| Index: gdb/aarch64-tdep.c
|
| diff --git a/gdb/aarch64-tdep.c b/gdb/aarch64-tdep.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..04ff1c5eeee7d54b24ebda434b6dc0f1cf00862b
|
| --- /dev/null
|
| +++ b/gdb/aarch64-tdep.c
|
| @@ -0,0 +1,2729 @@
|
| +/* Common target dependent code for GDB on AArch64 systems.
|
| +
|
| + Copyright (C) 2009-2013 Free Software Foundation, Inc.
|
| + Contributed by ARM Ltd.
|
| +
|
| + This file is part of GDB.
|
| +
|
| + This program is free software; you can redistribute it and/or modify
|
| + it under the terms of the GNU General Public License as published by
|
| + the Free Software Foundation; either version 3 of the License, or
|
| + (at your option) any later version.
|
| +
|
| + This program is distributed in the hope that it will be useful,
|
| + but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| + GNU General Public License for more details.
|
| +
|
| + You should have received a copy of the GNU General Public License
|
| + along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| +
|
| +#include "defs.h"
|
| +
|
| +#include "frame.h"
|
| +#include "inferior.h"
|
| +#include "gdbcmd.h"
|
| +#include "gdbcore.h"
|
| +#include <string.h>
|
| +#include "dis-asm.h"
|
| +#include "regcache.h"
|
| +#include "reggroups.h"
|
| +#include "doublest.h"
|
| +#include "value.h"
|
| +#include "arch-utils.h"
|
| +#include "osabi.h"
|
| +#include "frame-unwind.h"
|
| +#include "frame-base.h"
|
| +#include "trad-frame.h"
|
| +#include "objfiles.h"
|
| +#include "dwarf2-frame.h"
|
| +#include "gdbtypes.h"
|
| +#include "prologue-value.h"
|
| +#include "target-descriptions.h"
|
| +#include "user-regs.h"
|
| +#include "language.h"
|
| +#include "infcall.h"
|
| +
|
| +#include "aarch64-tdep.h"
|
| +
|
| +#include "elf-bfd.h"
|
| +#include "elf/aarch64.h"
|
| +
|
| +#include "gdb_assert.h"
|
| +#include "vec.h"
|
| +
|
| +#include "features/aarch64.c"
|
| +
|
| +/* Pseudo register base numbers. */
|
| +#define AARCH64_Q0_REGNUM 0
|
| +#define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + 32)
|
| +#define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
|
| +#define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
|
| +#define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
|
| +
|
| +/* The standard register names, and all the valid aliases for them. */
|
| +static const struct
|
| +{
|
| + const char *const name;
|
| + int regnum;
|
| +} aarch64_register_aliases[] =
|
| +{
|
| + /* 64-bit register names. */
|
| + {"fp", AARCH64_FP_REGNUM},
|
| + {"lr", AARCH64_LR_REGNUM},
|
| + {"sp", AARCH64_SP_REGNUM},
|
| +
|
| + /* 32-bit register names. */
|
| + {"w0", AARCH64_X0_REGNUM + 0},
|
| + {"w1", AARCH64_X0_REGNUM + 1},
|
| + {"w2", AARCH64_X0_REGNUM + 2},
|
| + {"w3", AARCH64_X0_REGNUM + 3},
|
| + {"w4", AARCH64_X0_REGNUM + 4},
|
| + {"w5", AARCH64_X0_REGNUM + 5},
|
| + {"w6", AARCH64_X0_REGNUM + 6},
|
| + {"w7", AARCH64_X0_REGNUM + 7},
|
| + {"w8", AARCH64_X0_REGNUM + 8},
|
| + {"w9", AARCH64_X0_REGNUM + 9},
|
| + {"w10", AARCH64_X0_REGNUM + 10},
|
| + {"w11", AARCH64_X0_REGNUM + 11},
|
| + {"w12", AARCH64_X0_REGNUM + 12},
|
| + {"w13", AARCH64_X0_REGNUM + 13},
|
| + {"w14", AARCH64_X0_REGNUM + 14},
|
| + {"w15", AARCH64_X0_REGNUM + 15},
|
| + {"w16", AARCH64_X0_REGNUM + 16},
|
| + {"w17", AARCH64_X0_REGNUM + 17},
|
| + {"w18", AARCH64_X0_REGNUM + 18},
|
| + {"w19", AARCH64_X0_REGNUM + 19},
|
| + {"w20", AARCH64_X0_REGNUM + 20},
|
| + {"w21", AARCH64_X0_REGNUM + 21},
|
| + {"w22", AARCH64_X0_REGNUM + 22},
|
| + {"w23", AARCH64_X0_REGNUM + 23},
|
| + {"w24", AARCH64_X0_REGNUM + 24},
|
| + {"w25", AARCH64_X0_REGNUM + 25},
|
| + {"w26", AARCH64_X0_REGNUM + 26},
|
| + {"w27", AARCH64_X0_REGNUM + 27},
|
| + {"w28", AARCH64_X0_REGNUM + 28},
|
| + {"w29", AARCH64_X0_REGNUM + 29},
|
| + {"w30", AARCH64_X0_REGNUM + 30},
|
| +
|
| + /* specials */
|
| + {"ip0", AARCH64_X0_REGNUM + 16},
|
| + {"ip1", AARCH64_X0_REGNUM + 17}
|
| +};
|
| +
|
| +/* The required core 'R' registers. */
|
| +static const char *const aarch64_r_register_names[] =
|
| +{
|
| + /* These registers must appear in consecutive RAW register number
|
| + order and they must begin with AARCH64_X0_REGNUM! */
|
| + "x0", "x1", "x2", "x3",
|
| + "x4", "x5", "x6", "x7",
|
| + "x8", "x9", "x10", "x11",
|
| + "x12", "x13", "x14", "x15",
|
| + "x16", "x17", "x18", "x19",
|
| + "x20", "x21", "x22", "x23",
|
| + "x24", "x25", "x26", "x27",
|
| + "x28", "x29", "x30", "sp",
|
| + "pc", "cpsr"
|
| +};
|
| +
|
| +/* The FP/SIMD 'V' registers. */
|
| +static const char *const aarch64_v_register_names[] =
|
| +{
|
| + /* These registers must appear in consecutive RAW register number
|
| + order and they must begin with AARCH64_V0_REGNUM! */
|
| + "v0", "v1", "v2", "v3",
|
| + "v4", "v5", "v6", "v7",
|
| + "v8", "v9", "v10", "v11",
|
| + "v12", "v13", "v14", "v15",
|
| + "v16", "v17", "v18", "v19",
|
| + "v20", "v21", "v22", "v23",
|
| + "v24", "v25", "v26", "v27",
|
| + "v28", "v29", "v30", "v31",
|
| + "fpsr",
|
| + "fpcr"
|
| +};
|
| +
|
| +/* AArch64 prologue cache structure. */
|
| +struct aarch64_prologue_cache
|
| +{
|
| + /* The stack pointer at the time this frame was created; i.e. the
|
| + caller's stack pointer when this function was called. It is used
|
| + to identify this frame. */
|
| + CORE_ADDR prev_sp;
|
| +
|
| + /* The frame base for this frame is just prev_sp - frame size.
|
| + FRAMESIZE is the distance from the frame pointer to the
|
| + initial stack pointer. */
|
| + int framesize;
|
| +
|
| + /* The register used to hold the frame pointer for this frame. */
|
| + int framereg;
|
| +
|
| + /* Saved register offsets. */
|
| + struct trad_frame_saved_reg *saved_regs;
|
| +};
|
| +
|
| +/* Toggle this file's internal debugging dump. */
|
| +static int aarch64_debug;
|
| +
|
| +static void
|
| +show_aarch64_debug (struct ui_file *file, int from_tty,
|
| + struct cmd_list_element *c, const char *value)
|
| +{
|
| + fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
|
| +}
|
| +
|
| +/* Extract a signed value from a bit field within an instruction
|
| + encoding.
|
| +
|
| + INSN is the instruction opcode.
|
| +
|
| + WIDTH specifies the width of the bit field to extract (in bits).
|
| +
|
| + OFFSET specifies the least significant bit of the field where bits
|
| + are numbered zero counting from least to most significant. */
|
| +
|
| +static int32_t
|
| +extract_signed_bitfield (uint32_t insn, unsigned width, unsigned offset)
|
| +{
|
| + unsigned shift_l = sizeof (int32_t) * 8 - (offset + width);
|
| + unsigned shift_r = sizeof (int32_t) * 8 - width;
|
| +
|
| + return ((int32_t) insn << shift_l) >> shift_r;
|
| +}
|
| +
|
| +/* Determine if specified bits within an instruction opcode matches a
|
| + specific pattern.
|
| +
|
| + INSN is the instruction opcode.
|
| +
|
| + MASK specifies the bits within the opcode that are to be tested
|
| + agsinst for a match with PATTERN. */
|
| +
|
| +static int
|
| +decode_masked_match (uint32_t insn, uint32_t mask, uint32_t pattern)
|
| +{
|
| + return (insn & mask) == pattern;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents an immediate ADD or SUB instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + RD receives the 'rd' field from the decoded instruction.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +static int
|
| +decode_add_sub_imm (CORE_ADDR addr, uint32_t insn, unsigned *rd, unsigned *rn,
|
| + int32_t *imm)
|
| +{
|
| + if ((insn & 0x9f000000) == 0x91000000)
|
| + {
|
| + unsigned shift;
|
| + unsigned op_is_sub;
|
| +
|
| + *rd = (insn >> 0) & 0x1f;
|
| + *rn = (insn >> 5) & 0x1f;
|
| + *imm = (insn >> 10) & 0xfff;
|
| + shift = (insn >> 22) & 0x3;
|
| + op_is_sub = (insn >> 30) & 0x1;
|
| +
|
| + switch (shift)
|
| + {
|
| + case 0:
|
| + break;
|
| + case 1:
|
| + *imm <<= 12;
|
| + break;
|
| + default:
|
| + /* UNDEFINED */
|
| + return 0;
|
| + }
|
| +
|
| + if (op_is_sub)
|
| + *imm = -*imm;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x add x%u, x%u, #%d\n",
|
| + core_addr_to_string_nz (addr), insn, *rd, *rn,
|
| + *imm);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents an ADRP instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + RD receives the 'rd' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_adrp (CORE_ADDR addr, uint32_t insn, unsigned *rd)
|
| +{
|
| + if (decode_masked_match (insn, 0x9f000000, 0x90000000))
|
| + {
|
| + *rd = (insn >> 0) & 0x1f;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x adrp x%u, #?\n",
|
| + core_addr_to_string_nz (addr), insn, *rd);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents an branch immediate or branch
|
| + and link immediate instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + LINK receives the 'link' bit from the decoded instruction.
|
| + OFFSET receives the immediate offset from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_b (CORE_ADDR addr, uint32_t insn, unsigned *link, int32_t *offset)
|
| +{
|
| + /* b 0001 01ii iiii iiii iiii iiii iiii iiii */
|
| + /* bl 1001 01ii iiii iiii iiii iiii iiii iiii */
|
| + if (decode_masked_match (insn, 0x7c000000, 0x14000000))
|
| + {
|
| + *link = insn >> 31;
|
| + *offset = extract_signed_bitfield (insn, 26, 0) << 2;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x %s 0x%s\n",
|
| + core_addr_to_string_nz (addr), insn,
|
| + *link ? "bl" : "b",
|
| + core_addr_to_string_nz (addr + *offset));
|
| +
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a conditional branch instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + COND receives the branch condition field from the decoded
|
| + instruction.
|
| + OFFSET receives the immediate offset from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_bcond (CORE_ADDR addr, uint32_t insn, unsigned *cond, int32_t *offset)
|
| +{
|
| + if (decode_masked_match (insn, 0xfe000000, 0x54000000))
|
| + {
|
| + *cond = (insn >> 0) & 0xf;
|
| + *offset = extract_signed_bitfield (insn, 19, 5) << 2;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x b<%u> 0x%s\n",
|
| + core_addr_to_string_nz (addr), insn, *cond,
|
| + core_addr_to_string_nz (addr + *offset));
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a branch via register instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + LINK receives the 'link' bit from the decoded instruction.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_br (CORE_ADDR addr, uint32_t insn, unsigned *link, unsigned *rn)
|
| +{
|
| + /* 8 4 0 6 2 8 4 0 */
|
| + /* blr 110101100011111100000000000rrrrr */
|
| + /* br 110101100001111100000000000rrrrr */
|
| + if (decode_masked_match (insn, 0xffdffc1f, 0xd61f0000))
|
| + {
|
| + *link = (insn >> 21) & 1;
|
| + *rn = (insn >> 5) & 0x1f;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x %s 0x%x\n",
|
| + core_addr_to_string_nz (addr), insn,
|
| + *link ? "blr" : "br", *rn);
|
| +
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a CBZ or CBNZ instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + IS64 receives the 'sf' field from the decoded instruction.
|
| + OP receives the 'op' field from the decoded instruction.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| + OFFSET receives the 'imm19' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_cb (CORE_ADDR addr,
|
| + uint32_t insn, int *is64, unsigned *op, unsigned *rn,
|
| + int32_t *offset)
|
| +{
|
| + if (decode_masked_match (insn, 0x7e000000, 0x34000000))
|
| + {
|
| + /* cbz T011 010o iiii iiii iiii iiii iiir rrrr */
|
| + /* cbnz T011 010o iiii iiii iiii iiii iiir rrrr */
|
| +
|
| + *rn = (insn >> 0) & 0x1f;
|
| + *is64 = (insn >> 31) & 0x1;
|
| + *op = (insn >> 24) & 0x1;
|
| + *offset = extract_signed_bitfield (insn, 19, 5) << 2;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x %s 0x%s\n",
|
| + core_addr_to_string_nz (addr), insn,
|
| + *op ? "cbnz" : "cbz",
|
| + core_addr_to_string_nz (addr + *offset));
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a ERET instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_eret (CORE_ADDR addr, uint32_t insn)
|
| +{
|
| + /* eret 1101 0110 1001 1111 0000 0011 1110 0000 */
|
| + if (insn == 0xd69f03e0)
|
| + {
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog, "decode: 0x%s 0x%x eret\n",
|
| + core_addr_to_string_nz (addr), insn);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a MOVZ instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + RD receives the 'rd' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_movz (CORE_ADDR addr, uint32_t insn, unsigned *rd)
|
| +{
|
| + if (decode_masked_match (insn, 0xff800000, 0x52800000))
|
| + {
|
| + *rd = (insn >> 0) & 0x1f;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x movz x%u, #?\n",
|
| + core_addr_to_string_nz (addr), insn, *rd);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a ORR (shifted register)
|
| + instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + RD receives the 'rd' field from the decoded instruction.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| + RM receives the 'rm' field from the decoded instruction.
|
| + IMM receives the 'imm6' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_orr_shifted_register_x (CORE_ADDR addr,
|
| + uint32_t insn, unsigned *rd, unsigned *rn,
|
| + unsigned *rm, int32_t *imm)
|
| +{
|
| + if (decode_masked_match (insn, 0xff200000, 0xaa000000))
|
| + {
|
| + *rd = (insn >> 0) & 0x1f;
|
| + *rn = (insn >> 5) & 0x1f;
|
| + *rm = (insn >> 16) & 0x1f;
|
| + *imm = (insn >> 10) & 0x3f;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x orr x%u, x%u, x%u, #%u\n",
|
| + core_addr_to_string_nz (addr), insn, *rd,
|
| + *rn, *rm, *imm);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a RET instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_ret (CORE_ADDR addr, uint32_t insn, unsigned *rn)
|
| +{
|
| + if (decode_masked_match (insn, 0xfffffc1f, 0xd65f0000))
|
| + {
|
| + *rn = (insn >> 5) & 0x1f;
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x ret x%u\n",
|
| + core_addr_to_string_nz (addr), insn, *rn);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents the following instruction:
|
| + STP rt, rt2, [rn, #imm]
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + RT1 receives the 'rt' field from the decoded instruction.
|
| + RT2 receives the 'rt2' field from the decoded instruction.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| + IMM receives the 'imm' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_stp_offset (CORE_ADDR addr,
|
| + uint32_t insn,
|
| + unsigned *rt1, unsigned *rt2, unsigned *rn, int32_t *imm)
|
| +{
|
| + if (decode_masked_match (insn, 0xffc00000, 0xa9000000))
|
| + {
|
| + *rt1 = (insn >> 0) & 0x1f;
|
| + *rn = (insn >> 5) & 0x1f;
|
| + *rt2 = (insn >> 10) & 0x1f;
|
| + *imm = extract_signed_bitfield (insn, 7, 15);
|
| + *imm <<= 3;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]\n",
|
| + core_addr_to_string_nz (addr), insn,
|
| + *rt1, *rt2, *rn, *imm);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents the following instruction:
|
| + STP rt, rt2, [rn, #imm]!
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + RT1 receives the 'rt' field from the decoded instruction.
|
| + RT2 receives the 'rt2' field from the decoded instruction.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| + IMM receives the 'imm' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_stp_offset_wb (CORE_ADDR addr,
|
| + uint32_t insn,
|
| + unsigned *rt1, unsigned *rt2, unsigned *rn,
|
| + int32_t *imm)
|
| +{
|
| + if (decode_masked_match (insn, 0xffc00000, 0xa9800000))
|
| + {
|
| + *rt1 = (insn >> 0) & 0x1f;
|
| + *rn = (insn >> 5) & 0x1f;
|
| + *rt2 = (insn >> 10) & 0x1f;
|
| + *imm = extract_signed_bitfield (insn, 7, 15);
|
| + *imm <<= 3;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]!\n",
|
| + core_addr_to_string_nz (addr), insn,
|
| + *rt1, *rt2, *rn, *imm);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents the following instruction:
|
| + STUR rt, [rn, #imm]
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + IS64 receives size field from the decoded instruction.
|
| + RT receives the 'rt' field from the decoded instruction.
|
| + RN receives the 'rn' field from the decoded instruction.
|
| + IMM receives the 'imm' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_stur (CORE_ADDR addr, uint32_t insn, int *is64, unsigned *rt,
|
| + unsigned *rn, int32_t *imm)
|
| +{
|
| + if (decode_masked_match (insn, 0xbfe00c00, 0xb8000000))
|
| + {
|
| + *is64 = (insn >> 30) & 1;
|
| + *rt = (insn >> 0) & 0x1f;
|
| + *rn = (insn >> 5) & 0x1f;
|
| + *imm = extract_signed_bitfield (insn, 9, 12);
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x stur %c%u, [x%u + #%d]\n",
|
| + core_addr_to_string_nz (addr), insn,
|
| + *is64 ? 'x' : 'w', *rt, *rn, *imm);
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Decode an opcode if it represents a TB or TBNZ instruction.
|
| +
|
| + ADDR specifies the address of the opcode.
|
| + INSN specifies the opcode to test.
|
| + OP receives the 'op' field from the decoded instruction.
|
| + BIT receives the bit position field from the decoded instruction.
|
| + RT receives 'rt' field from the decoded instruction.
|
| + IMM receives 'imm' field from the decoded instruction.
|
| +
|
| + Return 1 if the opcodes matches and is decoded, otherwise 0. */
|
| +
|
| +static int
|
| +decode_tb (CORE_ADDR addr,
|
| + uint32_t insn, unsigned *op, unsigned *bit, unsigned *rt,
|
| + int32_t *imm)
|
| +{
|
| + if (decode_masked_match (insn, 0x7e000000, 0x36000000))
|
| + {
|
| + /* tbz b011 0110 bbbb biii iiii iiii iiir rrrr */
|
| + /* tbnz B011 0111 bbbb biii iiii iiii iiir rrrr */
|
| +
|
| + *rt = (insn >> 0) & 0x1f;
|
| + *op = insn & (1 << 24);
|
| + *bit = ((insn >> (31 - 4)) & 0x20) | ((insn >> 19) & 0x1f);
|
| + *imm = extract_signed_bitfield (insn, 14, 5) << 2;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "decode: 0x%s 0x%x %s x%u, #%u, 0x%s\n",
|
| + core_addr_to_string_nz (addr), insn,
|
| + *op ? "tbnz" : "tbz", *rt, *bit,
|
| + core_addr_to_string_nz (addr + *imm));
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +/* Analyze a prologue, looking for a recognizable stack frame
|
| + and frame pointer. Scan until we encounter a store that could
|
| + clobber the stack frame unexpectedly, or an unknown instruction. */
|
| +
|
| +static CORE_ADDR
|
| +aarch64_analyze_prologue (struct gdbarch *gdbarch,
|
| + CORE_ADDR start, CORE_ADDR limit,
|
| + struct aarch64_prologue_cache *cache)
|
| +{
|
| + enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
|
| + int i;
|
| + pv_t regs[AARCH64_X_REGISTER_COUNT];
|
| + struct pv_area *stack;
|
| + struct cleanup *back_to;
|
| +
|
| + for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
|
| + regs[i] = pv_register (i, 0);
|
| + stack = make_pv_area (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
| + back_to = make_cleanup_free_pv_area (stack);
|
| +
|
| + for (; start < limit; start += 4)
|
| + {
|
| + uint32_t insn;
|
| + unsigned rd;
|
| + unsigned rn;
|
| + unsigned rm;
|
| + unsigned rt;
|
| + unsigned rt1;
|
| + unsigned rt2;
|
| + int op_is_sub;
|
| + int32_t imm;
|
| + unsigned cond;
|
| + int is64;
|
| + unsigned is_link;
|
| + unsigned op;
|
| + unsigned bit;
|
| + int32_t offset;
|
| +
|
| + insn = read_memory_unsigned_integer (start, 4, byte_order_for_code);
|
| +
|
| + if (decode_add_sub_imm (start, insn, &rd, &rn, &imm))
|
| + regs[rd] = pv_add_constant (regs[rn], imm);
|
| + else if (decode_adrp (start, insn, &rd))
|
| + regs[rd] = pv_unknown ();
|
| + else if (decode_b (start, insn, &is_link, &offset))
|
| + {
|
| + /* Stop analysis on branch. */
|
| + break;
|
| + }
|
| + else if (decode_bcond (start, insn, &cond, &offset))
|
| + {
|
| + /* Stop analysis on branch. */
|
| + break;
|
| + }
|
| + else if (decode_br (start, insn, &is_link, &rn))
|
| + {
|
| + /* Stop analysis on branch. */
|
| + break;
|
| + }
|
| + else if (decode_cb (start, insn, &is64, &op, &rn, &offset))
|
| + {
|
| + /* Stop analysis on branch. */
|
| + break;
|
| + }
|
| + else if (decode_eret (start, insn))
|
| + {
|
| + /* Stop analysis on branch. */
|
| + break;
|
| + }
|
| + else if (decode_movz (start, insn, &rd))
|
| + regs[rd] = pv_unknown ();
|
| + else
|
| + if (decode_orr_shifted_register_x (start, insn, &rd, &rn, &rm, &imm))
|
| + {
|
| + if (imm == 0 && rn == 31)
|
| + regs[rd] = regs[rm];
|
| + else
|
| + {
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered
|
| + (gdb_stdlog,
|
| + "aarch64: prologue analysis gave up addr=0x%s "
|
| + "opcode=0x%x (orr x register)\n",
|
| + core_addr_to_string_nz (start),
|
| + insn);
|
| + break;
|
| + }
|
| + }
|
| + else if (decode_ret (start, insn, &rn))
|
| + {
|
| + /* Stop analysis on branch. */
|
| + break;
|
| + }
|
| + else if (decode_stur (start, insn, &is64, &rt, &rn, &offset))
|
| + {
|
| + pv_area_store (stack, pv_add_constant (regs[rn], offset),
|
| + is64 ? 8 : 4, regs[rt]);
|
| + }
|
| + else if (decode_stp_offset (start, insn, &rt1, &rt2, &rn, &imm))
|
| + {
|
| + /* If recording this store would invalidate the store area
|
| + (perhaps because rn is not known) then we should abandon
|
| + further prologue analysis. */
|
| + if (pv_area_store_would_trash (stack,
|
| + pv_add_constant (regs[rn], imm)))
|
| + break;
|
| +
|
| + if (pv_area_store_would_trash (stack,
|
| + pv_add_constant (regs[rn], imm + 8)))
|
| + break;
|
| +
|
| + pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
|
| + regs[rt1]);
|
| + pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
|
| + regs[rt2]);
|
| + }
|
| + else if (decode_stp_offset_wb (start, insn, &rt1, &rt2, &rn, &imm))
|
| + {
|
| + /* If recording this store would invalidate the store area
|
| + (perhaps because rn is not known) then we should abandon
|
| + further prologue analysis. */
|
| + if (pv_area_store_would_trash (stack,
|
| + pv_add_constant (regs[rn], imm)))
|
| + break;
|
| +
|
| + if (pv_area_store_would_trash (stack,
|
| + pv_add_constant (regs[rn], imm + 8)))
|
| + break;
|
| +
|
| + pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
|
| + regs[rt1]);
|
| + pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
|
| + regs[rt2]);
|
| + regs[rn] = pv_add_constant (regs[rn], imm);
|
| + }
|
| + else if (decode_tb (start, insn, &op, &bit, &rn, &offset))
|
| + {
|
| + /* Stop analysis on branch. */
|
| + break;
|
| + }
|
| + else
|
| + {
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "aarch64: prologue analysis gave up addr=0x%s"
|
| + " opcode=0x%x\n",
|
| + core_addr_to_string_nz (start), insn);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (cache == NULL)
|
| + {
|
| + do_cleanups (back_to);
|
| + return start;
|
| + }
|
| +
|
| + if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
|
| + {
|
| + /* Frame pointer is fp. Frame size is constant. */
|
| + cache->framereg = AARCH64_FP_REGNUM;
|
| + cache->framesize = -regs[AARCH64_FP_REGNUM].k;
|
| + }
|
| + else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
|
| + {
|
| + /* Try the stack pointer. */
|
| + cache->framesize = -regs[AARCH64_SP_REGNUM].k;
|
| + cache->framereg = AARCH64_SP_REGNUM;
|
| + }
|
| + else
|
| + {
|
| + /* We're just out of luck. We don't know where the frame is. */
|
| + cache->framereg = -1;
|
| + cache->framesize = 0;
|
| + }
|
| +
|
| + for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
|
| + {
|
| + CORE_ADDR offset;
|
| +
|
| + if (pv_area_find_reg (stack, gdbarch, i, &offset))
|
| + cache->saved_regs[i].addr = offset;
|
| + }
|
| +
|
| + do_cleanups (back_to);
|
| + return start;
|
| +}
|
| +
|
| +/* Implement the "skip_prologue" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
| +{
|
| + unsigned long inst;
|
| + CORE_ADDR skip_pc;
|
| + CORE_ADDR func_addr, limit_pc;
|
| + struct symtab_and_line sal;
|
| +
|
| + /* See if we can determine the end of the prologue via the symbol
|
| + table. If so, then return either PC, or the PC after the
|
| + prologue, whichever is greater. */
|
| + if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
| + {
|
| + CORE_ADDR post_prologue_pc
|
| + = skip_prologue_using_sal (gdbarch, func_addr);
|
| +
|
| + if (post_prologue_pc != 0)
|
| + return max (pc, post_prologue_pc);
|
| + }
|
| +
|
| + /* Can't determine prologue from the symbol table, need to examine
|
| + instructions. */
|
| +
|
| + /* Find an upper limit on the function prologue using the debug
|
| + information. If the debug information could not be used to
|
| + provide that bound, then use an arbitrary large number as the
|
| + upper bound. */
|
| + limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
| + if (limit_pc == 0)
|
| + limit_pc = pc + 128; /* Magic. */
|
| +
|
| + /* Try disassembling prologue. */
|
| + return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
|
| +}
|
| +
|
| +/* Scan the function prologue for THIS_FRAME and populate the prologue
|
| + cache CACHE. */
|
| +
|
| +static void
|
| +aarch64_scan_prologue (struct frame_info *this_frame,
|
| + struct aarch64_prologue_cache *cache)
|
| +{
|
| + CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
|
| + CORE_ADDR prologue_start;
|
| + CORE_ADDR prologue_end;
|
| + CORE_ADDR prev_pc = get_frame_pc (this_frame);
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| +
|
| + /* Assume we do not find a frame. */
|
| + cache->framereg = -1;
|
| + cache->framesize = 0;
|
| +
|
| + if (find_pc_partial_function (block_addr, NULL, &prologue_start,
|
| + &prologue_end))
|
| + {
|
| + struct symtab_and_line sal = find_pc_line (prologue_start, 0);
|
| +
|
| + if (sal.line == 0)
|
| + {
|
| + /* No line info so use the current PC. */
|
| + prologue_end = prev_pc;
|
| + }
|
| + else if (sal.end < prologue_end)
|
| + {
|
| + /* The next line begins after the function end. */
|
| + prologue_end = sal.end;
|
| + }
|
| +
|
| + prologue_end = min (prologue_end, prev_pc);
|
| + aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
|
| + }
|
| + else
|
| + {
|
| + CORE_ADDR frame_loc;
|
| + LONGEST saved_fp;
|
| + LONGEST saved_lr;
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| +
|
| + frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
|
| + if (frame_loc == 0)
|
| + return;
|
| +
|
| + cache->framereg = AARCH64_FP_REGNUM;
|
| + cache->framesize = 16;
|
| + cache->saved_regs[29].addr = 0;
|
| + cache->saved_regs[30].addr = 8;
|
| + }
|
| +}
|
| +
|
| +/* Allocate an aarch64_prologue_cache and fill it with information
|
| + about the prologue of *THIS_FRAME. */
|
| +
|
| +static struct aarch64_prologue_cache *
|
| +aarch64_make_prologue_cache (struct frame_info *this_frame)
|
| +{
|
| + struct aarch64_prologue_cache *cache;
|
| + CORE_ADDR unwound_fp;
|
| + int reg;
|
| +
|
| + cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
|
| + cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
| +
|
| + aarch64_scan_prologue (this_frame, cache);
|
| +
|
| + if (cache->framereg == -1)
|
| + return cache;
|
| +
|
| + unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
|
| + if (unwound_fp == 0)
|
| + return cache;
|
| +
|
| + cache->prev_sp = unwound_fp + cache->framesize;
|
| +
|
| + /* Calculate actual addresses of saved registers using offsets
|
| + determined by aarch64_analyze_prologue. */
|
| + for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
|
| + if (trad_frame_addr_p (cache->saved_regs, reg))
|
| + cache->saved_regs[reg].addr += cache->prev_sp;
|
| +
|
| + return cache;
|
| +}
|
| +
|
| +/* Our frame ID for a normal frame is the current function's starting
|
| + PC and the caller's SP when we were called. */
|
| +
|
| +static void
|
| +aarch64_prologue_this_id (struct frame_info *this_frame,
|
| + void **this_cache, struct frame_id *this_id)
|
| +{
|
| + struct aarch64_prologue_cache *cache;
|
| + struct frame_id id;
|
| + CORE_ADDR pc, func;
|
| +
|
| + if (*this_cache == NULL)
|
| + *this_cache = aarch64_make_prologue_cache (this_frame);
|
| + cache = *this_cache;
|
| +
|
| + /* This is meant to halt the backtrace at "_start". */
|
| + pc = get_frame_pc (this_frame);
|
| + if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
|
| + return;
|
| +
|
| + /* If we've hit a wall, stop. */
|
| + if (cache->prev_sp == 0)
|
| + return;
|
| +
|
| + func = get_frame_func (this_frame);
|
| + id = frame_id_build (cache->prev_sp, func);
|
| + *this_id = id;
|
| +}
|
| +
|
| +/* Implement the "prev_register" frame_unwind method. */
|
| +
|
| +static struct value *
|
| +aarch64_prologue_prev_register (struct frame_info *this_frame,
|
| + void **this_cache, int prev_regnum)
|
| +{
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| + struct aarch64_prologue_cache *cache;
|
| +
|
| + if (*this_cache == NULL)
|
| + *this_cache = aarch64_make_prologue_cache (this_frame);
|
| + cache = *this_cache;
|
| +
|
| + /* If we are asked to unwind the PC, then we need to return the LR
|
| + instead. The prologue may save PC, but it will point into this
|
| + frame's prologue, not the next frame's resume location. */
|
| + if (prev_regnum == AARCH64_PC_REGNUM)
|
| + {
|
| + CORE_ADDR lr;
|
| +
|
| + lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
|
| + return frame_unwind_got_constant (this_frame, prev_regnum, lr);
|
| + }
|
| +
|
| + /* SP is generally not saved to the stack, but this frame is
|
| + identified by the next frame's stack pointer at the time of the
|
| + call. The value was already reconstructed into PREV_SP. */
|
| + /*
|
| + +----------+ ^
|
| + | saved lr | |
|
| + +->| saved fp |--+
|
| + | | |
|
| + | | | <- Previous SP
|
| + | +----------+
|
| + | | saved lr |
|
| + +--| saved fp |<- FP
|
| + | |
|
| + | |<- SP
|
| + +----------+ */
|
| + if (prev_regnum == AARCH64_SP_REGNUM)
|
| + return frame_unwind_got_constant (this_frame, prev_regnum,
|
| + cache->prev_sp);
|
| +
|
| + return trad_frame_get_prev_register (this_frame, cache->saved_regs,
|
| + prev_regnum);
|
| +}
|
| +
|
| +/* AArch64 prologue unwinder. */
|
| +struct frame_unwind aarch64_prologue_unwind =
|
| +{
|
| + NORMAL_FRAME,
|
| + default_frame_unwind_stop_reason,
|
| + aarch64_prologue_this_id,
|
| + aarch64_prologue_prev_register,
|
| + NULL,
|
| + default_frame_sniffer
|
| +};
|
| +
|
| +/* Allocate an aarch64_prologue_cache and fill it with information
|
| + about the prologue of *THIS_FRAME. */
|
| +
|
| +static struct aarch64_prologue_cache *
|
| +aarch64_make_stub_cache (struct frame_info *this_frame)
|
| +{
|
| + int reg;
|
| + struct aarch64_prologue_cache *cache;
|
| + CORE_ADDR unwound_fp;
|
| +
|
| + cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
|
| + cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
| +
|
| + cache->prev_sp
|
| + = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM);
|
| +
|
| + return cache;
|
| +}
|
| +
|
| +/* Our frame ID for a stub frame is the current SP and LR. */
|
| +
|
| +static void
|
| +aarch64_stub_this_id (struct frame_info *this_frame,
|
| + void **this_cache, struct frame_id *this_id)
|
| +{
|
| + struct aarch64_prologue_cache *cache;
|
| +
|
| + if (*this_cache == NULL)
|
| + *this_cache = aarch64_make_stub_cache (this_frame);
|
| + cache = *this_cache;
|
| +
|
| + *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
|
| +}
|
| +
|
| +/* Implement the "sniffer" frame_unwind method. */
|
| +
|
| +static int
|
| +aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
|
| + struct frame_info *this_frame,
|
| + void **this_prologue_cache)
|
| +{
|
| + CORE_ADDR addr_in_block;
|
| + gdb_byte dummy[4];
|
| +
|
| + addr_in_block = get_frame_address_in_block (this_frame);
|
| + if (in_plt_section (addr_in_block)
|
| + /* We also use the stub winder if the target memory is unreadable
|
| + to avoid having the prologue unwinder trying to read it. */
|
| + || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
|
| + return 1;
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/* AArch64 stub unwinder. */
|
| +struct frame_unwind aarch64_stub_unwind =
|
| +{
|
| + NORMAL_FRAME,
|
| + default_frame_unwind_stop_reason,
|
| + aarch64_stub_this_id,
|
| + aarch64_prologue_prev_register,
|
| + NULL,
|
| + aarch64_stub_unwind_sniffer
|
| +};
|
| +
|
| +/* Return the frame base address of *THIS_FRAME. */
|
| +
|
| +static CORE_ADDR
|
| +aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
|
| +{
|
| + struct aarch64_prologue_cache *cache;
|
| +
|
| + if (*this_cache == NULL)
|
| + *this_cache = aarch64_make_prologue_cache (this_frame);
|
| + cache = *this_cache;
|
| +
|
| + return cache->prev_sp - cache->framesize;
|
| +}
|
| +
|
| +/* AArch64 default frame base information. */
|
| +struct frame_base aarch64_normal_base =
|
| +{
|
| + &aarch64_prologue_unwind,
|
| + aarch64_normal_frame_base,
|
| + aarch64_normal_frame_base,
|
| + aarch64_normal_frame_base
|
| +};
|
| +
|
| +/* Assuming THIS_FRAME is a dummy, return the frame ID of that
|
| + dummy frame. The frame ID's base needs to match the TOS value
|
| + saved by save_dummy_frame_tos () and returned from
|
| + aarch64_push_dummy_call, and the PC needs to match the dummy
|
| + frame's breakpoint. */
|
| +
|
| +static struct frame_id
|
| +aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| +{
|
| + return frame_id_build (get_frame_register_unsigned (this_frame,
|
| + AARCH64_SP_REGNUM),
|
| + get_frame_pc (this_frame));
|
| +}
|
| +
|
| +/* Implement the "unwind_pc" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| +{
|
| + CORE_ADDR pc
|
| + = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
|
| +
|
| + return pc;
|
| +}
|
| +
|
| +/* Implement the "unwind_sp" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| +{
|
| + return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
|
| +}
|
| +
|
| +/* Return the value of the REGNUM register in the previous frame of
|
| + *THIS_FRAME. */
|
| +
|
| +static struct value *
|
| +aarch64_dwarf2_prev_register (struct frame_info *this_frame,
|
| + void **this_cache, int regnum)
|
| +{
|
| + struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
| + CORE_ADDR lr;
|
| +
|
| + switch (regnum)
|
| + {
|
| + case AARCH64_PC_REGNUM:
|
| + lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
|
| + return frame_unwind_got_constant (this_frame, regnum, lr);
|
| +
|
| + default:
|
| + internal_error (__FILE__, __LINE__,
|
| + _("Unexpected register %d"), regnum);
|
| + }
|
| +}
|
| +
|
| +/* Implement the "init_reg" dwarf2_frame_ops method. */
|
| +
|
| +static void
|
| +aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
| + struct dwarf2_frame_state_reg *reg,
|
| + struct frame_info *this_frame)
|
| +{
|
| + switch (regnum)
|
| + {
|
| + case AARCH64_PC_REGNUM:
|
| + reg->how = DWARF2_FRAME_REG_FN;
|
| + reg->loc.fn = aarch64_dwarf2_prev_register;
|
| + break;
|
| + case AARCH64_SP_REGNUM:
|
| + reg->how = DWARF2_FRAME_REG_CFA;
|
| + break;
|
| + }
|
| +}
|
| +
|
| +/* When arguments must be pushed onto the stack, they go on in reverse
|
| + order. The code below implements a FILO (stack) to do this. */
|
| +
|
| +typedef struct
|
| +{
|
| + /* Value to pass on stack. */
|
| + const void *data;
|
| +
|
| + /* Size in bytes of value to pass on stack. */
|
| + int len;
|
| +} stack_item_t;
|
| +
|
| +DEF_VEC_O (stack_item_t);
|
| +
|
| +/* Return the alignment (in bytes) of the given type. */
|
| +
|
| +static int
|
| +aarch64_type_align (struct type *t)
|
| +{
|
| + int n;
|
| + int align;
|
| + int falign;
|
| +
|
| + t = check_typedef (t);
|
| + switch (TYPE_CODE (t))
|
| + {
|
| + default:
|
| + /* Should never happen. */
|
| + internal_error (__FILE__, __LINE__, _("unknown type alignment"));
|
| + return 4;
|
| +
|
| + case TYPE_CODE_PTR:
|
| + case TYPE_CODE_ENUM:
|
| + case TYPE_CODE_INT:
|
| + case TYPE_CODE_FLT:
|
| + case TYPE_CODE_SET:
|
| + case TYPE_CODE_RANGE:
|
| + case TYPE_CODE_BITSTRING:
|
| + case TYPE_CODE_REF:
|
| + case TYPE_CODE_CHAR:
|
| + case TYPE_CODE_BOOL:
|
| + return TYPE_LENGTH (t);
|
| +
|
| + case TYPE_CODE_ARRAY:
|
| + case TYPE_CODE_COMPLEX:
|
| + return aarch64_type_align (TYPE_TARGET_TYPE (t));
|
| +
|
| + case TYPE_CODE_STRUCT:
|
| + case TYPE_CODE_UNION:
|
| + align = 1;
|
| + for (n = 0; n < TYPE_NFIELDS (t); n++)
|
| + {
|
| + falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
|
| + if (falign > align)
|
| + align = falign;
|
| + }
|
| + return align;
|
| + }
|
| +}
|
| +
|
| +/* Return 1 if *TY is a homogeneous floating-point aggregate as
|
| + defined in the AAPCS64 ABI document; otherwise return 0. */
|
| +
|
| +static int
|
| +is_hfa (struct type *ty)
|
| +{
|
| + switch (TYPE_CODE (ty))
|
| + {
|
| + case TYPE_CODE_ARRAY:
|
| + {
|
| + struct type *target_ty = TYPE_TARGET_TYPE (ty);
|
| + if (TYPE_CODE (target_ty) == TYPE_CODE_FLT && TYPE_LENGTH (ty) <= 4)
|
| + return 1;
|
| + break;
|
| + }
|
| +
|
| + case TYPE_CODE_UNION:
|
| + case TYPE_CODE_STRUCT:
|
| + {
|
| + if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4)
|
| + {
|
| + struct type *member0_type;
|
| +
|
| + member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0));
|
| + if (TYPE_CODE (member0_type) == TYPE_CODE_FLT)
|
| + {
|
| + int i;
|
| +
|
| + for (i = 0; i < TYPE_NFIELDS (ty); i++)
|
| + {
|
| + struct type *member1_type;
|
| +
|
| + member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i));
|
| + if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type)
|
| + || (TYPE_LENGTH (member0_type)
|
| + != TYPE_LENGTH (member1_type)))
|
| + return 0;
|
| + }
|
| + return 1;
|
| + }
|
| + }
|
| + return 0;
|
| + }
|
| +
|
| + default:
|
| + break;
|
| + }
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/* AArch64 function call information structure. */
|
| +struct aarch64_call_info
|
| +{
|
| + /* the current argument number. */
|
| + unsigned argnum;
|
| +
|
| + /* The next general purpose register number, equivalent to NGRN as
|
| + described in the AArch64 Procedure Call Standard. */
|
| + unsigned ngrn;
|
| +
|
| + /* The next SIMD and floating point register number, equivalent to
|
| + NSRN as described in the AArch64 Procedure Call Standard. */
|
| + unsigned nsrn;
|
| +
|
| + /* The next stacked argument address, equivalent to NSAA as
|
| + described in the AArch64 Procedure Call Standard. */
|
| + unsigned nsaa;
|
| +
|
| + /* Stack item vector. */
|
| + VEC(stack_item_t) *si;
|
| +};
|
| +
|
| +/* Pass a value in a sequence of consecutive X registers. The caller
|
| + is responsbile for ensuring sufficient registers are available. */
|
| +
|
| +static void
|
| +pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
|
| + struct aarch64_call_info *info, struct type *type,
|
| + const bfd_byte *buf)
|
| +{
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + int len = TYPE_LENGTH (type);
|
| + enum type_code typecode = TYPE_CODE (type);
|
| + int regnum = AARCH64_X0_REGNUM + info->ngrn;
|
| +
|
| + info->argnum++;
|
| +
|
| + while (len > 0)
|
| + {
|
| + int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
|
| + CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
|
| + byte_order);
|
| +
|
| +
|
| + /* Adjust sub-word struct/union args when big-endian. */
|
| + if (byte_order == BFD_ENDIAN_BIG
|
| + && partial_len < X_REGISTER_SIZE
|
| + && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
|
| + regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
|
| + info->argnum,
|
| + gdbarch_register_name (gdbarch, regnum),
|
| + phex (regval, X_REGISTER_SIZE));
|
| + regcache_cooked_write_unsigned (regcache, regnum, regval);
|
| + len -= partial_len;
|
| + buf += partial_len;
|
| + regnum++;
|
| + }
|
| +}
|
| +
|
| +/* Attempt to marshall a value in a V register. Return 1 if
|
| + successful, or 0 if insufficient registers are available. This
|
| + function, unlike the equivalent pass_in_x() function does not
|
| + handle arguments spread across multiple registers. */
|
| +
|
| +static int
|
| +pass_in_v (struct gdbarch *gdbarch,
|
| + struct regcache *regcache,
|
| + struct aarch64_call_info *info,
|
| + const bfd_byte *buf)
|
| +{
|
| + if (info->nsrn < 8)
|
| + {
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + int regnum = AARCH64_V0_REGNUM + info->nsrn;
|
| +
|
| + info->argnum++;
|
| + info->nsrn++;
|
| +
|
| + regcache_cooked_write (regcache, regnum, buf);
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog, "arg %d in %s\n",
|
| + info->argnum,
|
| + gdbarch_register_name (gdbarch, regnum));
|
| + return 1;
|
| + }
|
| + info->nsrn = 8;
|
| + return 0;
|
| +}
|
| +
|
| +/* Marshall an argument onto the stack. */
|
| +
|
| +static void
|
| +pass_on_stack (struct aarch64_call_info *info, struct type *type,
|
| + const bfd_byte *buf)
|
| +{
|
| + int len = TYPE_LENGTH (type);
|
| + int align;
|
| + stack_item_t item;
|
| +
|
| + info->argnum++;
|
| +
|
| + align = aarch64_type_align (type);
|
| +
|
| + /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
|
| + Natural alignment of the argument's type. */
|
| + align = align_up (align, 8);
|
| +
|
| + /* The AArch64 PCS requires at most doubleword alignment. */
|
| + if (align > 16)
|
| + align = 16;
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog, "arg %d len=%d @ sp + %d\n",
|
| + info->argnum, len, info->nsaa);
|
| +
|
| + item.len = len;
|
| + item.data = buf;
|
| + VEC_safe_push (stack_item_t, info->si, &item);
|
| +
|
| + info->nsaa += len;
|
| + if (info->nsaa & (align - 1))
|
| + {
|
| + /* Push stack alignment padding. */
|
| + int pad = align - (info->nsaa & (align - 1));
|
| +
|
| + item.len = pad;
|
| + item.data = buf;
|
| +
|
| + VEC_safe_push (stack_item_t, info->si, &item);
|
| + info->nsaa += pad;
|
| + }
|
| +}
|
| +
|
| +/* Marshall an argument into a sequence of one or more consecutive X
|
| + registers or, if insufficient X registers are available then onto
|
| + the stack. */
|
| +
|
| +static void
|
| +pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
|
| + struct aarch64_call_info *info, struct type *type,
|
| + const bfd_byte *buf)
|
| +{
|
| + int len = TYPE_LENGTH (type);
|
| + int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
|
| +
|
| + /* PCS C.13 - Pass in registers if we have enough spare */
|
| + if (info->ngrn + nregs <= 8)
|
| + {
|
| + pass_in_x (gdbarch, regcache, info, type, buf);
|
| + info->ngrn += nregs;
|
| + }
|
| + else
|
| + {
|
| + info->ngrn = 8;
|
| + pass_on_stack (info, type, buf);
|
| + }
|
| +}
|
| +
|
| +/* Pass a value in a V register, or on the stack if insufficient are
|
| + available. */
|
| +
|
| +static void
|
| +pass_in_v_or_stack (struct gdbarch *gdbarch,
|
| + struct regcache *regcache,
|
| + struct aarch64_call_info *info,
|
| + struct type *type,
|
| + const bfd_byte *buf)
|
| +{
|
| + if (!pass_in_v (gdbarch, regcache, info, buf))
|
| + pass_on_stack (info, type, buf);
|
| +}
|
| +
|
| +/* Implement the "push_dummy_call" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
| + struct regcache *regcache, CORE_ADDR bp_addr,
|
| + int nargs,
|
| + struct value **args, CORE_ADDR sp, int struct_return,
|
| + CORE_ADDR struct_addr)
|
| +{
|
| + int nstack = 0;
|
| + int argnum;
|
| + int x_argreg;
|
| + int v_argreg;
|
| + struct aarch64_call_info info;
|
| + struct type *func_type;
|
| + struct type *return_type;
|
| + int lang_struct_return;
|
| +
|
| + memset (&info, 0, sizeof (info));
|
| +
|
| + /* We need to know what the type of the called function is in order
|
| + to determine the number of named/anonymous arguments for the
|
| + actual argument placement, and the return type in order to handle
|
| + return value correctly.
|
| +
|
| + The generic code above us views the decision of return in memory
|
| + or return in registers as a two stage processes. The language
|
| + handler is consulted first and may decide to return in memory (eg
|
| + class with copy constructor returned by value), this will cause
|
| + the generic code to allocate space AND insert an initial leading
|
| + argument.
|
| +
|
| + If the language code does not decide to pass in memory then the
|
| + target code is consulted.
|
| +
|
| + If the language code decides to pass in memory we want to move
|
| + the pointer inserted as the initial argument from the argument
|
| + list and into X8, the conventional AArch64 struct return pointer
|
| + register.
|
| +
|
| + This is slightly awkward, ideally the flag "lang_struct_return"
|
| + would be passed to the targets implementation of push_dummy_call.
|
| + Rather that change the target interface we call the language code
|
| + directly ourselves. */
|
| +
|
| + func_type = check_typedef (value_type (function));
|
| +
|
| + /* Dereference function pointer types. */
|
| + if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
|
| + func_type = TYPE_TARGET_TYPE (func_type);
|
| +
|
| + gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
|
| + || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
|
| +
|
| + /* If language_pass_by_reference () returned true we will have been
|
| + given an additional initial argument, a hidden pointer to the
|
| + return slot in memory. */
|
| + return_type = TYPE_TARGET_TYPE (func_type);
|
| + lang_struct_return = language_pass_by_reference (return_type);
|
| +
|
| + /* Set the return address. For the AArch64, the return breakpoint
|
| + is always at BP_ADDR. */
|
| + regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
|
| +
|
| + /* If we were given an initial argument for the return slot because
|
| + lang_struct_return was true, lose it. */
|
| + if (lang_struct_return)
|
| + {
|
| + args++;
|
| + nargs--;
|
| + }
|
| +
|
| + /* The struct_return pointer occupies X8. */
|
| + if (struct_return || lang_struct_return)
|
| + {
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
|
| + gdbarch_register_name
|
| + (gdbarch,
|
| + AARCH64_STRUCT_RETURN_REGNUM),
|
| + paddress (gdbarch, struct_addr));
|
| + regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
|
| + struct_addr);
|
| + }
|
| +
|
| + for (argnum = 0; argnum < nargs; argnum++)
|
| + {
|
| + struct value *arg = args[argnum];
|
| + struct type *arg_type;
|
| + int len;
|
| +
|
| + arg_type = check_typedef (value_type (arg));
|
| + len = TYPE_LENGTH (arg_type);
|
| +
|
| + switch (TYPE_CODE (arg_type))
|
| + {
|
| + case TYPE_CODE_INT:
|
| + case TYPE_CODE_BOOL:
|
| + case TYPE_CODE_CHAR:
|
| + case TYPE_CODE_RANGE:
|
| + case TYPE_CODE_ENUM:
|
| + if (len < 4)
|
| + {
|
| + /* Promote to 32 bit integer. */
|
| + if (TYPE_UNSIGNED (arg_type))
|
| + arg_type = builtin_type (gdbarch)->builtin_uint32;
|
| + else
|
| + arg_type = builtin_type (gdbarch)->builtin_int32;
|
| + arg = value_cast (arg_type, arg);
|
| + }
|
| + pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
|
| + value_contents (arg));
|
| + break;
|
| +
|
| + case TYPE_CODE_COMPLEX:
|
| + if (info.nsrn <= 6)
|
| + {
|
| + const bfd_byte *buf = value_contents (arg);
|
| + struct type *target_type =
|
| + check_typedef (TYPE_TARGET_TYPE (arg_type));
|
| +
|
| + pass_in_v (gdbarch, regcache, &info, buf);
|
| + pass_in_v (gdbarch, regcache, &info,
|
| + buf + TYPE_LENGTH (target_type));
|
| + }
|
| + else
|
| + {
|
| + info.nsrn = 8;
|
| + pass_on_stack (&info, arg_type, value_contents (arg));
|
| + }
|
| + break;
|
| + case TYPE_CODE_FLT:
|
| + pass_in_v_or_stack (gdbarch, regcache, &info, arg_type,
|
| + value_contents (arg));
|
| + break;
|
| +
|
| + case TYPE_CODE_STRUCT:
|
| + case TYPE_CODE_ARRAY:
|
| + case TYPE_CODE_UNION:
|
| + if (is_hfa (arg_type))
|
| + {
|
| + int elements = TYPE_NFIELDS (arg_type);
|
| +
|
| + /* Homogeneous Aggregates */
|
| + if (info.nsrn + elements < 8)
|
| + {
|
| + int i;
|
| +
|
| + for (i = 0; i < elements; i++)
|
| + {
|
| + /* We know that we have sufficient registers
|
| + available therefore this will never fallback
|
| + to the stack. */
|
| + struct value *field =
|
| + value_primitive_field (arg, 0, i, arg_type);
|
| + struct type *field_type =
|
| + check_typedef (value_type (field));
|
| +
|
| + pass_in_v_or_stack (gdbarch, regcache, &info, field_type,
|
| + value_contents_writeable (field));
|
| + }
|
| + }
|
| + else
|
| + {
|
| + info.nsrn = 8;
|
| + pass_on_stack (&info, arg_type, value_contents (arg));
|
| + }
|
| + }
|
| + else if (len > 16)
|
| + {
|
| + /* PCS B.7 Aggregates larger than 16 bytes are passed by
|
| + invisible reference. */
|
| +
|
| + /* Allocate aligned storage. */
|
| + sp = align_down (sp - len, 16);
|
| +
|
| + /* Write the real data into the stack. */
|
| + write_memory (sp, value_contents (arg), len);
|
| +
|
| + /* Construct the indirection. */
|
| + arg_type = lookup_pointer_type (arg_type);
|
| + arg = value_from_pointer (arg_type, sp);
|
| + pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
|
| + value_contents (arg));
|
| + }
|
| + else
|
| + /* PCS C.15 / C.18 multiple values pass. */
|
| + pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
|
| + value_contents (arg));
|
| + break;
|
| +
|
| + default:
|
| + pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
|
| + value_contents (arg));
|
| + break;
|
| + }
|
| + }
|
| +
|
| + /* Make sure stack retains 16 byte alignment. */
|
| + if (info.nsaa & 15)
|
| + sp -= 16 - (info.nsaa & 15);
|
| +
|
| + while (!VEC_empty (stack_item_t, info.si))
|
| + {
|
| + stack_item_t *si = VEC_last (stack_item_t, info.si);
|
| +
|
| + sp -= si->len;
|
| + write_memory (sp, si->data, si->len);
|
| + VEC_pop (stack_item_t, info.si);
|
| + }
|
| +
|
| + VEC_free (stack_item_t, info.si);
|
| +
|
| + /* Finally, update the SP register. */
|
| + regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
|
| +
|
| + return sp;
|
| +}
|
| +
|
| +/* Implement the "frame_align" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
| +{
|
| + /* Align the stack to sixteen bytes. */
|
| + return sp & ~(CORE_ADDR) 15;
|
| +}
|
| +
|
| +/* Return the type for an AdvSISD Q register. */
|
| +
|
| +static struct type *
|
| +aarch64_vnq_type (struct gdbarch *gdbarch)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (tdep->vnq_type == NULL)
|
| + {
|
| + struct type *t;
|
| + struct type *elem;
|
| +
|
| + t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
|
| + TYPE_CODE_UNION);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_uint128;
|
| + append_composite_type_field (t, "u", elem);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_int128;
|
| + append_composite_type_field (t, "s", elem);
|
| +
|
| + tdep->vnq_type = t;
|
| + }
|
| +
|
| + return tdep->vnq_type;
|
| +}
|
| +
|
| +/* Return the type for an AdvSISD D register. */
|
| +
|
| +static struct type *
|
| +aarch64_vnd_type (struct gdbarch *gdbarch)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (tdep->vnd_type == NULL)
|
| + {
|
| + struct type *t;
|
| + struct type *elem;
|
| +
|
| + t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
|
| + TYPE_CODE_UNION);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_double;
|
| + append_composite_type_field (t, "f", elem);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_uint64;
|
| + append_composite_type_field (t, "u", elem);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_int64;
|
| + append_composite_type_field (t, "s", elem);
|
| +
|
| + tdep->vnd_type = t;
|
| + }
|
| +
|
| + return tdep->vnd_type;
|
| +}
|
| +
|
| +/* Return the type for an AdvSISD S register. */
|
| +
|
| +static struct type *
|
| +aarch64_vns_type (struct gdbarch *gdbarch)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (tdep->vns_type == NULL)
|
| + {
|
| + struct type *t;
|
| + struct type *elem;
|
| +
|
| + t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
|
| + TYPE_CODE_UNION);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_float;
|
| + append_composite_type_field (t, "f", elem);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_uint32;
|
| + append_composite_type_field (t, "u", elem);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_int32;
|
| + append_composite_type_field (t, "s", elem);
|
| +
|
| + tdep->vns_type = t;
|
| + }
|
| +
|
| + return tdep->vns_type;
|
| +}
|
| +
|
| +/* Return the type for an AdvSISD H register. */
|
| +
|
| +static struct type *
|
| +aarch64_vnh_type (struct gdbarch *gdbarch)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (tdep->vnh_type == NULL)
|
| + {
|
| + struct type *t;
|
| + struct type *elem;
|
| +
|
| + t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
|
| + TYPE_CODE_UNION);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_uint16;
|
| + append_composite_type_field (t, "u", elem);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_int16;
|
| + append_composite_type_field (t, "s", elem);
|
| +
|
| + tdep->vnh_type = t;
|
| + }
|
| +
|
| + return tdep->vnh_type;
|
| +}
|
| +
|
| +/* Return the type for an AdvSISD B register. */
|
| +
|
| +static struct type *
|
| +aarch64_vnb_type (struct gdbarch *gdbarch)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (tdep->vnb_type == NULL)
|
| + {
|
| + struct type *t;
|
| + struct type *elem;
|
| +
|
| + t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
|
| + TYPE_CODE_UNION);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_uint8;
|
| + append_composite_type_field (t, "u", elem);
|
| +
|
| + elem = builtin_type (gdbarch)->builtin_int8;
|
| + append_composite_type_field (t, "s", elem);
|
| +
|
| + tdep->vnb_type = t;
|
| + }
|
| +
|
| + return tdep->vnb_type;
|
| +}
|
| +
|
| +/* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
|
| +
|
| +static int
|
| +aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
| +{
|
| + if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
|
| + return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
|
| +
|
| + if (reg == AARCH64_DWARF_SP)
|
| + return AARCH64_SP_REGNUM;
|
| +
|
| + if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
|
| + return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
|
| +
|
| + return -1;
|
| +}
|
| +
|
| +
|
| +/* Implement the "print_insn" gdbarch method. */
|
| +
|
| +static int
|
| +aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
|
| +{
|
| + info->symbols = NULL;
|
| + return print_insn_aarch64 (memaddr, info);
|
| +}
|
| +
|
| +/* AArch64 BRK software debug mode instruction.
|
| + Note that AArch64 code is always little-endian.
|
| + 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
|
| +static const gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
|
| +
|
| +/* Implement the "breakpoint_from_pc" gdbarch method. */
|
| +
|
| +static const gdb_byte *
|
| +aarch64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
| + int *lenptr)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + *lenptr = sizeof (aarch64_default_breakpoint);
|
| + return aarch64_default_breakpoint;
|
| +}
|
| +
|
| +/* Extract from an array REGS containing the (raw) register state a
|
| + function return value of type TYPE, and copy that, in virtual
|
| + format, into VALBUF. */
|
| +
|
| +static void
|
| +aarch64_extract_return_value (struct type *type, struct regcache *regs,
|
| + gdb_byte *valbuf)
|
| +{
|
| + struct gdbarch *gdbarch = get_regcache_arch (regs);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| +
|
| + if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
| + {
|
| + bfd_byte buf[V_REGISTER_SIZE];
|
| + int len = TYPE_LENGTH (type);
|
| +
|
| + regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf);
|
| + memcpy (valbuf, buf, len);
|
| + }
|
| + else if (TYPE_CODE (type) == TYPE_CODE_INT
|
| + || TYPE_CODE (type) == TYPE_CODE_CHAR
|
| + || TYPE_CODE (type) == TYPE_CODE_BOOL
|
| + || TYPE_CODE (type) == TYPE_CODE_PTR
|
| + || TYPE_CODE (type) == TYPE_CODE_REF
|
| + || TYPE_CODE (type) == TYPE_CODE_ENUM)
|
| + {
|
| + /* If the the type is a plain integer, then the access is
|
| + straight-forward. Otherwise we have to play around a bit
|
| + more. */
|
| + int len = TYPE_LENGTH (type);
|
| + int regno = AARCH64_X0_REGNUM;
|
| + ULONGEST tmp;
|
| +
|
| + while (len > 0)
|
| + {
|
| + /* By using store_unsigned_integer we avoid having to do
|
| + anything special for small big-endian values. */
|
| + regcache_cooked_read_unsigned (regs, regno++, &tmp);
|
| + store_unsigned_integer (valbuf,
|
| + (len > X_REGISTER_SIZE
|
| + ? X_REGISTER_SIZE : len), byte_order, tmp);
|
| + len -= X_REGISTER_SIZE;
|
| + valbuf += X_REGISTER_SIZE;
|
| + }
|
| + }
|
| + else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
|
| + {
|
| + int regno = AARCH64_V0_REGNUM;
|
| + bfd_byte buf[V_REGISTER_SIZE];
|
| + struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
|
| + int len = TYPE_LENGTH (target_type);
|
| +
|
| + regcache_cooked_read (regs, regno, buf);
|
| + memcpy (valbuf, buf, len);
|
| + valbuf += len;
|
| + regcache_cooked_read (regs, regno + 1, buf);
|
| + memcpy (valbuf, buf, len);
|
| + valbuf += len;
|
| + }
|
| + else if (is_hfa (type))
|
| + {
|
| + int elements = TYPE_NFIELDS (type);
|
| + struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
|
| + int len = TYPE_LENGTH (member_type);
|
| + int i;
|
| +
|
| + for (i = 0; i < elements; i++)
|
| + {
|
| + int regno = AARCH64_V0_REGNUM + i;
|
| + bfd_byte buf[X_REGISTER_SIZE];
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "read HFA return value element %d from %s\n",
|
| + i + 1,
|
| + gdbarch_register_name (gdbarch, regno));
|
| + regcache_cooked_read (regs, regno, buf);
|
| +
|
| + memcpy (valbuf, buf, len);
|
| + valbuf += len;
|
| + }
|
| + }
|
| + else
|
| + {
|
| + /* For a structure or union the behaviour is as if the value had
|
| + been stored to word-aligned memory and then loaded into
|
| + registers with 64-bit load instruction(s). */
|
| + int len = TYPE_LENGTH (type);
|
| + int regno = AARCH64_X0_REGNUM;
|
| + bfd_byte buf[X_REGISTER_SIZE];
|
| +
|
| + while (len > 0)
|
| + {
|
| + regcache_cooked_read (regs, regno++, buf);
|
| + memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
|
| + len -= X_REGISTER_SIZE;
|
| + valbuf += X_REGISTER_SIZE;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/* Will a function return an aggregate type in memory or in a
|
| + register? Return 0 if an aggregate type can be returned in a
|
| + register, 1 if it must be returned in memory. */
|
| +
|
| +static int
|
| +aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
|
| +{
|
| + int nRc;
|
| + enum type_code code;
|
| +
|
| + CHECK_TYPEDEF (type);
|
| +
|
| + /* In the AArch64 ABI, "integer" like aggregate types are returned
|
| + in registers. For an aggregate type to be integer like, its size
|
| + must be less than or equal to 4 * X_REGISTER_SIZE. */
|
| +
|
| + if (is_hfa (type))
|
| + {
|
| + /* PCS B.5 If the argument is a Named HFA, then the argument is
|
| + used unmodified. */
|
| + return 0;
|
| + }
|
| +
|
| + if (TYPE_LENGTH (type) > 16)
|
| + {
|
| + /* PCS B.6 Aggregates larger than 16 bytes are passed by
|
| + invisible reference. */
|
| +
|
| + return 1;
|
| + }
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +/* Write into appropriate registers a function return value of type
|
| + TYPE, given in virtual format. */
|
| +
|
| +static void
|
| +aarch64_store_return_value (struct type *type, struct regcache *regs,
|
| + const gdb_byte *valbuf)
|
| +{
|
| + struct gdbarch *gdbarch = get_regcache_arch (regs);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| +
|
| + if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
| + {
|
| + bfd_byte buf[V_REGISTER_SIZE];
|
| + int len = TYPE_LENGTH (type);
|
| +
|
| + memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
|
| + regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf);
|
| + }
|
| + else if (TYPE_CODE (type) == TYPE_CODE_INT
|
| + || TYPE_CODE (type) == TYPE_CODE_CHAR
|
| + || TYPE_CODE (type) == TYPE_CODE_BOOL
|
| + || TYPE_CODE (type) == TYPE_CODE_PTR
|
| + || TYPE_CODE (type) == TYPE_CODE_REF
|
| + || TYPE_CODE (type) == TYPE_CODE_ENUM)
|
| + {
|
| + if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
|
| + {
|
| + /* Values of one word or less are zero/sign-extended and
|
| + returned in r0. */
|
| + bfd_byte tmpbuf[X_REGISTER_SIZE];
|
| + LONGEST val = unpack_long (type, valbuf);
|
| +
|
| + store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
|
| + regcache_cooked_write (regs, AARCH64_X0_REGNUM, tmpbuf);
|
| + }
|
| + else
|
| + {
|
| + /* Integral values greater than one word are stored in
|
| + consecutive registers starting with r0. This will always
|
| + be a multiple of the regiser size. */
|
| + int len = TYPE_LENGTH (type);
|
| + int regno = AARCH64_X0_REGNUM;
|
| +
|
| + while (len > 0)
|
| + {
|
| + regcache_cooked_write (regs, regno++, valbuf);
|
| + len -= X_REGISTER_SIZE;
|
| + valbuf += X_REGISTER_SIZE;
|
| + }
|
| + }
|
| + }
|
| + else if (is_hfa (type))
|
| + {
|
| + int elements = TYPE_NFIELDS (type);
|
| + struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
|
| + int len = TYPE_LENGTH (member_type);
|
| + int i;
|
| +
|
| + for (i = 0; i < elements; i++)
|
| + {
|
| + int regno = AARCH64_V0_REGNUM + i;
|
| + bfd_byte tmpbuf[MAX_REGISTER_SIZE];
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog,
|
| + "write HFA return value element %d to %s\n",
|
| + i + 1,
|
| + gdbarch_register_name (gdbarch, regno));
|
| +
|
| + memcpy (tmpbuf, valbuf, len);
|
| + regcache_cooked_write (regs, regno, tmpbuf);
|
| + valbuf += len;
|
| + }
|
| + }
|
| + else
|
| + {
|
| + /* For a structure or union the behaviour is as if the value had
|
| + been stored to word-aligned memory and then loaded into
|
| + registers with 64-bit load instruction(s). */
|
| + int len = TYPE_LENGTH (type);
|
| + int regno = AARCH64_X0_REGNUM;
|
| + bfd_byte tmpbuf[X_REGISTER_SIZE];
|
| +
|
| + while (len > 0)
|
| + {
|
| + memcpy (tmpbuf, valbuf,
|
| + len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
|
| + regcache_cooked_write (regs, regno++, tmpbuf);
|
| + len -= X_REGISTER_SIZE;
|
| + valbuf += X_REGISTER_SIZE;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/* Implement the "return_value" gdbarch method. */
|
| +
|
| +static enum return_value_convention
|
| +aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
|
| + struct type *valtype, struct regcache *regcache,
|
| + gdb_byte *readbuf, const gdb_byte *writebuf)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
| + || TYPE_CODE (valtype) == TYPE_CODE_UNION
|
| + || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
| + {
|
| + if (aarch64_return_in_memory (gdbarch, valtype))
|
| + {
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog, "return value in memory\n");
|
| + return RETURN_VALUE_STRUCT_CONVENTION;
|
| + }
|
| + }
|
| +
|
| + if (writebuf)
|
| + aarch64_store_return_value (valtype, regcache, writebuf);
|
| +
|
| + if (readbuf)
|
| + aarch64_extract_return_value (valtype, regcache, readbuf);
|
| +
|
| + if (aarch64_debug)
|
| + fprintf_unfiltered (gdb_stdlog, "return value in registers\n");
|
| +
|
| + return RETURN_VALUE_REGISTER_CONVENTION;
|
| +}
|
| +
|
| +/* Implement the "get_longjmp_target" gdbarch method. */
|
| +
|
| +static int
|
| +aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
| +{
|
| + CORE_ADDR jb_addr;
|
| + gdb_byte buf[X_REGISTER_SIZE];
|
| + struct gdbarch *gdbarch = get_frame_arch (frame);
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| +
|
| + jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
|
| +
|
| + if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
|
| + X_REGISTER_SIZE))
|
| + return 0;
|
| +
|
| + *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
|
| + return 1;
|
| +}
|
| +
|
| +
|
| +/* Return the pseudo register name corresponding to register regnum. */
|
| +
|
| +static const char *
|
| +aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
|
| +{
|
| + static const char *const q_name[] =
|
| + {
|
| + "q0", "q1", "q2", "q3",
|
| + "q4", "q5", "q6", "q7",
|
| + "q8", "q9", "q10", "q11",
|
| + "q12", "q13", "q14", "q15",
|
| + "q16", "q17", "q18", "q19",
|
| + "q20", "q21", "q22", "q23",
|
| + "q24", "q25", "q26", "q27",
|
| + "q28", "q29", "q30", "q31",
|
| + };
|
| +
|
| + static const char *const d_name[] =
|
| + {
|
| + "d0", "d1", "d2", "d3",
|
| + "d4", "d5", "d6", "d7",
|
| + "d8", "d9", "d10", "d11",
|
| + "d12", "d13", "d14", "d15",
|
| + "d16", "d17", "d18", "d19",
|
| + "d20", "d21", "d22", "d23",
|
| + "d24", "d25", "d26", "d27",
|
| + "d28", "d29", "d30", "d31",
|
| + };
|
| +
|
| + static const char *const s_name[] =
|
| + {
|
| + "s0", "s1", "s2", "s3",
|
| + "s4", "s5", "s6", "s7",
|
| + "s8", "s9", "s10", "s11",
|
| + "s12", "s13", "s14", "s15",
|
| + "s16", "s17", "s18", "s19",
|
| + "s20", "s21", "s22", "s23",
|
| + "s24", "s25", "s26", "s27",
|
| + "s28", "s29", "s30", "s31",
|
| + };
|
| +
|
| + static const char *const h_name[] =
|
| + {
|
| + "h0", "h1", "h2", "h3",
|
| + "h4", "h5", "h6", "h7",
|
| + "h8", "h9", "h10", "h11",
|
| + "h12", "h13", "h14", "h15",
|
| + "h16", "h17", "h18", "h19",
|
| + "h20", "h21", "h22", "h23",
|
| + "h24", "h25", "h26", "h27",
|
| + "h28", "h29", "h30", "h31",
|
| + };
|
| +
|
| + static const char *const b_name[] =
|
| + {
|
| + "b0", "b1", "b2", "b3",
|
| + "b4", "b5", "b6", "b7",
|
| + "b8", "b9", "b10", "b11",
|
| + "b12", "b13", "b14", "b15",
|
| + "b16", "b17", "b18", "b19",
|
| + "b20", "b21", "b22", "b23",
|
| + "b24", "b25", "b26", "b27",
|
| + "b28", "b29", "b30", "b31",
|
| + };
|
| +
|
| + regnum -= gdbarch_num_regs (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
|
| + return q_name[regnum - AARCH64_Q0_REGNUM];
|
| +
|
| + if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
|
| + return d_name[regnum - AARCH64_D0_REGNUM];
|
| +
|
| + if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
|
| + return s_name[regnum - AARCH64_S0_REGNUM];
|
| +
|
| + if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
|
| + return h_name[regnum - AARCH64_H0_REGNUM];
|
| +
|
| + if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
|
| + return b_name[regnum - AARCH64_B0_REGNUM];
|
| +
|
| + internal_error (__FILE__, __LINE__,
|
| + _("aarch64_pseudo_register_name: bad register number %d"),
|
| + regnum);
|
| +}
|
| +
|
| +/* Implement the "pseudo_register_type" tdesc_arch_data method. */
|
| +
|
| +static struct type *
|
| +aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
| +{
|
| + regnum -= gdbarch_num_regs (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
|
| + return aarch64_vnq_type (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
|
| + return aarch64_vnd_type (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
|
| + return aarch64_vns_type (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
|
| + return aarch64_vnh_type (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
|
| + return aarch64_vnb_type (gdbarch);
|
| +
|
| + internal_error (__FILE__, __LINE__,
|
| + _("aarch64_pseudo_register_type: bad register number %d"),
|
| + regnum);
|
| +}
|
| +
|
| +/* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
|
| +
|
| +static int
|
| +aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
| + struct reggroup *group)
|
| +{
|
| + regnum -= gdbarch_num_regs (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
|
| + return group == all_reggroup || group == vector_reggroup;
|
| + else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
|
| + return (group == all_reggroup || group == vector_reggroup
|
| + || group == float_reggroup);
|
| + else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
|
| + return (group == all_reggroup || group == vector_reggroup
|
| + || group == float_reggroup);
|
| + else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
|
| + return group == all_reggroup || group == vector_reggroup;
|
| + else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
|
| + return group == all_reggroup || group == vector_reggroup;
|
| +
|
| + return group == all_reggroup;
|
| +}
|
| +
|
| +/* Implement the "pseudo_register_read_value" gdbarch method. */
|
| +
|
| +static struct value *
|
| +aarch64_pseudo_read_value (struct gdbarch *gdbarch,
|
| + struct regcache *regcache,
|
| + int regnum)
|
| +{
|
| + gdb_byte reg_buf[MAX_REGISTER_SIZE];
|
| + struct value *result_value;
|
| + gdb_byte *buf;
|
| +
|
| + result_value = allocate_value (register_type (gdbarch, regnum));
|
| + VALUE_LVAL (result_value) = lval_register;
|
| + VALUE_REGNUM (result_value) = regnum;
|
| + buf = value_contents_raw (result_value);
|
| +
|
| + regnum -= gdbarch_num_regs (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
|
| + {
|
| + enum register_status status;
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
|
| + status = regcache_raw_read (regcache, v_regnum, reg_buf);
|
| + if (status != REG_VALID)
|
| + mark_value_bytes_unavailable (result_value, 0,
|
| + TYPE_LENGTH (value_type (result_value)));
|
| + else
|
| + memcpy (buf, reg_buf, Q_REGISTER_SIZE);
|
| + return result_value;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
|
| + {
|
| + enum register_status status;
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
|
| + status = regcache_raw_read (regcache, v_regnum, reg_buf);
|
| + if (status != REG_VALID)
|
| + mark_value_bytes_unavailable (result_value, 0,
|
| + TYPE_LENGTH (value_type (result_value)));
|
| + else
|
| + memcpy (buf, reg_buf, D_REGISTER_SIZE);
|
| + return result_value;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
|
| + {
|
| + enum register_status status;
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
|
| + status = regcache_raw_read (regcache, v_regnum, reg_buf);
|
| + memcpy (buf, reg_buf, S_REGISTER_SIZE);
|
| + return result_value;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
|
| + {
|
| + enum register_status status;
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
|
| + status = regcache_raw_read (regcache, v_regnum, reg_buf);
|
| + if (status != REG_VALID)
|
| + mark_value_bytes_unavailable (result_value, 0,
|
| + TYPE_LENGTH (value_type (result_value)));
|
| + else
|
| + memcpy (buf, reg_buf, H_REGISTER_SIZE);
|
| + return result_value;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
|
| + {
|
| + enum register_status status;
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
|
| + status = regcache_raw_read (regcache, v_regnum, reg_buf);
|
| + if (status != REG_VALID)
|
| + mark_value_bytes_unavailable (result_value, 0,
|
| + TYPE_LENGTH (value_type (result_value)));
|
| + else
|
| + memcpy (buf, reg_buf, B_REGISTER_SIZE);
|
| + return result_value;
|
| + }
|
| +
|
| + gdb_assert_not_reached ("regnum out of bound");
|
| +}
|
| +
|
| +/* Implement the "pseudo_register_write" gdbarch method. */
|
| +
|
| +static void
|
| +aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
| + int regnum, const gdb_byte *buf)
|
| +{
|
| + gdb_byte reg_buf[MAX_REGISTER_SIZE];
|
| +
|
| + /* Ensure the register buffer is zero, we want gdb writes of the
|
| + various 'scalar' pseudo registers to behavior like architectural
|
| + writes, register width bytes are written the remainder are set to
|
| + zero. */
|
| + memset (reg_buf, 0, sizeof (reg_buf));
|
| +
|
| + regnum -= gdbarch_num_regs (gdbarch);
|
| +
|
| + if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
|
| + {
|
| + /* pseudo Q registers */
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
|
| + memcpy (reg_buf, buf, Q_REGISTER_SIZE);
|
| + regcache_raw_write (regcache, v_regnum, reg_buf);
|
| + return;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
|
| + {
|
| + /* pseudo D registers */
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
|
| + memcpy (reg_buf, buf, D_REGISTER_SIZE);
|
| + regcache_raw_write (regcache, v_regnum, reg_buf);
|
| + return;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
|
| + {
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
|
| + memcpy (reg_buf, buf, S_REGISTER_SIZE);
|
| + regcache_raw_write (regcache, v_regnum, reg_buf);
|
| + return;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
|
| + {
|
| + /* pseudo H registers */
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
|
| + memcpy (reg_buf, buf, H_REGISTER_SIZE);
|
| + regcache_raw_write (regcache, v_regnum, reg_buf);
|
| + return;
|
| + }
|
| +
|
| + if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
|
| + {
|
| + /* pseudo B registers */
|
| + unsigned v_regnum;
|
| +
|
| + v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
|
| + memcpy (reg_buf, buf, B_REGISTER_SIZE);
|
| + regcache_raw_write (regcache, v_regnum, reg_buf);
|
| + return;
|
| + }
|
| +
|
| + gdb_assert_not_reached ("regnum out of bound");
|
| +}
|
| +
|
| +/* Callback function for user_reg_add. */
|
| +
|
| +static struct value *
|
| +value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
|
| +{
|
| + const int *reg_p = baton;
|
| +
|
| + return value_of_register (*reg_p, frame);
|
| +}
|
| +
|
| +
|
| +/* Initialize the current architecture based on INFO. If possible,
|
| + re-use an architecture from ARCHES, which is a list of
|
| + architectures already created during this debugging session.
|
| +
|
| + Called e.g. at program startup, when reading a core file, and when
|
| + reading a binary file. */
|
| +
|
| +static struct gdbarch *
|
| +aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
| +{
|
| + struct gdbarch_tdep *tdep;
|
| + struct gdbarch *gdbarch;
|
| + struct gdbarch_list *best_arch;
|
| + struct tdesc_arch_data *tdesc_data = NULL;
|
| + const struct target_desc *tdesc = info.target_desc;
|
| + int i;
|
| + int have_fpa_registers = 1;
|
| + int valid_p = 1;
|
| + const struct tdesc_feature *feature;
|
| + int num_regs = 0;
|
| + int num_pseudo_regs = 0;
|
| +
|
| + /* Ensure we always have a target descriptor. */
|
| + if (!tdesc_has_registers (tdesc))
|
| + tdesc = tdesc_aarch64;
|
| +
|
| + gdb_assert (tdesc);
|
| +
|
| + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
|
| +
|
| + if (feature == NULL)
|
| + return NULL;
|
| +
|
| + tdesc_data = tdesc_data_alloc ();
|
| +
|
| + /* Validate the descriptor provides the mandatory core R registers
|
| + and allocate their numbers. */
|
| + for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
|
| + valid_p &=
|
| + tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i,
|
| + aarch64_r_register_names[i]);
|
| +
|
| + num_regs = AARCH64_X0_REGNUM + i;
|
| +
|
| + /* Look for the V registers. */
|
| + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
|
| + if (feature)
|
| + {
|
| + /* Validate the descriptor provides the mandatory V registers
|
| + and allocate their numbers. */
|
| + for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
|
| + valid_p &=
|
| + tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i,
|
| + aarch64_v_register_names[i]);
|
| +
|
| + num_regs = AARCH64_V0_REGNUM + i;
|
| +
|
| + num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
|
| + num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
|
| + num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
|
| + num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
|
| + num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
|
| + }
|
| +
|
| + if (!valid_p)
|
| + {
|
| + tdesc_data_cleanup (tdesc_data);
|
| + return NULL;
|
| + }
|
| +
|
| + /* AArch64 code is always little-endian. */
|
| + info.byte_order_for_code = BFD_ENDIAN_LITTLE;
|
| +
|
| + /* If there is already a candidate, use it. */
|
| + for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
|
| + best_arch != NULL;
|
| + best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
|
| + {
|
| + /* Found a match. */
|
| + break;
|
| + }
|
| +
|
| + if (best_arch != NULL)
|
| + {
|
| + if (tdesc_data != NULL)
|
| + tdesc_data_cleanup (tdesc_data);
|
| + return best_arch->gdbarch;
|
| + }
|
| +
|
| + tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
|
| + gdbarch = gdbarch_alloc (&info, tdep);
|
| +
|
| + /* This should be low enough for everything. */
|
| + tdep->lowest_pc = 0x20;
|
| + tdep->jb_pc = -1; /* Longjump support not enabled by default. */
|
| + tdep->jb_elt_size = 8;
|
| +
|
| + set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
|
| + set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
|
| +
|
| + /* Frame handling. */
|
| + set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
|
| + set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
|
| + set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
|
| +
|
| + /* Advance PC across function entry code. */
|
| + set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
|
| +
|
| + /* The stack grows downward. */
|
| + set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
| +
|
| + /* Breakpoint manipulation. */
|
| + set_gdbarch_breakpoint_from_pc (gdbarch, aarch64_breakpoint_from_pc);
|
| + set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
|
| + set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
| +
|
| + /* Information about registers, etc. */
|
| + set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
|
| + set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
|
| + set_gdbarch_num_regs (gdbarch, num_regs);
|
| +
|
| + set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
|
| + set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
|
| + set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
|
| + set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
|
| + set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
|
| + set_tdesc_pseudo_register_reggroup_p (gdbarch,
|
| + aarch64_pseudo_register_reggroup_p);
|
| +
|
| + /* ABI */
|
| + set_gdbarch_short_bit (gdbarch, 16);
|
| + set_gdbarch_int_bit (gdbarch, 32);
|
| + set_gdbarch_float_bit (gdbarch, 32);
|
| + set_gdbarch_double_bit (gdbarch, 64);
|
| + set_gdbarch_long_double_bit (gdbarch, 128);
|
| + set_gdbarch_long_bit (gdbarch, 64);
|
| + set_gdbarch_long_long_bit (gdbarch, 64);
|
| + set_gdbarch_ptr_bit (gdbarch, 64);
|
| + set_gdbarch_char_signed (gdbarch, 0);
|
| + set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
| + set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
| + set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
|
| +
|
| + /* Internal <-> external register number maps. */
|
| + set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
|
| +
|
| + /* Returning results. */
|
| + set_gdbarch_return_value (gdbarch, aarch64_return_value);
|
| +
|
| + /* Disassembly. */
|
| + set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
|
| +
|
| + /* Virtual tables. */
|
| + set_gdbarch_vbit_in_delta (gdbarch, 1);
|
| +
|
| + /* Hook in the ABI-specific overrides, if they have been registered. */
|
| + info.target_desc = tdesc;
|
| + info.tdep_info = (void *) tdesc_data;
|
| + gdbarch_init_osabi (info, gdbarch);
|
| +
|
| + dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
|
| +
|
| + /* Add some default predicates. */
|
| + frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
|
| + dwarf2_append_unwinders (gdbarch);
|
| + frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
|
| +
|
| + frame_base_set_default (gdbarch, &aarch64_normal_base);
|
| +
|
| + /* Now we have tuned the configuration, set a few final things,
|
| + based on what the OS ABI has told us. */
|
| +
|
| + if (tdep->jb_pc >= 0)
|
| + set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
|
| +
|
| + tdesc_use_registers (gdbarch, tdesc, tdesc_data);
|
| +
|
| + /* Add standard register aliases. */
|
| + for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
|
| + user_reg_add (gdbarch, aarch64_register_aliases[i].name,
|
| + value_of_aarch64_user_reg,
|
| + &aarch64_register_aliases[i].regnum);
|
| +
|
| + return gdbarch;
|
| +}
|
| +
|
| +static void
|
| +aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (tdep == NULL)
|
| + return;
|
| +
|
| + fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
|
| + paddress (gdbarch, tdep->lowest_pc));
|
| +}
|
| +
|
| +/* Suppress warning from -Wmissing-prototypes. */
|
| +extern initialize_file_ftype _initialize_aarch64_tdep;
|
| +
|
| +void
|
| +_initialize_aarch64_tdep (void)
|
| +{
|
| + gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
|
| + aarch64_dump_tdep);
|
| +
|
| + initialize_tdesc_aarch64 ();
|
| +
|
| + /* Debug this file's internals. */
|
| + add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
|
| +Set AArch64 debugging."), _("\
|
| +Show AArch64 debugging."), _("\
|
| +When on, AArch64 specific debugging is enabled."),
|
| + NULL,
|
| + show_aarch64_debug,
|
| + &setdebuglist, &showdebuglist);
|
| +}
|
|
|