| Index: gdb/amd64-windows-tdep.c
|
| diff --git a/gdb/amd64-windows-tdep.c b/gdb/amd64-windows-tdep.c
|
| index 41e0efa4e76d34b5b7c94729f22ed910d13531ea..6891e1691866e86794be3f58df50c4feab61876b 100644
|
| --- a/gdb/amd64-windows-tdep.c
|
| +++ b/gdb/amd64-windows-tdep.c
|
| @@ -1,4 +1,4 @@
|
| -/* Copyright (C) 2009-2012 Free Software Foundation, Inc.
|
| +/* Copyright (C) 2009-2013 Free Software Foundation, Inc.
|
|
|
| This file is part of GDB.
|
|
|
| @@ -18,57 +18,267 @@
|
| #include "defs.h"
|
| #include "osabi.h"
|
| #include "amd64-tdep.h"
|
| -#include "solib.h"
|
| -#include "solib-target.h"
|
| #include "gdbtypes.h"
|
| #include "gdbcore.h"
|
| #include "regcache.h"
|
| #include "windows-tdep.h"
|
| +#include "frame.h"
|
| +#include "objfiles.h"
|
| +#include "frame-unwind.h"
|
| +#include "coff/internal.h"
|
| +#include "coff/i386.h"
|
| +#include "coff/pe.h"
|
| +#include "libcoff.h"
|
| +#include "value.h"
|
|
|
| /* The registers used to pass integer arguments during a function call. */
|
| static int amd64_windows_dummy_call_integer_regs[] =
|
| {
|
| AMD64_RCX_REGNUM, /* %rcx */
|
| AMD64_RDX_REGNUM, /* %rdx */
|
| - 8, /* %r8 */
|
| - 9 /* %r9 */
|
| + AMD64_R8_REGNUM, /* %r8 */
|
| + AMD64_R9_REGNUM /* %r9 */
|
| };
|
|
|
| -/* Implement the "classify" method in the gdbarch_tdep structure
|
| - for amd64-windows. */
|
| +/* Return nonzero if an argument of type TYPE should be passed
|
| + via one of the integer registers. */
|
|
|
| -static void
|
| -amd64_windows_classify (struct type *type, enum amd64_reg_class class[2])
|
| +static int
|
| +amd64_windows_passed_by_integer_register (struct type *type)
|
| {
|
| switch (TYPE_CODE (type))
|
| {
|
| - case TYPE_CODE_ARRAY:
|
| - /* Arrays are always passed by memory. */
|
| - class[0] = class[1] = AMD64_MEMORY;
|
| - break;
|
| -
|
| + case TYPE_CODE_INT:
|
| + case TYPE_CODE_ENUM:
|
| + case TYPE_CODE_BOOL:
|
| + case TYPE_CODE_RANGE:
|
| + case TYPE_CODE_CHAR:
|
| + case TYPE_CODE_PTR:
|
| + case TYPE_CODE_REF:
|
| case TYPE_CODE_STRUCT:
|
| case TYPE_CODE_UNION:
|
| - /* Struct/Union types whose size is 1, 2, 4, or 8 bytes
|
| - are passed as if they were integers of the same size.
|
| - Types of different sizes are passed by memory. */
|
| - if (TYPE_LENGTH (type) == 1
|
| - || TYPE_LENGTH (type) == 2
|
| - || TYPE_LENGTH (type) == 4
|
| - || TYPE_LENGTH (type) == 8)
|
| - {
|
| - class[0] = AMD64_INTEGER;
|
| - class[1] = AMD64_NO_CLASS;
|
| - }
|
| - else
|
| - class[0] = class[1] = AMD64_MEMORY;
|
| - break;
|
| + return (TYPE_LENGTH (type) == 1
|
| + || TYPE_LENGTH (type) == 2
|
| + || TYPE_LENGTH (type) == 4
|
| + || TYPE_LENGTH (type) == 8);
|
|
|
| default:
|
| - /* For all the other types, the conventions are the same as
|
| - with the System V ABI. */
|
| - amd64_classify (type, class);
|
| + return 0;
|
| + }
|
| +}
|
| +
|
| +/* Return nonzero if an argument of type TYPE should be passed
|
| + via one of the XMM registers. */
|
| +
|
| +static int
|
| +amd64_windows_passed_by_xmm_register (struct type *type)
|
| +{
|
| + return ((TYPE_CODE (type) == TYPE_CODE_FLT
|
| + || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
| + && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
|
| +}
|
| +
|
| +/* Return non-zero iff an argument of the given TYPE should be passed
|
| + by pointer. */
|
| +
|
| +static int
|
| +amd64_windows_passed_by_pointer (struct type *type)
|
| +{
|
| + if (amd64_windows_passed_by_integer_register (type))
|
| + return 0;
|
| +
|
| + if (amd64_windows_passed_by_xmm_register (type))
|
| + return 0;
|
| +
|
| + return 1;
|
| +}
|
| +
|
| +/* For each argument that should be passed by pointer, reserve some
|
| + stack space, store a copy of the argument on the stack, and replace
|
| + the argument by its address. Return the new Stack Pointer value.
|
| +
|
| + NARGS is the number of arguments. ARGS is the array containing
|
| + the value of each argument. SP is value of the Stack Pointer. */
|
| +
|
| +static CORE_ADDR
|
| +amd64_windows_adjust_args_passed_by_pointer (struct value **args,
|
| + int nargs, CORE_ADDR sp)
|
| +{
|
| + int i;
|
| +
|
| + for (i = 0; i < nargs; i++)
|
| + if (amd64_windows_passed_by_pointer (value_type (args[i])))
|
| + {
|
| + struct type *type = value_type (args[i]);
|
| + const gdb_byte *valbuf = value_contents (args[i]);
|
| + const int len = TYPE_LENGTH (type);
|
| +
|
| + /* Store a copy of that argument on the stack, aligned to
|
| + a 16 bytes boundary, and then use the copy's address as
|
| + the argument. */
|
| +
|
| + sp -= len;
|
| + sp &= ~0xf;
|
| + write_memory (sp, valbuf, len);
|
| +
|
| + args[i]
|
| + = value_addr (value_from_contents_and_address (type, valbuf, sp));
|
| + }
|
| +
|
| + return sp;
|
| +}
|
| +
|
| +/* Store the value of ARG in register REGNO (right-justified).
|
| + REGCACHE is the register cache. */
|
| +
|
| +static void
|
| +amd64_windows_store_arg_in_reg (struct regcache *regcache,
|
| + struct value *arg, int regno)
|
| +{
|
| + struct type *type = value_type (arg);
|
| + const gdb_byte *valbuf = value_contents (arg);
|
| + gdb_byte buf[8];
|
| +
|
| + gdb_assert (TYPE_LENGTH (type) <= 8);
|
| + memset (buf, 0, sizeof buf);
|
| + memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
|
| + regcache_cooked_write (regcache, regno, buf);
|
| +}
|
| +
|
| +/* Push the arguments for an inferior function call, and return
|
| + the updated value of the SP (Stack Pointer).
|
| +
|
| + All arguments are identical to the arguments used in
|
| + amd64_windows_push_dummy_call. */
|
| +
|
| +static CORE_ADDR
|
| +amd64_windows_push_arguments (struct regcache *regcache, int nargs,
|
| + struct value **args, CORE_ADDR sp,
|
| + int struct_return)
|
| +{
|
| + int reg_idx = 0;
|
| + int i;
|
| + struct value **stack_args = alloca (nargs * sizeof (struct value *));
|
| + int num_stack_args = 0;
|
| + int num_elements = 0;
|
| + int element = 0;
|
| +
|
| + /* First, handle the arguments passed by pointer.
|
| +
|
| + These arguments are replaced by pointers to a copy we are making
|
| + in inferior memory. So use a copy of the ARGS table, to avoid
|
| + modifying the original one. */
|
| + {
|
| + struct value **args1 = alloca (nargs * sizeof (struct value *));
|
| +
|
| + memcpy (args1, args, nargs * sizeof (struct value *));
|
| + sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
|
| + args = args1;
|
| + }
|
| +
|
| + /* Reserve a register for the "hidden" argument. */
|
| + if (struct_return)
|
| + reg_idx++;
|
| +
|
| + for (i = 0; i < nargs; i++)
|
| + {
|
| + struct type *type = value_type (args[i]);
|
| + int len = TYPE_LENGTH (type);
|
| + int on_stack_p = 1;
|
| +
|
| + if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
|
| + {
|
| + if (amd64_windows_passed_by_integer_register (type))
|
| + {
|
| + amd64_windows_store_arg_in_reg
|
| + (regcache, args[i],
|
| + amd64_windows_dummy_call_integer_regs[reg_idx]);
|
| + on_stack_p = 0;
|
| + reg_idx++;
|
| + }
|
| + else if (amd64_windows_passed_by_xmm_register (type))
|
| + {
|
| + amd64_windows_store_arg_in_reg
|
| + (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
|
| + /* In case of varargs, these parameters must also be
|
| + passed via the integer registers. */
|
| + amd64_windows_store_arg_in_reg
|
| + (regcache, args[i],
|
| + amd64_windows_dummy_call_integer_regs[reg_idx]);
|
| + on_stack_p = 0;
|
| + reg_idx++;
|
| + }
|
| + }
|
| +
|
| + if (on_stack_p)
|
| + {
|
| + num_elements += ((len + 7) / 8);
|
| + stack_args[num_stack_args++] = args[i];
|
| + }
|
| + }
|
| +
|
| + /* Allocate space for the arguments on the stack, keeping it
|
| + aligned on a 16 byte boundary. */
|
| + sp -= num_elements * 8;
|
| + sp &= ~0xf;
|
| +
|
| + /* Write out the arguments to the stack. */
|
| + for (i = 0; i < num_stack_args; i++)
|
| + {
|
| + struct type *type = value_type (stack_args[i]);
|
| + const gdb_byte *valbuf = value_contents (stack_args[i]);
|
| +
|
| + write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
|
| + element += ((TYPE_LENGTH (type) + 7) / 8);
|
| }
|
| +
|
| + return sp;
|
| +}
|
| +
|
| +/* Implement the "push_dummy_call" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +amd64_windows_push_dummy_call
|
| + (struct gdbarch *gdbarch, struct value *function,
|
| + struct regcache *regcache, CORE_ADDR bp_addr,
|
| + int nargs, struct value **args,
|
| + CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
|
| +{
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + gdb_byte buf[8];
|
| +
|
| + /* Pass arguments. */
|
| + sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
|
| + struct_return);
|
| +
|
| + /* Pass "hidden" argument". */
|
| + if (struct_return)
|
| + {
|
| + /* The "hidden" argument is passed throught the first argument
|
| + register. */
|
| + const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
|
| +
|
| + store_unsigned_integer (buf, 8, byte_order, struct_addr);
|
| + regcache_cooked_write (regcache, arg_regnum, buf);
|
| + }
|
| +
|
| + /* Reserve some memory on the stack for the integer-parameter
|
| + registers, as required by the ABI. */
|
| + sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
|
| +
|
| + /* Store return address. */
|
| + sp -= 8;
|
| + store_unsigned_integer (buf, 8, byte_order, bp_addr);
|
| + write_memory (sp, buf, 8);
|
| +
|
| + /* Update the stack pointer... */
|
| + store_unsigned_integer (buf, 8, byte_order, sp);
|
| + regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
|
| +
|
| + /* ...and fake a frame pointer. */
|
| + regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
|
| +
|
| + return sp + 16;
|
| }
|
|
|
| /* Implement the "return_value" gdbarch method for amd64-windows. */
|
| @@ -139,14 +349,14 @@ amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
|
| if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
|
| {
|
| - struct minimal_symbol *s;
|
| + struct bound_minimal_symbol s;
|
| CORE_ADDR call_dest;
|
|
|
| call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
|
| s = lookup_minimal_symbol_by_pc (call_dest);
|
| - if (s != NULL
|
| - && SYMBOL_LINKAGE_NAME (s) != NULL
|
| - && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
|
| + if (s.minsym != NULL
|
| + && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
|
| + && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
|
| pc += 5;
|
| }
|
| }
|
| @@ -154,31 +364,843 @@ amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
| return pc;
|
| }
|
|
|
| +struct amd64_windows_frame_cache
|
| +{
|
| + /* ImageBase for the module. */
|
| + CORE_ADDR image_base;
|
| +
|
| + /* Function start and end rva. */
|
| + CORE_ADDR start_rva;
|
| + CORE_ADDR end_rva;
|
| +
|
| + /* Next instruction to be executed. */
|
| + CORE_ADDR pc;
|
| +
|
| + /* Current sp. */
|
| + CORE_ADDR sp;
|
| +
|
| + /* Address of saved integer and xmm registers. */
|
| + CORE_ADDR prev_reg_addr[16];
|
| + CORE_ADDR prev_xmm_addr[16];
|
| +
|
| + /* These two next fields are set only for machine info frames. */
|
| +
|
| + /* Likewise for RIP. */
|
| + CORE_ADDR prev_rip_addr;
|
| +
|
| + /* Likewise for RSP. */
|
| + CORE_ADDR prev_rsp_addr;
|
| +
|
| + /* Address of the previous frame. */
|
| + CORE_ADDR prev_sp;
|
| +};
|
| +
|
| +/* Convert a Windows register number to gdb. */
|
| +static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
|
| +{
|
| + AMD64_RAX_REGNUM,
|
| + AMD64_RCX_REGNUM,
|
| + AMD64_RDX_REGNUM,
|
| + AMD64_RBX_REGNUM,
|
| + AMD64_RSP_REGNUM,
|
| + AMD64_RBP_REGNUM,
|
| + AMD64_RSI_REGNUM,
|
| + AMD64_RDI_REGNUM,
|
| + AMD64_R8_REGNUM,
|
| + AMD64_R9_REGNUM,
|
| + AMD64_R10_REGNUM,
|
| + AMD64_R11_REGNUM,
|
| + AMD64_R12_REGNUM,
|
| + AMD64_R13_REGNUM,
|
| + AMD64_R14_REGNUM,
|
| + AMD64_R15_REGNUM
|
| +};
|
| +
|
| +/* Return TRUE iff PC is the the range of the function corresponding to
|
| + CACHE. */
|
| +
|
| +static int
|
| +pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
|
| +{
|
| + return (pc >= cache->image_base + cache->start_rva
|
| + && pc < cache->image_base + cache->end_rva);
|
| +}
|
| +
|
| +/* Try to recognize and decode an epilogue sequence.
|
| +
|
| + Return -1 if we fail to read the instructions for any reason.
|
| + Return 1 if an epilogue sequence was recognized, 0 otherwise. */
|
| +
|
| +static int
|
| +amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
|
| + struct amd64_windows_frame_cache *cache)
|
| +{
|
| + /* According to MSDN an epilogue "must consist of either an add RSP,constant
|
| + or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
|
| + register pops and a return or a jmp".
|
| +
|
| + Furthermore, according to RtlVirtualUnwind, the complete list of
|
| + epilog marker is:
|
| + - ret [c3]
|
| + - ret n [c2 imm16]
|
| + - rep ret [f3 c3]
|
| + - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
|
| + - jmp qword ptr imm32 - not handled
|
| + - rex.w jmp reg [4X ff eY]
|
| + */
|
| +
|
| + CORE_ADDR pc = cache->pc;
|
| + CORE_ADDR cur_sp = cache->sp;
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + gdb_byte op;
|
| + gdb_byte rex;
|
| +
|
| + /* We don't care about the instruction deallocating the frame:
|
| + if it hasn't been executed, the pc is still in the body,
|
| + if it has been executed, the following epilog decoding will work. */
|
| +
|
| + /* First decode:
|
| + - pop reg [41 58-5f] or [58-5f]. */
|
| +
|
| + while (1)
|
| + {
|
| + /* Read opcode. */
|
| + if (target_read_memory (pc, &op, 1) != 0)
|
| + return -1;
|
| +
|
| + if (op >= 0x40 && op <= 0x4f)
|
| + {
|
| + /* REX prefix. */
|
| + rex = op;
|
| +
|
| + /* Read opcode. */
|
| + if (target_read_memory (pc + 1, &op, 1) != 0)
|
| + return -1;
|
| + }
|
| + else
|
| + rex = 0;
|
| +
|
| + if (op >= 0x58 && op <= 0x5f)
|
| + {
|
| + /* pop reg */
|
| + gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
|
| +
|
| + cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
|
| + cur_sp += 8;
|
| + }
|
| + else
|
| + break;
|
| +
|
| + /* Allow the user to break this loop. This shouldn't happen as the
|
| + number of consecutive pop should be small. */
|
| + QUIT;
|
| + }
|
| +
|
| + /* Then decode the marker. */
|
| +
|
| + /* Read opcode. */
|
| + if (target_read_memory (pc, &op, 1) != 0)
|
| + return -1;
|
| +
|
| + switch (op)
|
| + {
|
| + case 0xc3:
|
| + /* Ret. */
|
| + cache->prev_rip_addr = cur_sp;
|
| + cache->prev_sp = cur_sp + 8;
|
| + return 1;
|
| +
|
| + case 0xeb:
|
| + {
|
| + /* jmp rel8 */
|
| + gdb_byte rel8;
|
| + CORE_ADDR npc;
|
| +
|
| + if (target_read_memory (pc + 1, &rel8, 1) != 0)
|
| + return -1;
|
| + npc = pc + 2 + (signed char) rel8;
|
| +
|
| + /* If the jump is within the function, then this is not a marker,
|
| + otherwise this is a tail-call. */
|
| + return !pc_in_range (npc, cache);
|
| + }
|
| +
|
| + case 0xec:
|
| + {
|
| + /* jmp rel32 */
|
| + gdb_byte rel32[4];
|
| + CORE_ADDR npc;
|
| +
|
| + if (target_read_memory (pc + 1, rel32, 4) != 0)
|
| + return -1;
|
| + npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
|
| +
|
| + /* If the jump is within the function, then this is not a marker,
|
| + otherwise this is a tail-call. */
|
| + return !pc_in_range (npc, cache);
|
| + }
|
| +
|
| + case 0xc2:
|
| + {
|
| + /* ret n */
|
| + gdb_byte imm16[2];
|
| +
|
| + if (target_read_memory (pc + 1, imm16, 2) != 0)
|
| + return -1;
|
| + cache->prev_rip_addr = cur_sp;
|
| + cache->prev_sp = cur_sp
|
| + + extract_unsigned_integer (imm16, 4, byte_order);
|
| + return 1;
|
| + }
|
| +
|
| + case 0xf3:
|
| + {
|
| + /* rep; ret */
|
| + gdb_byte op1;
|
| +
|
| + if (target_read_memory (pc + 2, &op1, 1) != 0)
|
| + return -1;
|
| + if (op1 != 0xc3)
|
| + return 0;
|
| +
|
| + cache->prev_rip_addr = cur_sp;
|
| + cache->prev_sp = cur_sp + 8;
|
| + return 1;
|
| + }
|
| +
|
| + case 0x40:
|
| + case 0x41:
|
| + case 0x42:
|
| + case 0x43:
|
| + case 0x44:
|
| + case 0x45:
|
| + case 0x46:
|
| + case 0x47:
|
| + case 0x48:
|
| + case 0x49:
|
| + case 0x4a:
|
| + case 0x4b:
|
| + case 0x4c:
|
| + case 0x4d:
|
| + case 0x4e:
|
| + case 0x4f:
|
| + /* Got a REX prefix, read next byte. */
|
| + rex = op;
|
| + if (target_read_memory (pc + 1, &op, 1) != 0)
|
| + return -1;
|
| +
|
| + if (op == 0xff)
|
| + {
|
| + /* rex jmp reg */
|
| + gdb_byte op1;
|
| + unsigned int reg;
|
| + gdb_byte buf[8];
|
| +
|
| + if (target_read_memory (pc + 2, &op1, 1) != 0)
|
| + return -1;
|
| + return (op1 & 0xf8) == 0xe0;
|
| + }
|
| + else
|
| + return 0;
|
| +
|
| + default:
|
| + /* Not REX, so unknown. */
|
| + return 0;
|
| + }
|
| +}
|
| +
|
| +/* Decode and execute unwind insns at UNWIND_INFO. */
|
| +
|
| +static void
|
| +amd64_windows_frame_decode_insns (struct frame_info *this_frame,
|
| + struct amd64_windows_frame_cache *cache,
|
| + CORE_ADDR unwind_info)
|
| +{
|
| + CORE_ADDR save_addr = 0;
|
| + CORE_ADDR cur_sp = cache->sp;
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + int j;
|
| +
|
| + for (j = 0; ; j++)
|
| + {
|
| + struct external_pex64_unwind_info ex_ui;
|
| + /* There are at most 256 16-bit unwind insns. */
|
| + gdb_byte insns[2 * 256];
|
| + gdb_byte *p;
|
| + gdb_byte *end_insns;
|
| + unsigned char codes_count;
|
| + unsigned char frame_reg;
|
| + unsigned char frame_off;
|
| +
|
| + /* Read and decode header. */
|
| + if (target_read_memory (cache->image_base + unwind_info,
|
| + (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
|
| + return;
|
| +
|
| + if (frame_debug)
|
| + fprintf_unfiltered
|
| + (gdb_stdlog,
|
| + "amd64_windows_frame_decodes_insn: "
|
| + "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
|
| + paddress (gdbarch, unwind_info),
|
| + ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
|
| + ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
|
| +
|
| + /* Check version. */
|
| + if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
|
| + && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
|
| + return;
|
| +
|
| + if (j == 0
|
| + && (cache->pc >=
|
| + cache->image_base + cache->start_rva + ex_ui.SizeOfPrologue))
|
| + {
|
| + /* Not in the prologue. We want to detect if the PC points to an
|
| + epilogue. If so, the epilogue detection+decoding function is
|
| + sufficient. Otherwise, the unwinder will consider that the PC
|
| + is in the body of the function and will need to decode unwind
|
| + info. */
|
| + if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
|
| + return;
|
| +
|
| + /* Not in an epilog. Clear possible side effects. */
|
| + memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
|
| + }
|
| +
|
| + codes_count = ex_ui.CountOfCodes;
|
| + frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
|
| +
|
| + if (frame_reg != 0)
|
| + {
|
| + /* According to msdn:
|
| + If an FP reg is used, then any unwind code taking an offset must
|
| + only be used after the FP reg is established in the prolog. */
|
| + gdb_byte buf[8];
|
| + int frreg = amd64_windows_w2gdb_regnum[frame_reg];
|
| +
|
| + get_frame_register (this_frame, frreg, buf);
|
| + save_addr = extract_unsigned_integer (buf, 8, byte_order);
|
| +
|
| + if (frame_debug)
|
| + fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n",
|
| + gdbarch_register_name (gdbarch, frreg),
|
| + paddress (gdbarch, save_addr));
|
| + }
|
| +
|
| + /* Read opcodes. */
|
| + if (codes_count != 0
|
| + && target_read_memory (cache->image_base + unwind_info
|
| + + sizeof (ex_ui),
|
| + insns, codes_count * 2) != 0)
|
| + return;
|
| +
|
| + end_insns = &insns[codes_count * 2];
|
| + p = insns;
|
| +
|
| + /* Skip opcodes 6 of version 2. This opcode is not documented. */
|
| + if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
|
| + {
|
| + for (; p < end_insns; p += 2)
|
| + if (PEX64_UNWCODE_CODE (p[1]) != 6)
|
| + break;
|
| + }
|
| +
|
| + for (; p < end_insns; p += 2)
|
| + {
|
| + int reg;
|
| +
|
| + if (frame_debug)
|
| + fprintf_unfiltered
|
| + (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n",
|
| + (unsigned) (p - insns), p[0], p[1]);
|
| +
|
| + /* Virtually execute the operation. */
|
| + if (cache->pc >= cache->image_base + cache->start_rva + p[0])
|
| + {
|
| + /* If there is no frame registers defined, the current value of
|
| + rsp is used instead. */
|
| + if (frame_reg == 0)
|
| + save_addr = cur_sp;
|
| +
|
| + switch (PEX64_UNWCODE_CODE (p[1]))
|
| + {
|
| + case UWOP_PUSH_NONVOL:
|
| + /* Push pre-decrements RSP. */
|
| + reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
|
| + cache->prev_reg_addr[reg] = cur_sp;
|
| + cur_sp += 8;
|
| + break;
|
| + case UWOP_ALLOC_LARGE:
|
| + if (PEX64_UNWCODE_INFO (p[1]) == 0)
|
| + cur_sp +=
|
| + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
|
| + else if (PEX64_UNWCODE_INFO (p[1]) == 1)
|
| + cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
|
| + else
|
| + return;
|
| + break;
|
| + case UWOP_ALLOC_SMALL:
|
| + cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
|
| + break;
|
| + case UWOP_SET_FPREG:
|
| + cur_sp = save_addr
|
| + - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
|
| + break;
|
| + case UWOP_SAVE_NONVOL:
|
| + reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
|
| + cache->prev_reg_addr[reg] = save_addr
|
| + - 8 * extract_unsigned_integer (p + 2, 2, byte_order);
|
| + break;
|
| + case UWOP_SAVE_NONVOL_FAR:
|
| + reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
|
| + cache->prev_reg_addr[reg] = save_addr
|
| + - 8 * extract_unsigned_integer (p + 2, 4, byte_order);
|
| + break;
|
| + case UWOP_SAVE_XMM128:
|
| + cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
|
| + save_addr
|
| + - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
|
| + break;
|
| + case UWOP_SAVE_XMM128_FAR:
|
| + cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
|
| + save_addr
|
| + - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
|
| + break;
|
| + case UWOP_PUSH_MACHFRAME:
|
| + if (PEX64_UNWCODE_INFO (p[1]) == 0)
|
| + {
|
| + cache->prev_rip_addr = cur_sp + 0;
|
| + cache->prev_rsp_addr = cur_sp + 24;
|
| + cur_sp += 40;
|
| + }
|
| + else if (PEX64_UNWCODE_INFO (p[1]) == 1)
|
| + {
|
| + cache->prev_rip_addr = cur_sp + 8;
|
| + cache->prev_rsp_addr = cur_sp + 32;
|
| + cur_sp += 48;
|
| + }
|
| + else
|
| + return;
|
| + break;
|
| + default:
|
| + return;
|
| + }
|
| + }
|
| +
|
| + /* Adjust with the length of the opcode. */
|
| + switch (PEX64_UNWCODE_CODE (p[1]))
|
| + {
|
| + case UWOP_PUSH_NONVOL:
|
| + case UWOP_ALLOC_SMALL:
|
| + case UWOP_SET_FPREG:
|
| + case UWOP_PUSH_MACHFRAME:
|
| + break;
|
| + case UWOP_ALLOC_LARGE:
|
| + if (PEX64_UNWCODE_INFO (p[1]) == 0)
|
| + p += 2;
|
| + else if (PEX64_UNWCODE_INFO (p[1]) == 1)
|
| + p += 4;
|
| + else
|
| + return;
|
| + break;
|
| + case UWOP_SAVE_NONVOL:
|
| + case UWOP_SAVE_XMM128:
|
| + p += 2;
|
| + break;
|
| + case UWOP_SAVE_NONVOL_FAR:
|
| + case UWOP_SAVE_XMM128_FAR:
|
| + p += 4;
|
| + break;
|
| + default:
|
| + return;
|
| + }
|
| + }
|
| + if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
|
| + break;
|
| + else
|
| + {
|
| + /* Read the chained unwind info. */
|
| + struct external_pex64_runtime_function d;
|
| + CORE_ADDR chain_vma;
|
| +
|
| + chain_vma = cache->image_base + unwind_info
|
| + + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2 + 8;
|
| +
|
| + if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
|
| + return;
|
| +
|
| + cache->start_rva =
|
| + extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
|
| + cache->end_rva =
|
| + extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
|
| + unwind_info =
|
| + extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
|
| + }
|
| +
|
| + /* Allow the user to break this loop. */
|
| + QUIT;
|
| + }
|
| + /* PC is saved by the call. */
|
| + if (cache->prev_rip_addr == 0)
|
| + cache->prev_rip_addr = cur_sp;
|
| + cache->prev_sp = cur_sp + 8;
|
| +
|
| + if (frame_debug)
|
| + fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n",
|
| + paddress (gdbarch, cache->prev_sp),
|
| + paddress (gdbarch, cache->prev_rip_addr));
|
| +}
|
| +
|
| +/* Find SEH unwind info for PC, returning 0 on success.
|
| +
|
| + UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
|
| + to the base address of the corresponding image, and START_RVA
|
| + to the rva of the function containing PC. */
|
| +
|
| +static int
|
| +amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
|
| + CORE_ADDR *unwind_info,
|
| + CORE_ADDR *image_base,
|
| + CORE_ADDR *start_rva,
|
| + CORE_ADDR *end_rva)
|
| +{
|
| + struct obj_section *sec;
|
| + pe_data_type *pe;
|
| + IMAGE_DATA_DIRECTORY *dir;
|
| + struct objfile *objfile;
|
| + unsigned long lo, hi;
|
| + CORE_ADDR base;
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| +
|
| + /* Get the corresponding exception directory. */
|
| + sec = find_pc_section (pc);
|
| + if (sec == NULL)
|
| + return -1;
|
| + objfile = sec->objfile;
|
| + pe = pe_data (sec->objfile->obfd);
|
| + dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
|
| +
|
| + base = pe->pe_opthdr.ImageBase
|
| + + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
| + *image_base = base;
|
| +
|
| + /* Find the entry.
|
| +
|
| + Note: This does not handle dynamically added entries (for JIT
|
| + engines). For this, we would need to ask the kernel directly,
|
| + which means getting some info from the native layer. For the
|
| + rest of the code, however, it's probably faster to search
|
| + the entry ourselves. */
|
| + lo = 0;
|
| + hi = dir->Size / sizeof (struct external_pex64_runtime_function);
|
| + *unwind_info = 0;
|
| + while (lo <= hi)
|
| + {
|
| + unsigned long mid = lo + (hi - lo) / 2;
|
| + struct external_pex64_runtime_function d;
|
| + CORE_ADDR sa, ea;
|
| +
|
| + if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
|
| + (gdb_byte *) &d, sizeof (d)) != 0)
|
| + return -1;
|
| +
|
| + sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
|
| + ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
|
| + if (pc < base + sa)
|
| + hi = mid - 1;
|
| + else if (pc >= base + ea)
|
| + lo = mid + 1;
|
| + else if (pc >= base + sa && pc < base + ea)
|
| + {
|
| + /* Got it. */
|
| + *start_rva = sa;
|
| + *end_rva = ea;
|
| + *unwind_info =
|
| + extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
|
| + break;
|
| + }
|
| + else
|
| + break;
|
| + }
|
| +
|
| + if (frame_debug)
|
| + fprintf_unfiltered
|
| + (gdb_stdlog,
|
| + "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
|
| + paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
|
| +
|
| + if (*unwind_info & 1)
|
| + {
|
| + /* Unofficially documented unwind info redirection, when UNWIND_INFO
|
| + address is odd (http://www.codemachine.com/article_x64deepdive.html).
|
| + */
|
| + struct external_pex64_runtime_function d;
|
| + CORE_ADDR sa, ea;
|
| +
|
| + if (target_read_memory (base + (*unwind_info & ~1),
|
| + (gdb_byte *) &d, sizeof (d)) != 0)
|
| + return -1;
|
| +
|
| + *start_rva =
|
| + extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
|
| + *end_rva = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
|
| + *unwind_info =
|
| + extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
|
| +
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Fill THIS_CACHE using the native amd64-windows unwinding data
|
| + for THIS_FRAME. */
|
| +
|
| +static struct amd64_windows_frame_cache *
|
| +amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
|
| +{
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + struct amd64_windows_frame_cache *cache;
|
| + gdb_byte buf[8];
|
| + struct obj_section *sec;
|
| + pe_data_type *pe;
|
| + IMAGE_DATA_DIRECTORY *dir;
|
| + CORE_ADDR image_base;
|
| + CORE_ADDR pc;
|
| + struct objfile *objfile;
|
| + unsigned long lo, hi;
|
| + CORE_ADDR unwind_info = 0;
|
| +
|
| + if (*this_cache)
|
| + return *this_cache;
|
| +
|
| + cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
|
| + *this_cache = cache;
|
| +
|
| + /* Get current PC and SP. */
|
| + pc = get_frame_pc (this_frame);
|
| + get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
| + cache->sp = extract_unsigned_integer (buf, 8, byte_order);
|
| + cache->pc = pc;
|
| +
|
| + if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
|
| + &cache->image_base,
|
| + &cache->start_rva,
|
| + &cache->end_rva))
|
| + return cache;
|
| +
|
| + if (unwind_info == 0)
|
| + {
|
| + /* Assume a leaf function. */
|
| + cache->prev_sp = cache->sp + 8;
|
| + cache->prev_rip_addr = cache->sp;
|
| + }
|
| + else
|
| + {
|
| + /* Decode unwind insns to compute saved addresses. */
|
| + amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
|
| + }
|
| + return cache;
|
| +}
|
| +
|
| +/* Implement the "prev_register" method of struct frame_unwind
|
| + using the standard Windows x64 SEH info. */
|
| +
|
| +static struct value *
|
| +amd64_windows_frame_prev_register (struct frame_info *this_frame,
|
| + void **this_cache, int regnum)
|
| +{
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + struct amd64_windows_frame_cache *cache =
|
| + amd64_windows_frame_cache (this_frame, this_cache);
|
| + struct value *val;
|
| + CORE_ADDR prev;
|
| +
|
| + if (frame_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "amd64_windows_frame_prev_register %s for sp=%s\n",
|
| + gdbarch_register_name (gdbarch, regnum),
|
| + paddress (gdbarch, cache->prev_sp));
|
| +
|
| + if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
|
| + prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
|
| + else if (regnum == AMD64_RSP_REGNUM)
|
| + {
|
| + prev = cache->prev_rsp_addr;
|
| + if (prev == 0)
|
| + return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
|
| + }
|
| + else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
|
| + prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
|
| + else if (regnum == AMD64_RIP_REGNUM)
|
| + prev = cache->prev_rip_addr;
|
| + else
|
| + prev = 0;
|
| +
|
| + if (prev && frame_debug)
|
| + fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev));
|
| +
|
| + if (prev)
|
| + {
|
| + /* Register was saved. */
|
| + return frame_unwind_got_memory (this_frame, regnum, prev);
|
| + }
|
| + else
|
| + {
|
| + /* Register is either volatile or not modified. */
|
| + return frame_unwind_got_register (this_frame, regnum, regnum);
|
| + }
|
| +}
|
| +
|
| +/* Implement the "this_id" method of struct frame_unwind using
|
| + the standard Windows x64 SEH info. */
|
| +
|
| +static void
|
| +amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
| + struct frame_id *this_id)
|
| +{
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| + struct amd64_windows_frame_cache *cache =
|
| + amd64_windows_frame_cache (this_frame, this_cache);
|
| +
|
| + *this_id = frame_id_build (cache->prev_sp,
|
| + cache->image_base + cache->start_rva);
|
| +}
|
| +
|
| +/* Windows x64 SEH unwinder. */
|
| +
|
| +static const struct frame_unwind amd64_windows_frame_unwind =
|
| +{
|
| + NORMAL_FRAME,
|
| + default_frame_unwind_stop_reason,
|
| + &amd64_windows_frame_this_id,
|
| + &amd64_windows_frame_prev_register,
|
| + NULL,
|
| + default_frame_sniffer
|
| +};
|
| +
|
| +/* Implement the "skip_prologue" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
| +{
|
| + CORE_ADDR func_addr;
|
| + CORE_ADDR unwind_info = 0;
|
| + CORE_ADDR image_base, start_rva, end_rva;
|
| + struct external_pex64_unwind_info ex_ui;
|
| +
|
| + /* Use prologue size from unwind info. */
|
| + if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
|
| + &image_base, &start_rva, &end_rva) == 0)
|
| + {
|
| + if (unwind_info == 0)
|
| + {
|
| + /* Leaf function. */
|
| + return pc;
|
| + }
|
| + else if (target_read_memory (image_base + unwind_info,
|
| + (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
|
| + && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
|
| + return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
|
| + }
|
| +
|
| + /* See if we can determine the end of the prologue via the symbol
|
| + table. If so, then return either the PC, or the PC after
|
| + the prologue, whichever is greater. */
|
| + if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
| + {
|
| + CORE_ADDR post_prologue_pc
|
| + = skip_prologue_using_sal (gdbarch, func_addr);
|
| +
|
| + if (post_prologue_pc != 0)
|
| + return max (pc, post_prologue_pc);
|
| + }
|
| +
|
| + return pc;
|
| +}
|
| +
|
| +/* Check Win64 DLL jmp trampolines and find jump destination. */
|
| +
|
| +static CORE_ADDR
|
| +amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
| +{
|
| + CORE_ADDR destination = 0;
|
| + struct gdbarch *gdbarch = get_frame_arch (frame);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| +
|
| + /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
|
| + if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
|
| + {
|
| + /* Get opcode offset and see if we can find a reference in our data. */
|
| + ULONGEST offset
|
| + = read_memory_unsigned_integer (pc + 2, 4, byte_order);
|
| +
|
| + /* Get address of function pointer at end of pc. */
|
| + CORE_ADDR indirect_addr = pc + offset + 6;
|
| +
|
| + struct minimal_symbol *indsym
|
| + = (indirect_addr
|
| + ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
|
| + : NULL);
|
| + const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : NULL;
|
| +
|
| + if (symname)
|
| + {
|
| + if (strncmp (symname, "__imp_", 6) == 0
|
| + || strncmp (symname, "_imp_", 5) == 0)
|
| + destination
|
| + = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
|
| + }
|
| + }
|
| +
|
| + return destination;
|
| +}
|
| +
|
| +/* Implement the "auto_wide_charset" gdbarch method. */
|
| +
|
| +static const char *
|
| +amd64_windows_auto_wide_charset (void)
|
| +{
|
| + return "UTF-16";
|
| +}
|
|
|
| static void
|
| amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
| {
|
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
| + /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
|
| + preferred over the SEH one. The reasons are:
|
| + - binaries without SEH but with dwarf2 debug info are correcly handled
|
| + (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
|
| + info).
|
| + - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
|
| + handled if the dwarf2 unwinder is used).
|
| +
|
| + The call to amd64_init_abi appends default unwinders, that aren't
|
| + compatible with the SEH one.
|
| + */
|
| + frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
|
| +
|
| amd64_init_abi (info, gdbarch);
|
|
|
| + windows_init_abi (info, gdbarch);
|
| +
|
| /* On Windows, "long"s are only 32bit. */
|
| set_gdbarch_long_bit (gdbarch, 32);
|
|
|
| /* Function calls. */
|
| - tdep->call_dummy_num_integer_regs =
|
| - ARRAY_SIZE (amd64_windows_dummy_call_integer_regs);
|
| - tdep->call_dummy_integer_regs = amd64_windows_dummy_call_integer_regs;
|
| - tdep->classify = amd64_windows_classify;
|
| - tdep->memory_args_by_pointer = 1;
|
| - tdep->integer_param_regs_saved_in_caller_frame = 1;
|
| + set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
|
| set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
|
| set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
|
| + set_gdbarch_skip_trampoline_code (gdbarch,
|
| + amd64_windows_skip_trampoline_code);
|
|
|
| - set_gdbarch_iterate_over_objfiles_in_search_order
|
| - (gdbarch, windows_iterate_over_objfiles_in_search_order);
|
| + set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
|
|
|
| - set_solib_ops (gdbarch, &solib_target_so_ops);
|
| + set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
|
| }
|
|
|
| /* -Wmissing-prototypes */
|
| @@ -190,4 +1212,3 @@ _initialize_amd64_windows_tdep (void)
|
| gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
|
| amd64_windows_init_abi);
|
| }
|
| -
|
|
|