Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1041)

Side by Side Diff: cc/picture_layer_tiling.cc

Issue 12471007: Part 8 of cc/ directory shuffles: resources (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Created 7 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « cc/picture_layer_tiling.h ('k') | cc/picture_layer_tiling_set.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cc/picture_layer_tiling.h"
6
7 #include <cmath>
8
9 #include "base/debug/trace_event.h"
10 #include "cc/base/math_util.h"
11 #include "ui/gfx/point_conversions.h"
12 #include "ui/gfx/rect_conversions.h"
13 #include "ui/gfx/safe_integer_conversions.h"
14 #include "ui/gfx/size_conversions.h"
15
16 namespace cc {
17
18 scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
19 float contents_scale) {
20 return make_scoped_ptr(new PictureLayerTiling(contents_scale));
21 }
22
23 scoped_ptr<PictureLayerTiling> PictureLayerTiling::Clone() const {
24 return make_scoped_ptr(new PictureLayerTiling(*this));
25 }
26
27 PictureLayerTiling::PictureLayerTiling(float contents_scale)
28 : client_(NULL),
29 contents_scale_(contents_scale),
30 tiling_data_(gfx::Size(), gfx::Size(), true),
31 resolution_(NON_IDEAL_RESOLUTION),
32 last_source_frame_number_(0),
33 last_impl_frame_time_(0) {
34 }
35
36 PictureLayerTiling::~PictureLayerTiling() {
37 }
38
39 void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) {
40 client_ = client;
41 }
42
43 gfx::Rect PictureLayerTiling::ContentRect() const {
44 return gfx::Rect(tiling_data_.total_size());
45 }
46
47 gfx::SizeF PictureLayerTiling::ContentSizeF() const {
48 return gfx::ScaleSize(layer_bounds_, contents_scale_);
49 }
50
51 Tile* PictureLayerTiling::TileAt(int i, int j) const {
52 TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j));
53 if (iter == tiles_.end())
54 return NULL;
55 return iter->second.get();
56 }
57
58 void PictureLayerTiling::CreateTile(int i, int j) {
59 gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j);
60 tile_rect.set_size(tiling_data_.max_texture_size());
61 TileMapKey key(i, j);
62 DCHECK(tiles_.find(key) == tiles_.end());
63 scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect);
64 if (tile)
65 tiles_[key] = tile;
66 }
67
68 Region PictureLayerTiling::OpaqueRegionInContentRect(
69 const gfx::Rect& content_rect) const {
70 Region opaque_region;
71 // TODO(enne): implement me
72 return opaque_region;
73 }
74
75 void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) {
76 if (layer_bounds_ == layer_bounds)
77 return;
78
79 gfx::Size old_layer_bounds = layer_bounds_;
80 layer_bounds_ = layer_bounds;
81 gfx::Size old_content_bounds = tiling_data_.total_size();
82 gfx::Size content_bounds =
83 gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_));
84
85 tiling_data_.SetTotalSize(content_bounds);
86 if (layer_bounds_.IsEmpty()) {
87 tiles_.clear();
88 return;
89 }
90
91 gfx::Size tile_size = client_->CalculateTileSize(
92 tiling_data_.max_texture_size(),
93 content_bounds);
94 if (tile_size != tiling_data_.max_texture_size()) {
95 tiling_data_.SetMaxTextureSize(tile_size);
96 tiles_.clear();
97 CreateTilesFromLayerRect(gfx::Rect(layer_bounds_));
98 return;
99 }
100
101 // Any tiles outside our new bounds are invalid and should be dropped.
102 if (old_content_bounds.width() > content_bounds.width() ||
103 old_content_bounds.height() > content_bounds.height()) {
104 int right =
105 tiling_data_.TileXIndexFromSrcCoord(content_bounds.width() - 1);
106 int bottom =
107 tiling_data_.TileYIndexFromSrcCoord(content_bounds.height() - 1);
108
109 std::vector<TileMapKey> invalid_tile_keys;
110 for (TileMap::const_iterator it = tiles_.begin();
111 it != tiles_.end(); ++it) {
112 if (it->first.first > right || it->first.second > bottom)
113 invalid_tile_keys.push_back(it->first);
114 }
115 for (size_t i = 0; i < invalid_tile_keys.size(); ++i)
116 tiles_.erase(invalid_tile_keys[i]);
117 }
118
119 // Create tiles for newly exposed areas.
120 Region layer_region((gfx::Rect(layer_bounds_)));
121 layer_region.Subtract(gfx::Rect(old_layer_bounds));
122 for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) {
123 Invalidate(iter.rect());
124 CreateTilesFromLayerRect(iter.rect());
125 }
126 }
127
128 void PictureLayerTiling::Invalidate(const Region& layer_invalidation) {
129 std::vector<TileMapKey> new_tiles;
130
131 for (Region::Iterator region_iter(layer_invalidation);
132 region_iter.has_rect();
133 region_iter.next()) {
134
135 gfx::Rect layer_invalidation = region_iter.rect();
136 layer_invalidation.Intersect(gfx::Rect(layer_bounds_));
137 gfx::Rect rect =
138 gfx::ToEnclosingRect(ScaleRect(layer_invalidation, contents_scale_));
139
140 for (PictureLayerTiling::Iterator tile_iter(this, contents_scale_, rect,
141 PictureLayerTiling::LayerDeviceA lignmentUnknown);
142 tile_iter;
143 ++tile_iter) {
144 TileMapKey key(tile_iter.tile_i_, tile_iter.tile_j_);
145 TileMap::iterator found = tiles_.find(key);
146 if (found == tiles_.end())
147 continue;
148
149 tiles_.erase(found);
150 new_tiles.push_back(key);
151 }
152 }
153
154 for (size_t i = 0; i < new_tiles.size(); ++i)
155 CreateTile(new_tiles[i].first, new_tiles[i].second);
156 }
157
158 void PictureLayerTiling::CreateTilesFromLayerRect(gfx::Rect layer_rect) {
159 gfx::Rect content_rect =
160 gfx::ToEnclosingRect(ScaleRect(layer_rect, contents_scale_));
161 CreateTilesFromContentRect(content_rect);
162 }
163
164 void PictureLayerTiling::CreateTilesFromContentRect(gfx::Rect content_rect) {
165 for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) {
166 TileMap::iterator found =
167 tiles_.find(TileMapKey(iter.index_x(), iter.index_y()));
168 // Ignore any tiles that already exist.
169 if (found != tiles_.end())
170 continue;
171 CreateTile(iter.index_x(), iter.index_y());
172 }
173 }
174
175 PictureLayerTiling::Iterator::Iterator()
176 : tiling_(NULL),
177 current_tile_(NULL),
178 tile_i_(0),
179 tile_j_(0),
180 left_(0),
181 top_(0),
182 right_(-1),
183 bottom_(-1) {
184 }
185
186 PictureLayerTiling::Iterator::Iterator(const PictureLayerTiling* tiling,
187 float dest_scale,
188 gfx::Rect dest_rect,
189 LayerDeviceAlignment layerDeviceAlignment )
190 : tiling_(tiling),
191 dest_rect_(dest_rect),
192 dest_to_content_scale_(0),
193 current_tile_(NULL),
194 tile_i_(0),
195 tile_j_(0),
196 left_(0),
197 top_(0),
198 right_(-1),
199 bottom_(-1) {
200 DCHECK(tiling_);
201 if (dest_rect_.IsEmpty())
202 return;
203
204 dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
205 // This is the maximum size that the dest rect can be, given the content size.
206 gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize(
207 tiling_->ContentRect().size(),
208 1 / dest_to_content_scale_,
209 1 / dest_to_content_scale_));
210
211 gfx::Rect content_rect =
212 gfx::ToEnclosingRect(gfx::ScaleRect(dest_rect_,
213 dest_to_content_scale_,
214 dest_to_content_scale_));
215 // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
216 // check for non-intersection first.
217 content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size()));
218 if (content_rect.IsEmpty())
219 return;
220
221 left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
222 top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
223 right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
224 content_rect.right() - 1);
225 bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
226 content_rect.bottom() - 1);
227
228 tile_i_ = left_ - 1;
229 tile_j_ = top_;
230 ++(*this);
231 }
232
233 PictureLayerTiling::Iterator::~Iterator() {
234 }
235
236 PictureLayerTiling::Iterator& PictureLayerTiling::Iterator::operator++() {
237 if (tile_j_ > bottom_)
238 return *this;
239
240 bool first_time = tile_i_ < left_;
241 bool new_row = false;
242 tile_i_++;
243 if (tile_i_ > right_) {
244 tile_i_ = left_;
245 tile_j_++;
246 new_row = true;
247 if (tile_j_ > bottom_) {
248 current_tile_ = NULL;
249 return *this;
250 }
251 }
252
253 current_tile_ = tiling_->TileAt(tile_i_, tile_j_);
254
255 // Calculate the current geometry rect. Due to floating point rounding
256 // and ToEnclosingRect, tiles might overlap in destination space on the
257 // edges.
258 gfx::Rect last_geometry_rect = current_geometry_rect_;
259
260 gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);
261
262 current_geometry_rect_ = gfx::ToEnclosingRect(
263 gfx::ScaleRect(content_rect, 1 / dest_to_content_scale_,
264 1 / dest_to_content_scale_));
265
266 current_geometry_rect_.Intersect(dest_rect_);
267
268 if (first_time)
269 return *this;
270
271 // Iteration happens left->right, top->bottom. Running off the bottom-right
272 // edge is handled by the intersection above with dest_rect_. Here we make
273 // sure that the new current geometry rect doesn't overlap with the last.
274 int min_left;
275 int min_top;
276 if (new_row) {
277 min_left = dest_rect_.x();
278 min_top = last_geometry_rect.bottom();
279 } else {
280 min_left = last_geometry_rect.right();
281 min_top = last_geometry_rect.y();
282 }
283
284 int inset_left = std::max(0, min_left - current_geometry_rect_.x());
285 int inset_top = std::max(0, min_top - current_geometry_rect_.y());
286 current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
287
288 if (!new_row) {
289 DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
290 DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
291 DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
292 }
293
294 return *this;
295 }
296
297 gfx::Rect PictureLayerTiling::Iterator::geometry_rect() const {
298 return current_geometry_rect_;
299 }
300
301 gfx::Rect PictureLayerTiling::Iterator::full_tile_geometry_rect() const {
302 gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_);
303 rect.set_size(tiling_->tiling_data_.max_texture_size());
304 return rect;
305 }
306
307 gfx::RectF PictureLayerTiling::Iterator::texture_rect() const {
308 gfx::PointF tex_origin =
309 tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin();
310
311 // Convert from dest space => content space => texture space.
312 gfx::RectF texture_rect(current_geometry_rect_);
313 texture_rect.Scale(dest_to_content_scale_,
314 dest_to_content_scale_);
315 texture_rect.Offset(-tex_origin.OffsetFromOrigin());
316 texture_rect.Intersect(tiling_->ContentRect());
317
318 return texture_rect;
319 }
320
321 gfx::Size PictureLayerTiling::Iterator::texture_size() const {
322 return tiling_->tiling_data_.max_texture_size();
323 }
324
325 void PictureLayerTiling::UpdateTilePriorities(
326 WhichTree tree,
327 gfx::Size device_viewport,
328 const gfx::RectF& viewport_in_layer_space,
329 gfx::Size last_layer_bounds,
330 gfx::Size current_layer_bounds,
331 float last_layer_contents_scale,
332 float current_layer_contents_scale,
333 const gfx::Transform& last_screen_transform,
334 const gfx::Transform& current_screen_transform,
335 int current_source_frame_number,
336 double current_frame_time,
337 bool store_screen_space_quads_on_tiles) {
338 if (ContentRect().IsEmpty())
339 return;
340
341 bool first_update_in_new_source_frame =
342 current_source_frame_number != last_source_frame_number_;
343
344 bool first_update_in_new_impl_frame =
345 current_frame_time != last_impl_frame_time_;
346
347 // In pending tree, this is always called. We update priorities:
348 // - Immediately after a commit (first_update_in_new_source_frame).
349 // - On animation ticks after the first frame in the tree
350 // (first_update_in_new_impl_frame).
351 // In active tree, this is only called during draw. We update priorities:
352 // - On draw if properties were not already computed by the pending tree
353 // and activated for the frame (first_update_in_new_impl_frame).
354 if (!first_update_in_new_impl_frame && !first_update_in_new_source_frame)
355 return;
356
357 double time_delta = 0;
358 if (last_impl_frame_time_ != 0 && last_layer_bounds == current_layer_bounds)
359 time_delta = current_frame_time - last_impl_frame_time_;
360
361 gfx::Rect viewport_in_content_space =
362 gfx::ToEnclosingRect(gfx::ScaleRect(viewport_in_layer_space,
363 contents_scale_));
364
365 gfx::Size tile_size = tiling_data_.max_texture_size();
366 int64 prioritized_rect_area =
367 TilePriority::kNumTilesToCoverWithInflatedViewportRectForPrioritization *
368 tile_size.width() * tile_size.height();
369
370 gfx::Rect prioritized_rect = ExpandRectEquallyToAreaBoundedBy(
371 viewport_in_content_space,
372 prioritized_rect_area,
373 ContentRect());
374 DCHECK(ContentRect().Contains(prioritized_rect));
375
376 // Iterate through all of the tiles that were live last frame but will
377 // not be live this frame, and mark them as being dead.
378 for (TilingData::DifferenceIterator iter(&tiling_data_,
379 last_prioritized_rect_,
380 prioritized_rect);
381 iter;
382 ++iter) {
383 TileMap::iterator find = tiles_.find(iter.index());
384 if (find == tiles_.end())
385 continue;
386
387 TilePriority priority;
388 DCHECK(!priority.is_live);
389 Tile* tile = find->second.get();
390 tile->SetPriority(tree, priority);
391 }
392 last_prioritized_rect_ = prioritized_rect;
393
394 gfx::Rect view_rect(device_viewport);
395 float current_scale = current_layer_contents_scale / contents_scale_;
396 float last_scale = last_layer_contents_scale / contents_scale_;
397
398 // Fast path tile priority calculation when both transforms are translations.
399 if (last_screen_transform.IsIdentityOrTranslation() &&
400 current_screen_transform.IsIdentityOrTranslation())
401 {
402 gfx::Vector2dF current_offset(
403 current_screen_transform.matrix().get(0, 3),
404 current_screen_transform.matrix().get(1, 3));
405 gfx::Vector2dF last_offset(
406 last_screen_transform.matrix().get(0, 3),
407 last_screen_transform.matrix().get(1, 3));
408
409 for (TilingData::Iterator iter(&tiling_data_, prioritized_rect);
410 iter; ++iter) {
411 TileMap::iterator find = tiles_.find(iter.index());
412 if (find == tiles_.end())
413 continue;
414 Tile* tile = find->second.get();
415
416 gfx::Rect tile_bounds =
417 tiling_data_.TileBounds(iter.index_x(), iter.index_y());
418 gfx::RectF current_screen_rect = gfx::ScaleRect(
419 tile_bounds,
420 current_scale,
421 current_scale) + current_offset;
422 gfx::RectF last_screen_rect = gfx::ScaleRect(
423 tile_bounds,
424 last_scale,
425 last_scale) + last_offset;
426
427 float distance_to_visible_in_pixels =
428 TilePriority::manhattanDistance(current_screen_rect, view_rect);
429
430 float time_to_visible_in_seconds =
431 TilePriority::TimeForBoundsToIntersect(
432 last_screen_rect, current_screen_rect, time_delta, view_rect);
433 TilePriority priority(
434 resolution_,
435 time_to_visible_in_seconds,
436 distance_to_visible_in_pixels);
437 if (store_screen_space_quads_on_tiles)
438 priority.set_current_screen_quad(gfx::QuadF(current_screen_rect));
439 tile->SetPriority(tree, priority);
440 }
441 } else {
442 for (TilingData::Iterator iter(&tiling_data_, prioritized_rect);
443 iter; ++iter) {
444 TileMap::iterator find = tiles_.find(iter.index());
445 if (find == tiles_.end())
446 continue;
447 Tile* tile = find->second.get();
448
449 gfx::Rect tile_bounds =
450 tiling_data_.TileBounds(iter.index_x(), iter.index_y());
451 gfx::RectF current_layer_content_rect = gfx::ScaleRect(
452 tile_bounds,
453 current_scale,
454 current_scale);
455 gfx::RectF current_screen_rect = MathUtil::MapClippedRect(
456 current_screen_transform, current_layer_content_rect);
457 gfx::RectF last_layer_content_rect = gfx::ScaleRect(
458 tile_bounds,
459 last_scale,
460 last_scale);
461 gfx::RectF last_screen_rect = MathUtil::MapClippedRect(
462 last_screen_transform, last_layer_content_rect);
463
464 float distance_to_visible_in_pixels =
465 TilePriority::manhattanDistance(current_screen_rect, view_rect);
466
467 float time_to_visible_in_seconds =
468 TilePriority::TimeForBoundsToIntersect(
469 last_screen_rect, current_screen_rect, time_delta, view_rect);
470
471 TilePriority priority(
472 resolution_,
473 time_to_visible_in_seconds,
474 distance_to_visible_in_pixels);
475 if (store_screen_space_quads_on_tiles) {
476 bool clipped;
477 priority.set_current_screen_quad(
478 MathUtil::MapQuad(current_screen_transform,
479 gfx::QuadF(current_layer_content_rect),
480 &clipped));
481 }
482 tile->SetPriority(tree, priority);
483 }
484 }
485
486 last_source_frame_number_ = current_source_frame_number;
487 last_impl_frame_time_ = current_frame_time;
488 }
489
490 void PictureLayerTiling::DidBecomeActive() {
491 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
492 it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE));
493 it->second->SetPriority(PENDING_TREE, TilePriority());
494
495 // Tile holds a ref onto a picture pile. If the tile never gets invalidated
496 // and recreated, then that picture pile ref could exist indefinitely. To
497 // prevent this, ask the client to update the pile to its own ref. This
498 // will cause PicturePileImpls and their clones to get deleted once the
499 // corresponding PictureLayerImpl and any in flight raster jobs go out of
500 // scope.
501 client_->UpdatePile(it->second);
502 }
503 }
504
505 scoped_ptr<base::Value> PictureLayerTiling::AsValue() const {
506 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
507 state->SetInteger("num_tiles", tiles_.size());
508 state->SetDouble("content_scale", contents_scale_);
509 state->Set("content_bounds",
510 MathUtil::AsValue(ContentRect().size()).release());
511 return state.PassAs<base::Value>();
512 }
513
514 namespace {
515
516 int ComputeOffsetToExpand4EdgesEqually(int old_width,
517 int old_height,
518 int64 target_area) {
519 // We need to expand the rect in 4 directions, we can compute the
520 // amount to expand along each axis with a quadratic equation:
521 // (old_w + add) * (old_h + add) = target_area
522 // old_w * old_h + old_w * add + add * old_h + add * add = target_area
523 // add^2 + add * (old_w + old_h) - target_area + old_w * old_h = 0
524 // Therefore, we solve the quadratic equation with:
525 // a = 1
526 // b = old_w + old_h
527 // c = -target_area + old_w * old_h
528 int a = 1;
529 int64 b = old_width + old_height;
530 int64 c = -target_area + old_width * old_height;
531 int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
532 int add_each_axis = (-b + sqrt_part) / 2 / a;
533 return add_each_axis / 2;
534 }
535
536 int ComputeOffsetToExpand3EdgesEqually(int old_width,
537 int old_height,
538 int64 target_area,
539 bool left_complete,
540 bool top_complete,
541 bool right_complete,
542 bool bottom_complete) {
543 // We need to expand the rect in three directions, so we will have to
544 // expand along one axis twice as much as the other. Otherwise, this
545 // is very similar to the case where we expand in all 4 directions.
546
547 if (left_complete || right_complete) {
548 // Expanding twice as much vertically as horizontally.
549 // (old_w + add) * (old_h + add*2) = target_area
550 // old_w * old_h + old_w * add*2 + add * old_h + add * add*2 = target_area
551 // (add^2)*2 + add * (old_w*2 + old_h) - target_area + old_w * old_h = 0
552 // Therefore, we solve the quadratic equation with:
553 // a = 2
554 // b = old_w*2 + old_h
555 // c = -target_area + old_w * old_h
556 int a = 2;
557 int64 b = old_width * 2 + old_height;
558 int64 c = -target_area + old_width * old_height;
559 int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
560 int add_each_direction = (-b + sqrt_part) / 2 / a;
561 return add_each_direction;
562 } else {
563 // Expanding twice as much horizontally as vertically.
564 // (old_w + add*2) * (old_h + add) = target_area
565 // old_w * old_h + old_w * add + add*2 * old_h + add*2 * add = target_area
566 // (add^2)*2 + add * (old_w + old_h*2) - target_area + old_w * old_h = 0
567 // Therefore, we solve the quadratic equation with:
568 // a = 2
569 // b = old_w + old_h*2
570 // c = -target_area + old_w * old_h
571 int a = 2;
572 int64 b = old_width + old_height * 2;
573 int64 c = -target_area + old_width * old_height;
574 int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
575 int add_each_direction = (-b + sqrt_part) / 2 / a;
576 return add_each_direction;
577 }
578 }
579
580 int ComputeOffsetToExpand2EdgesEqually(int old_width,
581 int old_height,
582 int64 target_area,
583 bool left_complete,
584 bool top_complete,
585 bool right_complete,
586 bool bottom_complete) {
587 // We need to expand the rect along two directions. If the two directions
588 // are opposite from each other then we only need to compute a distance
589 // along a single axis.
590 if (left_complete && right_complete) {
591 // Expanding along the vertical axis only:
592 // old_w * (old_h + add) = target_area
593 // old_w * old_h + old_w * add = target_area
594 // add_vertically = (target_area - old_w * old_h) / old_w
595 int add_vertically = target_area / old_width - old_height;
596 return add_vertically / 2;
597 } else if (top_complete && bottom_complete) {
598 // Expanding along the horizontal axis only:
599 // (old_w + add) * old_h = target_area
600 // old_w * old_h + add * old_h = target_area
601 // add_horizontally = (target_area - old_w * old_h) / old_h
602 int add_horizontally = target_area / old_height - old_width;
603 return add_horizontally / 2;
604 } else {
605 // If we need to expand along both horizontal and vertical axes, we can use
606 // the same result as if we were expanding all four edges. But we apply the
607 // offset computed for opposing edges to a single edge.
608 int add_each_direction = ComputeOffsetToExpand4EdgesEqually(
609 old_width, old_height, target_area);
610 return add_each_direction * 2;
611 }
612 }
613
614 int ComputeOffsetToExpand1Edge(int old_width,
615 int old_height,
616 int64 target_area,
617 bool left_complete,
618 bool top_complete,
619 bool right_complete,
620 bool bottom_complete) {
621 // We need to expand the rect in a single direction, so we are either
622 // moving just a verical edge, or just a horizontal edge.
623 if (!top_complete || !bottom_complete) {
624 // Moving a vertical edge:
625 // old_w * (old_h + add) = target_area
626 // old_w * old_h + old_w * add = target_area
627 // add_vertically = (target_area - old_w * old_h) / old_w
628 int add_vertically = target_area / old_width - old_height;
629 return add_vertically;
630 } else {
631 // Moving a horizontal edge:
632 // (old_w + add) * old_h = target_area
633 // old_w * old_h + add * old_h = target_area
634 // add_horizontally = (target_area - old_w * old_h) / old_h
635 int add_horizontally = target_area / old_height - old_width;
636 return add_horizontally;
637 }
638 }
639
640 } // namespace
641
642 // static
643 gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy(
644 gfx::Rect starting_rect,
645 int64 target_area,
646 gfx::Rect bounding_rect) {
647
648 bool left_complete = false;
649 bool top_complete = false;
650 bool right_complete = false;
651 bool bottom_complete = false;
652 int num_edges_complete = 0;
653
654 gfx::Rect working_rect = starting_rect;
655 for (int i = 0; i < 4; ++i) {
656 if (num_edges_complete != i)
657 continue;
658 int offset_for_each_edge = 0;
659 switch (num_edges_complete) {
660 case 0:
661 offset_for_each_edge = ComputeOffsetToExpand4EdgesEqually(
662 working_rect.width(),
663 working_rect.height(),
664 target_area);
665 break;
666 case 1:
667 offset_for_each_edge = ComputeOffsetToExpand3EdgesEqually(
668 working_rect.width(),
669 working_rect.height(),
670 target_area,
671 left_complete,
672 top_complete,
673 right_complete,
674 bottom_complete);
675 break;
676 case 2:
677 offset_for_each_edge = ComputeOffsetToExpand2EdgesEqually(
678 working_rect.width(),
679 working_rect.height(),
680 target_area,
681 left_complete,
682 top_complete,
683 right_complete,
684 bottom_complete);
685 break;
686 case 3:
687 offset_for_each_edge = ComputeOffsetToExpand1Edge(
688 working_rect.width(),
689 working_rect.height(),
690 target_area,
691 left_complete,
692 top_complete,
693 right_complete,
694 bottom_complete);
695 }
696
697 working_rect.Inset((left_complete ? 0 : -offset_for_each_edge),
698 (top_complete ? 0 : -offset_for_each_edge),
699 (right_complete ? 0 : -offset_for_each_edge),
700 (bottom_complete ? 0 : -offset_for_each_edge));
701
702 if (bounding_rect.Contains(working_rect))
703 return working_rect;
704 working_rect.Intersect(bounding_rect);
705
706 if (working_rect.x() == bounding_rect.x()) left_complete = true;
707 if (working_rect.y() == bounding_rect.y()) top_complete = true;
708 if (working_rect.right() == bounding_rect.right()) right_complete = true;
709 if (working_rect.bottom() == bounding_rect.bottom()) bottom_complete = true;
710
711 num_edges_complete = (left_complete ? 1 : 0) +
712 (top_complete ? 1 : 0) +
713 (right_complete ? 1 : 0) +
714 (bottom_complete ? 1 : 0);
715 if (num_edges_complete == 4)
716 return working_rect;
717 }
718
719 NOTREACHED();
720 return starting_rect;
721 }
722
723 } // namespace cc
OLDNEW
« no previous file with comments | « cc/picture_layer_tiling.h ('k') | cc/picture_layer_tiling_set.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698