo, const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs, const int keyIndex, const int inputIndex) {
|
| + const float sweetSpotCenterX = proximityInfo->getSweetSpotCenterXAt(keyIndex);
|
| + const float sweetSpotCenterY = proximityInfo->getSweetSpotCenterYAt(keyIndex);
|
| + const float inputX = static_cast<float>((*sampledInputXs)[inputIndex]);
|
| + const float inputY = static_cast<float>((*sampledInputYs)[inputIndex]);
|
| + return GeometryUtils::SQUARE_FLOAT(inputX - sweetSpotCenterX)
|
| + + GeometryUtils::SQUARE_FLOAT(inputY - sweetSpotCenterY);
|
| +}
|
| +
|
| +/* static */ float ProximityInfoStateUtils::calculateNormalizedSquaredDistance(
|
| + const ProximityInfo *const proximityInfo, const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs, const int keyIndex, const int inputIndex) {
|
| + if (keyIndex == NOT_AN_INDEX) {
|
| + return ProximityInfoParams::NOT_A_DISTANCE_FLOAT;
|
| + }
|
| + if (!proximityInfo->hasSweetSpotData(keyIndex)) {
|
| + return ProximityInfoParams::NOT_A_DISTANCE_FLOAT;
|
| + }
|
| + if (NOT_A_COORDINATE == (*sampledInputXs)[inputIndex]) {
|
| + return ProximityInfoParams::NOT_A_DISTANCE_FLOAT;
|
| + }
|
| + const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter(proximityInfo,
|
| + sampledInputXs, sampledInputYs, keyIndex, inputIndex);
|
| + const float squaredRadius = GeometryUtils::SQUARE_FLOAT(
|
| + proximityInfo->getSweetSpotRadiiAt(keyIndex));
|
| + return squaredDistance / squaredRadius;
|
| +}
|
| +
|
| +/* static */ void ProximityInfoStateUtils::initGeometricDistanceInfos(
|
| + const ProximityInfo *const proximityInfo, const int sampledInputSize,
|
| + const int lastSavedInputSize, const bool isGeometric,
|
| + const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs,
|
| + std::vector<float> *sampledNormalizedSquaredLengthCache) {
|
| + const int keyCount = proximityInfo->getKeyCount();
|
| + sampledNormalizedSquaredLengthCache->resize(sampledInputSize * keyCount);
|
| + for (int i = lastSavedInputSize; i < sampledInputSize; ++i) {
|
| + for (int k = 0; k < keyCount; ++k) {
|
| + const int index = i * keyCount + k;
|
| + const int x = (*sampledInputXs)[i];
|
| + const int y = (*sampledInputYs)[i];
|
| + const float normalizedSquaredDistance =
|
| + proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(
|
| + k, x, y, isGeometric);
|
| + (*sampledNormalizedSquaredLengthCache)[index] = normalizedSquaredDistance;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/* static */ void ProximityInfoStateUtils::popInputData(std::vector<int> *sampledInputXs,
|
| + std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes,
|
| + std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) {
|
| + sampledInputXs->pop_back();
|
| + sampledInputYs->pop_back();
|
| + sampledInputTimes->pop_back();
|
| + sampledLengthCache->pop_back();
|
| + sampledInputIndice->pop_back();
|
| +}
|
| +
|
| +/* static */ float ProximityInfoStateUtils::refreshSpeedRates(const int inputSize,
|
| + const int *const xCoordinates, const int *const yCoordinates, const int *const times,
|
| + const int lastSavedInputSize, const int sampledInputSize,
|
| + const std::vector<int> *const sampledInputXs, const std::vector<int> *const sampledInputYs,
|
| + const std::vector<int> *const sampledInputTimes,
|
| + const std::vector<int> *const sampledLengthCache,
|
| + const std::vector<int> *const sampledInputIndice, std::vector<float> *sampledSpeedRates,
|
| + std::vector<float> *sampledDirections) {
|
| + // Relative speed calculation.
|
| + const int sumDuration = sampledInputTimes->back() - sampledInputTimes->front();
|
| + const int sumLength = sampledLengthCache->back() - sampledLengthCache->front();
|
| + const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
|
| + sampledSpeedRates->resize(sampledInputSize);
|
| + for (int i = lastSavedInputSize; i < sampledInputSize; ++i) {
|
| + const int index = (*sampledInputIndice)[i];
|
| + int length = 0;
|
| + int duration = 0;
|
| +
|
| + // Calculate velocity by using distances and durations of
|
| + // ProximityInfoParams::NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and
|
| + // backward.
|
| + const int forwardNumPoints = std::min(inputSize - 1,
|
| + index + ProximityInfoParams::NUM_POINTS_FOR_SPEED_CALCULATION);
|
| + for (int j = index; j < forwardNumPoints; ++j) {
|
| + if (i < sampledInputSize - 1 && j >= (*sampledInputIndice)[i + 1]) {
|
| + break;
|
| + }
|
| + length += GeometryUtils::getDistanceInt(xCoordinates[j], yCoordinates[j],
|
| + xCoordinates[j + 1], yCoordinates[j + 1]);
|
| + duration += times[j + 1] - times[j];
|
| + }
|
| + const int backwardNumPoints = std::max(0,
|
| + index - ProximityInfoParams::NUM_POINTS_FOR_SPEED_CALCULATION);
|
| + for (int j = index - 1; j >= backwardNumPoints; --j) {
|
| + if (i > 0 && j < (*sampledInputIndice)[i - 1]) {
|
| + break;
|
| + }
|
| + // TODO: use mSampledLengthCache instead?
|
| + length += GeometryUtils::getDistanceInt(xCoordinates[j], yCoordinates[j],
|
| + xCoordinates[j + 1], yCoordinates[j + 1]);
|
| + duration += times[j + 1] - times[j];
|
| + }
|
| + if (duration == 0 || sumDuration == 0) {
|
| + // Cannot calculate speed; thus, it gives an average value (1.0);
|
| + (*sampledSpeedRates)[i] = 1.0f;
|
| + } else {
|
| + const float speed = static_cast<float>(length) / static_cast<float>(duration);
|
| + (*sampledSpeedRates)[i] = speed / averageSpeed;
|
| + }
|
| + }
|
| +
|
| + // Direction calculation.
|
| + sampledDirections->resize(sampledInputSize - 1);
|
| + for (int i = std::max(0, lastSavedInputSize - 1); i < sampledInputSize - 1; ++i) {
|
| + (*sampledDirections)[i] = getDirection(sampledInputXs, sampledInputYs, i, i + 1);
|
| + }
|
| + return averageSpeed;
|
| +}
|
| +
|
| +/* static */ void ProximityInfoStateUtils::refreshBeelineSpeedRates(const int mostCommonKeyWidth,
|
| + const float averageSpeed, const int inputSize, const int *const xCoordinates,
|
| + const int *const yCoordinates, const int *times, const int sampledInputSize,
|
| + const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs, const std::vector<int> *const inputIndice,
|
| + std::vector<int> *beelineSpeedPercentiles) {
|
| + if (DEBUG_SAMPLING_POINTS) {
|
| + AKLOGI("--- refresh beeline speed rates");
|
| + }
|
| + beelineSpeedPercentiles->resize(sampledInputSize);
|
| + for (int i = 0; i < sampledInputSize; ++i) {
|
| + (*beelineSpeedPercentiles)[i] = static_cast<int>(calculateBeelineSpeedRate(
|
| + mostCommonKeyWidth, averageSpeed, i, inputSize, xCoordinates, yCoordinates, times,
|
| + sampledInputSize, sampledInputXs, sampledInputYs, inputIndice) * MAX_PERCENTILE);
|
| + }
|
| +}
|
| +
|
| +/* static */float ProximityInfoStateUtils::getDirection(
|
| + const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs, const int index0, const int index1) {
|
| + ASSERT(sampledInputXs && sampledInputYs);
|
| + const int sampledInputSize =sampledInputXs->size();
|
| + if (index0 < 0 || index0 > sampledInputSize - 1) {
|
| + return 0.0f;
|
| + }
|
| + if (index1 < 0 || index1 > sampledInputSize - 1) {
|
| + return 0.0f;
|
| + }
|
| + const int x1 = (*sampledInputXs)[index0];
|
| + const int y1 = (*sampledInputYs)[index0];
|
| + const int x2 = (*sampledInputXs)[index1];
|
| + const int y2 = (*sampledInputYs)[index1];
|
| + return GeometryUtils::getAngle(x1, y1, x2, y2);
|
| +}
|
| +
|
| +// Calculating point to key distance for all near keys and returning the distance between
|
| +// the given point and the nearest key position.
|
| +/* static */ float ProximityInfoStateUtils::updateNearKeysDistances(
|
| + const ProximityInfo *const proximityInfo, const float maxPointToKeyLength, const int x,
|
| + const int y, const bool isGeometric, NearKeysDistanceMap *const currentNearKeysDistances) {
|
| + currentNearKeysDistances->clear();
|
| + const int keyCount = proximityInfo->getKeyCount();
|
| + float nearestKeyDistance = maxPointToKeyLength;
|
| + for (int k = 0; k < keyCount; ++k) {
|
| + const float dist = proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y,
|
| + isGeometric);
|
| + if (dist < ProximityInfoParams::NEAR_KEY_THRESHOLD_FOR_DISTANCE) {
|
| + currentNearKeysDistances->insert(std::pair<int, float>(k, dist));
|
| + }
|
| + if (nearestKeyDistance > dist) {
|
| + nearestKeyDistance = dist;
|
| + }
|
| + }
|
| + return nearestKeyDistance;
|
| +}
|
| +
|
| +// Check if previous point is at local minimum position to near keys.
|
| +/* static */ bool ProximityInfoStateUtils::isPrevLocalMin(
|
| + const NearKeysDistanceMap *const currentNearKeysDistances,
|
| + const NearKeysDistanceMap *const prevNearKeysDistances,
|
| + const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
|
| + for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
|
| + it != prevNearKeysDistances->end(); ++it) {
|
| + NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first);
|
| + NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first);
|
| + const bool isPrevPrevNear = (itPP == prevPrevNearKeysDistances->end()
|
| + || itPP->second > it->second + ProximityInfoParams::MARGIN_FOR_PREV_LOCAL_MIN);
|
| + const bool isCurrentNear = (itC == currentNearKeysDistances->end()
|
| + || itC->second > it->second + ProximityInfoParams::MARGIN_FOR_PREV_LOCAL_MIN);
|
| + if (isPrevPrevNear && isCurrentNear) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// Calculating a point score that indicates usefulness of the point.
|
| +/* static */ float ProximityInfoStateUtils::getPointScore(const int mostCommonKeyWidth,
|
| + const int x, const int y, const int time, const bool lastPoint, const float nearest,
|
| + const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
|
| + const NearKeysDistanceMap *const prevNearKeysDistances,
|
| + const NearKeysDistanceMap *const prevPrevNearKeysDistances,
|
| + std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs) {
|
| + const size_t size = sampledInputXs->size();
|
| + // If there is only one point, add this point. Besides, if the previous point's distance map
|
| + // is empty, we re-compute nearby keys distances from the current point.
|
| + // Note that the current point is the first point in the incremental input that needs to
|
| + // be re-computed.
|
| + if (size <= 1 || prevNearKeysDistances->empty()) {
|
| + return 0.0f;
|
| + }
|
| +
|
| + const int baseSampleRate = mostCommonKeyWidth;
|
| + const int distPrev = GeometryUtils::getDistanceInt(sampledInputXs->back(),
|
| + sampledInputYs->back(), (*sampledInputXs)[size - 2],
|
| + (*sampledInputYs)[size - 2]) * ProximityInfoParams::DISTANCE_BASE_SCALE;
|
| + float score = 0.0f;
|
| +
|
| + // Location
|
| + if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
|
| + prevPrevNearKeysDistances)) {
|
| + score += ProximityInfoParams::NOT_LOCALMIN_DISTANCE_SCORE;
|
| + } else if (nearest < ProximityInfoParams::NEAR_KEY_THRESHOLD_FOR_POINT_SCORE) {
|
| + // Promote points nearby keys
|
| + score += ProximityInfoParams::LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
| + }
|
| + // Angle
|
| + const float angle1 = GeometryUtils::getAngle(x, y, sampledInputXs->back(),
|
| + sampledInputYs->back());
|
| + const float angle2 = GeometryUtils::getAngle(sampledInputXs->back(), sampledInputYs->back(),
|
| + (*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]);
|
| + const float angleDiff = GeometryUtils::getAngleDiff(angle1, angle2);
|
| +
|
| + // Save corner
|
| + if (distPrev > baseSampleRate * ProximityInfoParams::CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
|
| + && (sumAngle > ProximityInfoParams::CORNER_SUM_ANGLE_THRESHOLD
|
| + || angleDiff > ProximityInfoParams::CORNER_ANGLE_THRESHOLD_FOR_POINT_SCORE)) {
|
| + score += ProximityInfoParams::CORNER_SCORE;
|
| + }
|
| + return score;
|
| +}
|
| +
|
| +// Sampling touch point and pushing information to vectors.
|
| +// Returning if previous point is popped or not.
|
| +/* static */ bool ProximityInfoStateUtils::pushTouchPoint(const ProximityInfo *const proximityInfo,
|
| + const int maxPointToKeyLength, const int inputIndex, const int nodeCodePoint, int x, int y,
|
| + const int time, const bool isGeometric, const bool doSampling,
|
| + const bool isLastPoint, const float sumAngle,
|
| + NearKeysDistanceMap *const currentNearKeysDistances,
|
| + const NearKeysDistanceMap *const prevNearKeysDistances,
|
| + const NearKeysDistanceMap *const prevPrevNearKeysDistances,
|
| + std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
|
| + std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
|
| + std::vector<int> *sampledInputIndice) {
|
| + const int mostCommonKeyWidth = proximityInfo->getMostCommonKeyWidth();
|
| +
|
| + size_t size = sampledInputXs->size();
|
| + bool popped = false;
|
| + if (nodeCodePoint < 0 && doSampling) {
|
| + const float nearest = updateNearKeysDistances(proximityInfo, maxPointToKeyLength, x, y,
|
| + isGeometric, currentNearKeysDistances);
|
| + const float score = getPointScore(mostCommonKeyWidth, x, y, time, isLastPoint, nearest,
|
| + sumAngle, currentNearKeysDistances, prevNearKeysDistances,
|
| + prevPrevNearKeysDistances, sampledInputXs, sampledInputYs);
|
| + if (score < 0) {
|
| + // Pop previous point because it would be useless.
|
| + popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
|
| + sampledInputIndice);
|
| + size = sampledInputXs->size();
|
| + popped = true;
|
| + } else {
|
| + popped = false;
|
| + }
|
| + // Check if the last point should be skipped.
|
| + if (isLastPoint && size > 0) {
|
| + if (GeometryUtils::getDistanceInt(x, y, sampledInputXs->back(), sampledInputYs->back())
|
| + * ProximityInfoParams::LAST_POINT_SKIP_DISTANCE_SCALE < mostCommonKeyWidth) {
|
| + // This point is not used because it's too close to the previous point.
|
| + if (DEBUG_GEO_FULL) {
|
| + AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
|
| + "width = %d", size, x, y, sampledInputXs->back(),
|
| + sampledInputYs->back(), GeometryUtils::getDistanceInt(
|
| + x, y, sampledInputXs->back(), sampledInputYs->back()),
|
| + mostCommonKeyWidth
|
| + / ProximityInfoParams::LAST_POINT_SKIP_DISTANCE_SCALE);
|
| + }
|
| + return popped;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (nodeCodePoint >= 0 && (x < 0 || y < 0)) {
|
| + const int keyId = proximityInfo->getKeyIndexOf(nodeCodePoint);
|
| + if (keyId >= 0) {
|
| + x = proximityInfo->getKeyCenterXOfKeyIdG(keyId, NOT_AN_INDEX, isGeometric);
|
| + y = proximityInfo->getKeyCenterYOfKeyIdG(keyId, NOT_AN_INDEX, isGeometric);
|
| + }
|
| + }
|
| +
|
| + // Pushing point information.
|
| + if (size > 0) {
|
| + sampledLengthCache->push_back(
|
| + sampledLengthCache->back() + GeometryUtils::getDistanceInt(
|
| + x, y, sampledInputXs->back(), sampledInputYs->back()));
|
| + } else {
|
| + sampledLengthCache->push_back(0);
|
| + }
|
| + sampledInputXs->push_back(x);
|
| + sampledInputYs->push_back(y);
|
| + sampledInputTimes->push_back(time);
|
| + sampledInputIndice->push_back(inputIndex);
|
| + if (DEBUG_GEO_FULL) {
|
| + AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d",
|
| + x, y, time, inputIndex, popped);
|
| + }
|
| + return popped;
|
| +}
|
| +
|
| +/* static */ float ProximityInfoStateUtils::calculateBeelineSpeedRate(const int mostCommonKeyWidth,
|
| + const float averageSpeed, const int id, const int inputSize, const int *const xCoordinates,
|
| + const int *const yCoordinates, const int *times, const int sampledInputSize,
|
| + const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs,
|
| + const std::vector<int> *const sampledInputIndices) {
|
| + if (sampledInputSize <= 0 || averageSpeed < 0.001f) {
|
| + if (DEBUG_SAMPLING_POINTS) {
|
| + AKLOGI("--- invalid state: cancel. size = %d, ave = %f",
|
| + sampledInputSize, averageSpeed);
|
| + }
|
| + return 1.0f;
|
| + }
|
| + const int lookupRadius = mostCommonKeyWidth
|
| + * ProximityInfoParams::LOOKUP_RADIUS_PERCENTILE / MAX_PERCENTILE;
|
| + const int x0 = (*sampledInputXs)[id];
|
| + const int y0 = (*sampledInputYs)[id];
|
| + const int actualInputIndex = (*sampledInputIndices)[id];
|
| + int tempTime = 0;
|
| + int tempBeelineDistance = 0;
|
| + int start = actualInputIndex;
|
| + // lookup forward
|
| + while (start > 0 && tempBeelineDistance < lookupRadius) {
|
| + tempTime += times[start] - times[start - 1];
|
| + --start;
|
| + tempBeelineDistance = GeometryUtils::getDistanceInt(x0, y0, xCoordinates[start],
|
| + yCoordinates[start]);
|
| + }
|
| + // Exclusive unless this is an edge point
|
| + if (start > 0 && start < actualInputIndex) {
|
| + ++start;
|
| + }
|
| + tempTime= 0;
|
| + tempBeelineDistance = 0;
|
| + int end = actualInputIndex;
|
| + // lookup backward
|
| + while (end < (inputSize - 1) && tempBeelineDistance < lookupRadius) {
|
| + tempTime += times[end + 1] - times[end];
|
| + ++end;
|
| + tempBeelineDistance = GeometryUtils::getDistanceInt(x0, y0, xCoordinates[end],
|
| + yCoordinates[end]);
|
| + }
|
| + // Exclusive unless this is an edge point
|
| + if (end > actualInputIndex && end < (inputSize - 1)) {
|
| + --end;
|
| + }
|
| +
|
| + if (start >= end) {
|
| + if (DEBUG_DOUBLE_LETTER) {
|
| + AKLOGI("--- double letter: start == end %d", start);
|
| + }
|
| + return 1.0f;
|
| + }
|
| +
|
| + const int x2 = xCoordinates[start];
|
| + const int y2 = yCoordinates[start];
|
| + const int x3 = xCoordinates[end];
|
| + const int y3 = yCoordinates[end];
|
| + const int beelineDistance = GeometryUtils::getDistanceInt(x2, y2, x3, y3);
|
| + int adjustedStartTime = times[start];
|
| + if (start == 0 && actualInputIndex == 0 && inputSize > 1) {
|
| + adjustedStartTime += ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS;
|
| + }
|
| + int adjustedEndTime = times[end];
|
| + if (end == (inputSize - 1) && inputSize > 1) {
|
| + adjustedEndTime -= ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS;
|
| + }
|
| + const int time = adjustedEndTime - adjustedStartTime;
|
| + if (time <= 0) {
|
| + return 1.0f;
|
| + }
|
| +
|
| + if (time >= ProximityInfoParams::STRONG_DOUBLE_LETTER_TIME_MILLIS){
|
| + return 0.0f;
|
| + }
|
| + if (DEBUG_DOUBLE_LETTER) {
|
| + AKLOGI("--- (%d, %d) double letter: start = %d, end = %d, dist = %d, time = %d,"
|
| + " speed = %f, ave = %f, val = %f, start time = %d, end time = %d",
|
| + id, (*sampledInputIndices)[id], start, end, beelineDistance, time,
|
| + (static_cast<float>(beelineDistance) / static_cast<float>(time)), averageSpeed,
|
| + ((static_cast<float>(beelineDistance) / static_cast<float>(time))
|
| + / averageSpeed), adjustedStartTime, adjustedEndTime);
|
| + }
|
| + // Offset 1%
|
| + // TODO: Detect double letter more smartly
|
| + return 0.01f + static_cast<float>(beelineDistance) / static_cast<float>(time) / averageSpeed;
|
| +}
|
| +
|
| +/* static */ float ProximityInfoStateUtils::getPointAngle(
|
| + const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs, const int index) {
|
| + if (!sampledInputXs || !sampledInputYs) {
|
| + return 0.0f;
|
| + }
|
| + const int sampledInputSize = sampledInputXs->size();
|
| + if (index <= 0 || index >= sampledInputSize - 1) {
|
| + return 0.0f;
|
| + }
|
| + const float previousDirection = getDirection(sampledInputXs, sampledInputYs, index - 1, index);
|
| + const float nextDirection = getDirection(sampledInputXs, sampledInputYs, index, index + 1);
|
| + const float directionDiff = GeometryUtils::getAngleDiff(previousDirection, nextDirection);
|
| + return directionDiff;
|
| +}
|
| +
|
| +/* static */ float ProximityInfoStateUtils::getPointsAngle(
|
| + const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs,
|
| + const int index0, const int index1, const int index2) {
|
| + if (!sampledInputXs || !sampledInputYs) {
|
| + return 0.0f;
|
| + }
|
| + const int sampledInputSize = sampledInputXs->size();
|
| + if (index0 < 0 || index0 > sampledInputSize - 1) {
|
| + return 0.0f;
|
| + }
|
| + if (index1 < 0 || index1 > sampledInputSize - 1) {
|
| + return 0.0f;
|
| + }
|
| + if (index2 < 0 || index2 > sampledInputSize - 1) {
|
| + return 0.0f;
|
| + }
|
| + const float previousDirection = getDirection(sampledInputXs, sampledInputYs, index0, index1);
|
| + const float nextDirection = getDirection(sampledInputXs, sampledInputYs, index1, index2);
|
| + return GeometryUtils::getAngleDiff(previousDirection, nextDirection);
|
| +}
|
| +
|
| +// This function basically converts from a length to an edit distance. Accordingly, it's obviously
|
| +// wrong to compare with mMaxPointToKeyLength.
|
| +/* static */ float ProximityInfoStateUtils::getPointToKeyByIdLength(const float maxPointToKeyLength,
|
| + const std::vector<float> *const sampledNormalizedSquaredLengthCache, const int keyCount,
|
| + const int inputIndex, const int keyId) {
|
| + if (keyId != NOT_AN_INDEX) {
|
| + const int index = inputIndex * keyCount + keyId;
|
| + return std::min((*sampledNormalizedSquaredLengthCache)[index], maxPointToKeyLength);
|
| + }
|
| + // If the char is not a key on the keyboard then return the max length.
|
| + return static_cast<float>(MAX_VALUE_FOR_WEIGHTING);
|
| +}
|
| +
|
| +// Updates probabilities of aligning to some keys and skipping.
|
| +// Word suggestion should be based on this probabilities.
|
| +/* static */ void ProximityInfoStateUtils::updateAlignPointProbabilities(
|
| + const float maxPointToKeyLength, const int mostCommonKeyWidth, const int keyCount,
|
| + const int start, const int sampledInputSize, const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs,
|
| + const std::vector<float> *const sampledSpeedRates,
|
| + const std::vector<int> *const sampledLengthCache,
|
| + const std::vector<float> *const sampledNormalizedSquaredLengthCache,
|
| + const ProximityInfo *const proximityInfo,
|
| + std::vector<std::unordered_map<int, float>> *charProbabilities) {
|
| + charProbabilities->resize(sampledInputSize);
|
| + // Calculates probabilities of using a point as a correlated point with the character
|
| + // for each point.
|
| + for (int i = start; i < sampledInputSize; ++i) {
|
| + (*charProbabilities)[i].clear();
|
| + // First, calculates skip probability. Starts from MAX_SKIP_PROBABILITY.
|
| + // Note that all values that are multiplied to this probability should be in [0.0, 1.0];
|
| + float skipProbability = ProximityInfoParams::MAX_SKIP_PROBABILITY;
|
| +
|
| + const float currentAngle = getPointAngle(sampledInputXs, sampledInputYs, i);
|
| + const float speedRate = (*sampledSpeedRates)[i];
|
| +
|
| + float nearestKeyDistance = static_cast<float>(MAX_VALUE_FOR_WEIGHTING);
|
| + for (int j = 0; j < keyCount; ++j) {
|
| + const float distance = getPointToKeyByIdLength(
|
| + maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount, i, j);
|
| + if (distance < nearestKeyDistance) {
|
| + nearestKeyDistance = distance;
|
| + }
|
| + }
|
| +
|
| + if (i == 0) {
|
| + skipProbability *= std::min(1.0f,
|
| + nearestKeyDistance * ProximityInfoParams::NEAREST_DISTANCE_WEIGHT
|
| + + ProximityInfoParams::NEAREST_DISTANCE_BIAS);
|
| + // Promote the first point
|
| + skipProbability *= ProximityInfoParams::SKIP_FIRST_POINT_PROBABILITY;
|
| + } else if (i == sampledInputSize - 1) {
|
| + skipProbability *= std::min(1.0f,
|
| + nearestKeyDistance * ProximityInfoParams::NEAREST_DISTANCE_WEIGHT_FOR_LAST
|
| + + ProximityInfoParams::NEAREST_DISTANCE_BIAS_FOR_LAST);
|
| + // Promote the last point
|
| + skipProbability *= ProximityInfoParams::SKIP_LAST_POINT_PROBABILITY;
|
| + } else {
|
| + // If the current speed is relatively slower than adjacent keys, we promote this point.
|
| + if ((*sampledSpeedRates)[i - 1] - ProximityInfoParams::SPEED_MARGIN > speedRate
|
| + && speedRate
|
| + < (*sampledSpeedRates)[i + 1] - ProximityInfoParams::SPEED_MARGIN) {
|
| + if (currentAngle < ProximityInfoParams::CORNER_ANGLE_THRESHOLD) {
|
| + skipProbability *= std::min(1.0f, speedRate
|
| + * ProximityInfoParams::SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY);
|
| + } else {
|
| + // If the angle is small enough, we promote this point more. (e.g. pit vs put)
|
| + skipProbability *= std::min(1.0f,
|
| + speedRate * ProximityInfoParams::SPEED_WEIGHT_FOR_SKIP_PROBABILITY
|
| + + ProximityInfoParams::MIN_SPEED_RATE_FOR_SKIP_PROBABILITY);
|
| + }
|
| + }
|
| +
|
| + skipProbability *= std::min(1.0f,
|
| + speedRate * nearestKeyDistance * ProximityInfoParams::NEAREST_DISTANCE_WEIGHT
|
| + + ProximityInfoParams::NEAREST_DISTANCE_BIAS);
|
| +
|
| + // Adjusts skip probability by a rate depending on angle.
|
| + // ANGLE_RATE of skipProbability is adjusted by current angle.
|
| + skipProbability *= (M_PI_F - currentAngle) / M_PI_F * ProximityInfoParams::ANGLE_WEIGHT
|
| + + (1.0f - ProximityInfoParams::ANGLE_WEIGHT);
|
| + if (currentAngle > ProximityInfoParams::DEEP_CORNER_ANGLE_THRESHOLD) {
|
| + skipProbability *= ProximityInfoParams::SKIP_DEEP_CORNER_PROBABILITY;
|
| + }
|
| + // We assume the angle of this point is the angle for point[i], point[i - 2]
|
| + // and point[i - 3]. The reason why we don't use the angle for point[i], point[i - 1]
|
| + // and point[i - 2] is this angle can be more affected by the noise.
|
| + const float prevAngle = getPointsAngle(sampledInputXs, sampledInputYs, i, i - 2, i - 3);
|
| + if (i >= 3 && prevAngle < ProximityInfoParams::STRAIGHT_ANGLE_THRESHOLD
|
| + && currentAngle > ProximityInfoParams::CORNER_ANGLE_THRESHOLD) {
|
| + skipProbability *= ProximityInfoParams::SKIP_CORNER_PROBABILITY;
|
| + }
|
| + }
|
| +
|
| + // probabilities must be in [0.0, ProximityInfoParams::MAX_SKIP_PROBABILITY];
|
| + ASSERT(skipProbability >= 0.0f);
|
| + ASSERT(skipProbability <= ProximityInfoParams::MAX_SKIP_PROBABILITY);
|
| + (*charProbabilities)[i][NOT_AN_INDEX] = skipProbability;
|
| +
|
| + // Second, calculates key probabilities by dividing the rest probability
|
| + // (1.0f - skipProbability).
|
| + const float inputCharProbability = 1.0f - skipProbability;
|
| +
|
| + const float speedMultipliedByAngleRate = std::min(speedRate * currentAngle / M_PI_F
|
| + * ProximityInfoParams::SPEEDxANGLE_WEIGHT_FOR_STANDARD_DEVIATION,
|
| + ProximityInfoParams::MAX_SPEEDxANGLE_RATE_FOR_STANDARD_DEVIATION);
|
| + const float speedMultipliedByNearestKeyDistanceRate = std::min(
|
| + speedRate * nearestKeyDistance
|
| + * ProximityInfoParams::SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DEVIATION,
|
| + ProximityInfoParams::MAX_SPEEDxNEAREST_RATE_FOR_STANDARD_DEVIATION);
|
| + const float sigma = (speedMultipliedByAngleRate + speedMultipliedByNearestKeyDistanceRate
|
| + + ProximityInfoParams::MIN_STANDARD_DEVIATION) * mostCommonKeyWidth;
|
| + float theta = 0.0f;
|
| + // TODO: Use different metrics to compute sigmas.
|
| + float sigmaX = sigma;
|
| + float sigmaY = sigma;
|
| + if (i == 0 && i != sampledInputSize - 1) {
|
| + // First point
|
| + theta = getDirection(sampledInputXs, sampledInputYs, i + 1, i);
|
| + sigmaX *= ProximityInfoParams::STANDARD_DEVIATION_X_WEIGHT_FOR_FIRST;
|
| + sigmaY *= ProximityInfoParams::STANDARD_DEVIATION_Y_WEIGHT_FOR_FIRST;
|
| + } else {
|
| + if (i == sampledInputSize - 1) {
|
| + // Last point
|
| + sigmaX *= ProximityInfoParams::STANDARD_DEVIATION_X_WEIGHT_FOR_LAST;
|
| + sigmaY *= ProximityInfoParams::STANDARD_DEVIATION_Y_WEIGHT_FOR_LAST;
|
| + } else {
|
| + sigmaX *= ProximityInfoParams::STANDARD_DEVIATION_X_WEIGHT;
|
| + sigmaY *= ProximityInfoParams::STANDARD_DEVIATION_Y_WEIGHT;
|
| + }
|
| + theta = getDirection(sampledInputXs, sampledInputYs, i, i - 1);
|
| + }
|
| + NormalDistribution2D distribution((*sampledInputXs)[i], sigmaX, (*sampledInputYs)[i],
|
| + sigmaY, theta);
|
| + // Summing up probability densities of all near keys.
|
| + float sumOfProbabilityDensities = 0.0f;
|
| + for (int j = 0; j < keyCount; ++j) {
|
| + sumOfProbabilityDensities += distribution.getProbabilityDensity(
|
| + proximityInfo->getKeyCenterXOfKeyIdG(j,
|
| + NOT_A_COORDINATE /* referencePointX */, true /* isGeometric */),
|
| + proximityInfo->getKeyCenterYOfKeyIdG(j,
|
| + NOT_A_COORDINATE /* referencePointY */, true /* isGeometric */));
|
| + }
|
| +
|
| + // Split the probability of an input point to keys that are close to the input point.
|
| + for (int j = 0; j < keyCount; ++j) {
|
| + const float probabilityDensity = distribution.getProbabilityDensity(
|
| + proximityInfo->getKeyCenterXOfKeyIdG(j,
|
| + NOT_A_COORDINATE /* referencePointX */, true /* isGeometric */),
|
| + proximityInfo->getKeyCenterYOfKeyIdG(j,
|
| + NOT_A_COORDINATE /* referencePointY */, true /* isGeometric */));
|
| + const float probability = inputCharProbability * probabilityDensity
|
| + / sumOfProbabilityDensities;
|
| + (*charProbabilities)[i][j] = probability;
|
| + }
|
| + }
|
| +
|
| + if (DEBUG_POINTS_PROBABILITY) {
|
| + for (int i = 0; i < sampledInputSize; ++i) {
|
| + std::stringstream sstream;
|
| + sstream << i << ", ";
|
| + sstream << "(" << (*sampledInputXs)[i] << ", " << (*sampledInputYs)[i] << "), ";
|
| + sstream << "Speed: "<< (*sampledSpeedRates)[i] << ", ";
|
| + sstream << "Angle: "<< getPointAngle(sampledInputXs, sampledInputYs, i) << ", \n";
|
| +
|
| + for (std::unordered_map<int, float>::iterator it = (*charProbabilities)[i].begin();
|
| + it != (*charProbabilities)[i].end(); ++it) {
|
| + if (it->first == NOT_AN_INDEX) {
|
| + sstream << it->first
|
| + << "(skip):"
|
| + << it->second
|
| + << "\n";
|
| + } else {
|
| + sstream << it->first
|
| + << "("
|
| + //<< static_cast<char>(mProximityInfo->getCodePointOf(it->first))
|
| + << "):"
|
| + << it->second
|
| + << "\n";
|
| + }
|
| + }
|
| + AKLOGI("%s", sstream.str().c_str());
|
| + }
|
| + }
|
| +
|
| + // Decrease key probabilities of points which don't have the highest probability of that key
|
| + // among nearby points. Probabilities of the first point and the last point are not suppressed.
|
| + for (int i = std::max(start, 1); i < sampledInputSize; ++i) {
|
| + for (int j = i + 1; j < sampledInputSize; ++j) {
|
| + if (!suppressCharProbabilities(
|
| + mostCommonKeyWidth, sampledInputSize, sampledLengthCache, i, j,
|
| + charProbabilities)) {
|
| + break;
|
| + }
|
| + }
|
| + for (int j = i - 1; j >= std::max(start, 0); --j) {
|
| + if (!suppressCharProbabilities(
|
| + mostCommonKeyWidth, sampledInputSize, sampledLengthCache, i, j,
|
| + charProbabilities)) {
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Converting from raw probabilities to log probabilities to calculate spatial distance.
|
| + for (int i = start; i < sampledInputSize; ++i) {
|
| + for (int j = 0; j < keyCount; ++j) {
|
| + std::unordered_map<int, float>::iterator it = (*charProbabilities)[i].find(j);
|
| + if (it == (*charProbabilities)[i].end()){
|
| + continue;
|
| + } else if(it->second < ProximityInfoParams::MIN_PROBABILITY) {
|
| + // Erases from near keys vector because it has very low probability.
|
| + (*charProbabilities)[i].erase(j);
|
| + } else {
|
| + it->second = -logf(it->second);
|
| + }
|
| + }
|
| + (*charProbabilities)[i][NOT_AN_INDEX] = -logf((*charProbabilities)[i][NOT_AN_INDEX]);
|
| + }
|
| +}
|
| +
|
| +/* static */ void ProximityInfoStateUtils::updateSampledSearchKeySets(
|
| + const ProximityInfo *const proximityInfo, const int sampledInputSize,
|
| + const int lastSavedInputSize, const std::vector<int> *const sampledLengthCache,
|
| + const std::vector<std::unordered_map<int, float>> *const charProbabilities,
|
| + std::vector<NearKeycodesSet> *sampledSearchKeySets,
|
| + std::vector<std::vector<int>> *sampledSearchKeyVectors) {
|
| + sampledSearchKeySets->resize(sampledInputSize);
|
| + sampledSearchKeyVectors->resize(sampledInputSize);
|
| + const int readForwordLength = static_cast<int>(
|
| + hypotf(proximityInfo->getKeyboardWidth(), proximityInfo->getKeyboardHeight())
|
| + * ProximityInfoParams::SEARCH_KEY_RADIUS_RATIO);
|
| + for (int i = 0; i < sampledInputSize; ++i) {
|
| + if (i >= lastSavedInputSize) {
|
| + (*sampledSearchKeySets)[i].reset();
|
| + }
|
| + for (int j = std::max(i, lastSavedInputSize); j < sampledInputSize; ++j) {
|
| + // TODO: Investigate if this is required. This may not fail.
|
| + if ((*sampledLengthCache)[j] - (*sampledLengthCache)[i] >= readForwordLength) {
|
| + break;
|
| + }
|
| + for(const auto& charProbability : charProbabilities->at(j)) {
|
| + if (charProbability.first == NOT_AN_INDEX) {
|
| + continue;
|
| + }
|
| + (*sampledSearchKeySets)[i].set(charProbability.first);
|
| + }
|
| + }
|
| + }
|
| + const int keyCount = proximityInfo->getKeyCount();
|
| + for (int i = 0; i < sampledInputSize; ++i) {
|
| + std::vector<int> *searchKeyVector = &(*sampledSearchKeyVectors)[i];
|
| + searchKeyVector->clear();
|
| + for (int j = 0; j < keyCount; ++j) {
|
| + if ((*sampledSearchKeySets)[i].test(j)) {
|
| + const int keyCodePoint = proximityInfo->getCodePointOf(j);
|
| + if (std::find(searchKeyVector->begin(), searchKeyVector->end(), keyCodePoint)
|
| + == searchKeyVector->end()) {
|
| + searchKeyVector->push_back(keyCodePoint);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
|
| +// increases char probabilities of index1 by checking probabilities of index0.
|
| +/* static */ bool ProximityInfoStateUtils::suppressCharProbabilities(const int mostCommonKeyWidth,
|
| + const int sampledInputSize, const std::vector<int> *const lengthCache,
|
| + const int index0, const int index1,
|
| + std::vector<std::unordered_map<int, float>> *charProbabilities) {
|
| + ASSERT(0 <= index0 && index0 < sampledInputSize);
|
| + ASSERT(0 <= index1 && index1 < sampledInputSize);
|
| + const float keyWidthFloat = static_cast<float>(mostCommonKeyWidth);
|
| + const float diff = fabsf(static_cast<float>((*lengthCache)[index0] - (*lengthCache)[index1]));
|
| + if (diff > keyWidthFloat * ProximityInfoParams::SUPPRESSION_LENGTH_WEIGHT) {
|
| + return false;
|
| + }
|
| + const float suppressionRate = ProximityInfoParams::MIN_SUPPRESSION_RATE
|
| + + diff / keyWidthFloat / ProximityInfoParams::SUPPRESSION_LENGTH_WEIGHT
|
| + * ProximityInfoParams::SUPPRESSION_WEIGHT;
|
| + for (std::unordered_map<int, float>::iterator it = (*charProbabilities)[index0].begin();
|
| + it != (*charProbabilities)[index0].end(); ++it) {
|
| + std::unordered_map<int, float>::iterator it2 = (*charProbabilities)[index1].find(it->first);
|
| + if (it2 != (*charProbabilities)[index1].end() && it->second < it2->second) {
|
| + const float newProbability = it->second * suppressionRate;
|
| + const float suppression = it->second - newProbability;
|
| + it->second = newProbability;
|
| + // mCharProbabilities[index0][NOT_AN_INDEX] is the probability of skipping this point.
|
| + (*charProbabilities)[index0][NOT_AN_INDEX] += suppression;
|
| +
|
| + // Add the probability of the same key nearby index1
|
| + const float probabilityGain = std::min(suppression
|
| + * ProximityInfoParams::SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN,
|
| + (*charProbabilities)[index1][NOT_AN_INDEX]
|
| + * ProximityInfoParams::SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN);
|
| + it2->second += probabilityGain;
|
| + (*charProbabilities)[index1][NOT_AN_INDEX] -= probabilityGain;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +/* static */ bool ProximityInfoStateUtils::checkAndReturnIsContinuousSuggestionPossible(
|
| + const int inputSize, const int *const xCoordinates, const int *const yCoordinates,
|
| + const int *const times, const int sampledInputSize,
|
| + const std::vector<int> *const sampledInputXs, const std::vector<int> *const sampledInputYs,
|
| + const std::vector<int> *const sampledTimes,
|
| + const std::vector<int> *const sampledInputIndices) {
|
| + if (inputSize < sampledInputSize) {
|
| + return false;
|
| + }
|
| + for (int i = 0; i < sampledInputSize; ++i) {
|
| + const int index = (*sampledInputIndices)[i];
|
| + if (index >= inputSize) {
|
| + return false;
|
| + }
|
| + if (xCoordinates[index] != (*sampledInputXs)[i]
|
| + || yCoordinates[index] != (*sampledInputYs)[i]) {
|
| + return false;
|
| + }
|
| + if (!times) {
|
| + continue;
|
| + }
|
| + if (times[index] != (*sampledTimes)[i]) {
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Get a word that is detected by tracing the most probable string into codePointBuf and
|
| +// returns probability of generating the word.
|
| +/* static */ float ProximityInfoStateUtils::getMostProbableString(
|
| + const ProximityInfo *const proximityInfo, const int sampledInputSize,
|
| + const std::vector<std::unordered_map<int, float>> *const charProbabilities,
|
| + int *const codePointBuf) {
|
| + ASSERT(sampledInputSize >= 0);
|
| + memset(codePointBuf, 0, sizeof(codePointBuf[0]) * MAX_WORD_LENGTH);
|
| + int index = 0;
|
| + float sumLogProbability = 0.0f;
|
| + // TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
|
| + for (int i = 0; i < sampledInputSize && index < MAX_WORD_LENGTH - 1; ++i) {
|
| + float minLogProbability = static_cast<float>(MAX_VALUE_FOR_WEIGHTING);
|
| + int character = NOT_AN_INDEX;
|
| + for (std::unordered_map<int, float>::const_iterator it = (*charProbabilities)[i].begin();
|
| + it != (*charProbabilities)[i].end(); ++it) {
|
| + const float logProbability = (it->first != NOT_AN_INDEX)
|
| + ? it->second + ProximityInfoParams::DEMOTION_LOG_PROBABILITY : it->second;
|
| + if (logProbability < minLogProbability) {
|
| + minLogProbability = logProbability;
|
| + character = it->first;
|
| + }
|
| + }
|
| + if (character != NOT_AN_INDEX) {
|
| + const int codePoint = proximityInfo->getCodePointOf(character);
|
| + if (codePoint == NOT_A_CODE_POINT) {
|
| + AKLOGE("Key index(%d) is not found. Cannot construct most probable string",
|
| + character);
|
| + ASSERT(false);
|
| + // Make the length zero, which means most probable string won't be used.
|
| + index = 0;
|
| + break;
|
| + }
|
| + codePointBuf[index] = codePoint;
|
| + index++;
|
| + }
|
| + sumLogProbability += minLogProbability;
|
| + }
|
| + codePointBuf[index] = '\0';
|
| + return sumLogProbability;
|
| +}
|
| +
|
| +/* static */ void ProximityInfoStateUtils::dump(const bool isGeometric, const int inputSize,
|
| + const int *const inputXCoordinates, const int *const inputYCoordinates,
|
| + const int sampledInputSize, const std::vector<int> *const sampledInputXs,
|
| + const std::vector<int> *const sampledInputYs,
|
| + const std::vector<int> *const sampledTimes,
|
| + const std::vector<float> *const sampledSpeedRates,
|
| + const std::vector<int> *const sampledBeelineSpeedPercentiles) {
|
| + if (DEBUG_GEO_FULL) {
|
| + for (int i = 0; i < sampledInputSize; ++i) {
|
| + AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, (*sampledInputXs)[i],
|
| + (*sampledInputYs)[i], sampledTimes ? (*sampledTimes)[i] : -1);
|
| + }
|
| + }
|
| +
|
| + std::stringstream originalX, originalY, sampledX, sampledY;
|
| + for (int i = 0; i < inputSize; ++i) {
|
| + originalX << inputXCoordinates[i];
|
| + originalY << inputYCoordinates[i];
|
| + if (i != inputSize - 1) {
|
| + originalX << ";";
|
| + originalY << ";";
|
| + }
|
| + }
|
| + AKLOGI("===== sampled points =====");
|
| + for (int i = 0; i < sampledInputSize; ++i) {
|
| + if (isGeometric) {
|
| + AKLOGI("%d: x = %d, y = %d, time = %d, relative speed = %.4f, beeline speed = %d",
|
| + i, (*sampledInputXs)[i], (*sampledInputYs)[i], (*sampledTimes)[i],
|
| + (*sampledSpeedRates)[i], (*sampledBeelineSpeedPercentiles)[i]);
|
| + }
|
| + sampledX << (*sampledInputXs)[i];
|
| + sampledY << (*sampledInputYs)[i];
|
| + if (i != sampledInputSize - 1) {
|
| + sampledX << ";";
|
| + sampledY << ";";
|
| + }
|
| + }
|
| + AKLOGI("original points:\n%s, %s,\nsampled points:\n%s, %s,\n",
|
| + originalX.str().c_str(), originalY.str().c_str(), sampledX.str().c_str(),
|
| + sampledY.str().c_str());
|
| +}
|
| +} // namespace latinime
|
|
|