Index: gdb/aarch64-tdep.c |
diff --git a/gdb/aarch64-tdep.c b/gdb/aarch64-tdep.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..04ff1c5eeee7d54b24ebda434b6dc0f1cf00862b |
--- /dev/null |
+++ b/gdb/aarch64-tdep.c |
@@ -0,0 +1,2729 @@ |
+/* Common target dependent code for GDB on AArch64 systems. |
+ |
+ Copyright (C) 2009-2013 Free Software Foundation, Inc. |
+ Contributed by ARM Ltd. |
+ |
+ This file is part of GDB. |
+ |
+ This program is free software; you can redistribute it and/or modify |
+ it under the terms of the GNU General Public License as published by |
+ the Free Software Foundation; either version 3 of the License, or |
+ (at your option) any later version. |
+ |
+ This program is distributed in the hope that it will be useful, |
+ but WITHOUT ANY WARRANTY; without even the implied warranty of |
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
+ GNU General Public License for more details. |
+ |
+ You should have received a copy of the GNU General Public License |
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
+ |
+#include "defs.h" |
+ |
+#include "frame.h" |
+#include "inferior.h" |
+#include "gdbcmd.h" |
+#include "gdbcore.h" |
+#include <string.h> |
+#include "dis-asm.h" |
+#include "regcache.h" |
+#include "reggroups.h" |
+#include "doublest.h" |
+#include "value.h" |
+#include "arch-utils.h" |
+#include "osabi.h" |
+#include "frame-unwind.h" |
+#include "frame-base.h" |
+#include "trad-frame.h" |
+#include "objfiles.h" |
+#include "dwarf2-frame.h" |
+#include "gdbtypes.h" |
+#include "prologue-value.h" |
+#include "target-descriptions.h" |
+#include "user-regs.h" |
+#include "language.h" |
+#include "infcall.h" |
+ |
+#include "aarch64-tdep.h" |
+ |
+#include "elf-bfd.h" |
+#include "elf/aarch64.h" |
+ |
+#include "gdb_assert.h" |
+#include "vec.h" |
+ |
+#include "features/aarch64.c" |
+ |
+/* Pseudo register base numbers. */ |
+#define AARCH64_Q0_REGNUM 0 |
+#define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + 32) |
+#define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32) |
+#define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32) |
+#define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32) |
+ |
+/* The standard register names, and all the valid aliases for them. */ |
+static const struct |
+{ |
+ const char *const name; |
+ int regnum; |
+} aarch64_register_aliases[] = |
+{ |
+ /* 64-bit register names. */ |
+ {"fp", AARCH64_FP_REGNUM}, |
+ {"lr", AARCH64_LR_REGNUM}, |
+ {"sp", AARCH64_SP_REGNUM}, |
+ |
+ /* 32-bit register names. */ |
+ {"w0", AARCH64_X0_REGNUM + 0}, |
+ {"w1", AARCH64_X0_REGNUM + 1}, |
+ {"w2", AARCH64_X0_REGNUM + 2}, |
+ {"w3", AARCH64_X0_REGNUM + 3}, |
+ {"w4", AARCH64_X0_REGNUM + 4}, |
+ {"w5", AARCH64_X0_REGNUM + 5}, |
+ {"w6", AARCH64_X0_REGNUM + 6}, |
+ {"w7", AARCH64_X0_REGNUM + 7}, |
+ {"w8", AARCH64_X0_REGNUM + 8}, |
+ {"w9", AARCH64_X0_REGNUM + 9}, |
+ {"w10", AARCH64_X0_REGNUM + 10}, |
+ {"w11", AARCH64_X0_REGNUM + 11}, |
+ {"w12", AARCH64_X0_REGNUM + 12}, |
+ {"w13", AARCH64_X0_REGNUM + 13}, |
+ {"w14", AARCH64_X0_REGNUM + 14}, |
+ {"w15", AARCH64_X0_REGNUM + 15}, |
+ {"w16", AARCH64_X0_REGNUM + 16}, |
+ {"w17", AARCH64_X0_REGNUM + 17}, |
+ {"w18", AARCH64_X0_REGNUM + 18}, |
+ {"w19", AARCH64_X0_REGNUM + 19}, |
+ {"w20", AARCH64_X0_REGNUM + 20}, |
+ {"w21", AARCH64_X0_REGNUM + 21}, |
+ {"w22", AARCH64_X0_REGNUM + 22}, |
+ {"w23", AARCH64_X0_REGNUM + 23}, |
+ {"w24", AARCH64_X0_REGNUM + 24}, |
+ {"w25", AARCH64_X0_REGNUM + 25}, |
+ {"w26", AARCH64_X0_REGNUM + 26}, |
+ {"w27", AARCH64_X0_REGNUM + 27}, |
+ {"w28", AARCH64_X0_REGNUM + 28}, |
+ {"w29", AARCH64_X0_REGNUM + 29}, |
+ {"w30", AARCH64_X0_REGNUM + 30}, |
+ |
+ /* specials */ |
+ {"ip0", AARCH64_X0_REGNUM + 16}, |
+ {"ip1", AARCH64_X0_REGNUM + 17} |
+}; |
+ |
+/* The required core 'R' registers. */ |
+static const char *const aarch64_r_register_names[] = |
+{ |
+ /* These registers must appear in consecutive RAW register number |
+ order and they must begin with AARCH64_X0_REGNUM! */ |
+ "x0", "x1", "x2", "x3", |
+ "x4", "x5", "x6", "x7", |
+ "x8", "x9", "x10", "x11", |
+ "x12", "x13", "x14", "x15", |
+ "x16", "x17", "x18", "x19", |
+ "x20", "x21", "x22", "x23", |
+ "x24", "x25", "x26", "x27", |
+ "x28", "x29", "x30", "sp", |
+ "pc", "cpsr" |
+}; |
+ |
+/* The FP/SIMD 'V' registers. */ |
+static const char *const aarch64_v_register_names[] = |
+{ |
+ /* These registers must appear in consecutive RAW register number |
+ order and they must begin with AARCH64_V0_REGNUM! */ |
+ "v0", "v1", "v2", "v3", |
+ "v4", "v5", "v6", "v7", |
+ "v8", "v9", "v10", "v11", |
+ "v12", "v13", "v14", "v15", |
+ "v16", "v17", "v18", "v19", |
+ "v20", "v21", "v22", "v23", |
+ "v24", "v25", "v26", "v27", |
+ "v28", "v29", "v30", "v31", |
+ "fpsr", |
+ "fpcr" |
+}; |
+ |
+/* AArch64 prologue cache structure. */ |
+struct aarch64_prologue_cache |
+{ |
+ /* The stack pointer at the time this frame was created; i.e. the |
+ caller's stack pointer when this function was called. It is used |
+ to identify this frame. */ |
+ CORE_ADDR prev_sp; |
+ |
+ /* The frame base for this frame is just prev_sp - frame size. |
+ FRAMESIZE is the distance from the frame pointer to the |
+ initial stack pointer. */ |
+ int framesize; |
+ |
+ /* The register used to hold the frame pointer for this frame. */ |
+ int framereg; |
+ |
+ /* Saved register offsets. */ |
+ struct trad_frame_saved_reg *saved_regs; |
+}; |
+ |
+/* Toggle this file's internal debugging dump. */ |
+static int aarch64_debug; |
+ |
+static void |
+show_aarch64_debug (struct ui_file *file, int from_tty, |
+ struct cmd_list_element *c, const char *value) |
+{ |
+ fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value); |
+} |
+ |
+/* Extract a signed value from a bit field within an instruction |
+ encoding. |
+ |
+ INSN is the instruction opcode. |
+ |
+ WIDTH specifies the width of the bit field to extract (in bits). |
+ |
+ OFFSET specifies the least significant bit of the field where bits |
+ are numbered zero counting from least to most significant. */ |
+ |
+static int32_t |
+extract_signed_bitfield (uint32_t insn, unsigned width, unsigned offset) |
+{ |
+ unsigned shift_l = sizeof (int32_t) * 8 - (offset + width); |
+ unsigned shift_r = sizeof (int32_t) * 8 - width; |
+ |
+ return ((int32_t) insn << shift_l) >> shift_r; |
+} |
+ |
+/* Determine if specified bits within an instruction opcode matches a |
+ specific pattern. |
+ |
+ INSN is the instruction opcode. |
+ |
+ MASK specifies the bits within the opcode that are to be tested |
+ agsinst for a match with PATTERN. */ |
+ |
+static int |
+decode_masked_match (uint32_t insn, uint32_t mask, uint32_t pattern) |
+{ |
+ return (insn & mask) == pattern; |
+} |
+ |
+/* Decode an opcode if it represents an immediate ADD or SUB instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ RD receives the 'rd' field from the decoded instruction. |
+ RN receives the 'rn' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+static int |
+decode_add_sub_imm (CORE_ADDR addr, uint32_t insn, unsigned *rd, unsigned *rn, |
+ int32_t *imm) |
+{ |
+ if ((insn & 0x9f000000) == 0x91000000) |
+ { |
+ unsigned shift; |
+ unsigned op_is_sub; |
+ |
+ *rd = (insn >> 0) & 0x1f; |
+ *rn = (insn >> 5) & 0x1f; |
+ *imm = (insn >> 10) & 0xfff; |
+ shift = (insn >> 22) & 0x3; |
+ op_is_sub = (insn >> 30) & 0x1; |
+ |
+ switch (shift) |
+ { |
+ case 0: |
+ break; |
+ case 1: |
+ *imm <<= 12; |
+ break; |
+ default: |
+ /* UNDEFINED */ |
+ return 0; |
+ } |
+ |
+ if (op_is_sub) |
+ *imm = -*imm; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x add x%u, x%u, #%d\n", |
+ core_addr_to_string_nz (addr), insn, *rd, *rn, |
+ *imm); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents an ADRP instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ RD receives the 'rd' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_adrp (CORE_ADDR addr, uint32_t insn, unsigned *rd) |
+{ |
+ if (decode_masked_match (insn, 0x9f000000, 0x90000000)) |
+ { |
+ *rd = (insn >> 0) & 0x1f; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x adrp x%u, #?\n", |
+ core_addr_to_string_nz (addr), insn, *rd); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents an branch immediate or branch |
+ and link immediate instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ LINK receives the 'link' bit from the decoded instruction. |
+ OFFSET receives the immediate offset from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_b (CORE_ADDR addr, uint32_t insn, unsigned *link, int32_t *offset) |
+{ |
+ /* b 0001 01ii iiii iiii iiii iiii iiii iiii */ |
+ /* bl 1001 01ii iiii iiii iiii iiii iiii iiii */ |
+ if (decode_masked_match (insn, 0x7c000000, 0x14000000)) |
+ { |
+ *link = insn >> 31; |
+ *offset = extract_signed_bitfield (insn, 26, 0) << 2; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x %s 0x%s\n", |
+ core_addr_to_string_nz (addr), insn, |
+ *link ? "bl" : "b", |
+ core_addr_to_string_nz (addr + *offset)); |
+ |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a conditional branch instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ COND receives the branch condition field from the decoded |
+ instruction. |
+ OFFSET receives the immediate offset from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_bcond (CORE_ADDR addr, uint32_t insn, unsigned *cond, int32_t *offset) |
+{ |
+ if (decode_masked_match (insn, 0xfe000000, 0x54000000)) |
+ { |
+ *cond = (insn >> 0) & 0xf; |
+ *offset = extract_signed_bitfield (insn, 19, 5) << 2; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x b<%u> 0x%s\n", |
+ core_addr_to_string_nz (addr), insn, *cond, |
+ core_addr_to_string_nz (addr + *offset)); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a branch via register instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ LINK receives the 'link' bit from the decoded instruction. |
+ RN receives the 'rn' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_br (CORE_ADDR addr, uint32_t insn, unsigned *link, unsigned *rn) |
+{ |
+ /* 8 4 0 6 2 8 4 0 */ |
+ /* blr 110101100011111100000000000rrrrr */ |
+ /* br 110101100001111100000000000rrrrr */ |
+ if (decode_masked_match (insn, 0xffdffc1f, 0xd61f0000)) |
+ { |
+ *link = (insn >> 21) & 1; |
+ *rn = (insn >> 5) & 0x1f; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x %s 0x%x\n", |
+ core_addr_to_string_nz (addr), insn, |
+ *link ? "blr" : "br", *rn); |
+ |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a CBZ or CBNZ instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ IS64 receives the 'sf' field from the decoded instruction. |
+ OP receives the 'op' field from the decoded instruction. |
+ RN receives the 'rn' field from the decoded instruction. |
+ OFFSET receives the 'imm19' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_cb (CORE_ADDR addr, |
+ uint32_t insn, int *is64, unsigned *op, unsigned *rn, |
+ int32_t *offset) |
+{ |
+ if (decode_masked_match (insn, 0x7e000000, 0x34000000)) |
+ { |
+ /* cbz T011 010o iiii iiii iiii iiii iiir rrrr */ |
+ /* cbnz T011 010o iiii iiii iiii iiii iiir rrrr */ |
+ |
+ *rn = (insn >> 0) & 0x1f; |
+ *is64 = (insn >> 31) & 0x1; |
+ *op = (insn >> 24) & 0x1; |
+ *offset = extract_signed_bitfield (insn, 19, 5) << 2; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x %s 0x%s\n", |
+ core_addr_to_string_nz (addr), insn, |
+ *op ? "cbnz" : "cbz", |
+ core_addr_to_string_nz (addr + *offset)); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a ERET instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_eret (CORE_ADDR addr, uint32_t insn) |
+{ |
+ /* eret 1101 0110 1001 1111 0000 0011 1110 0000 */ |
+ if (insn == 0xd69f03e0) |
+ { |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, "decode: 0x%s 0x%x eret\n", |
+ core_addr_to_string_nz (addr), insn); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a MOVZ instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ RD receives the 'rd' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_movz (CORE_ADDR addr, uint32_t insn, unsigned *rd) |
+{ |
+ if (decode_masked_match (insn, 0xff800000, 0x52800000)) |
+ { |
+ *rd = (insn >> 0) & 0x1f; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x movz x%u, #?\n", |
+ core_addr_to_string_nz (addr), insn, *rd); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a ORR (shifted register) |
+ instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ RD receives the 'rd' field from the decoded instruction. |
+ RN receives the 'rn' field from the decoded instruction. |
+ RM receives the 'rm' field from the decoded instruction. |
+ IMM receives the 'imm6' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_orr_shifted_register_x (CORE_ADDR addr, |
+ uint32_t insn, unsigned *rd, unsigned *rn, |
+ unsigned *rm, int32_t *imm) |
+{ |
+ if (decode_masked_match (insn, 0xff200000, 0xaa000000)) |
+ { |
+ *rd = (insn >> 0) & 0x1f; |
+ *rn = (insn >> 5) & 0x1f; |
+ *rm = (insn >> 16) & 0x1f; |
+ *imm = (insn >> 10) & 0x3f; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x orr x%u, x%u, x%u, #%u\n", |
+ core_addr_to_string_nz (addr), insn, *rd, |
+ *rn, *rm, *imm); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a RET instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ RN receives the 'rn' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_ret (CORE_ADDR addr, uint32_t insn, unsigned *rn) |
+{ |
+ if (decode_masked_match (insn, 0xfffffc1f, 0xd65f0000)) |
+ { |
+ *rn = (insn >> 5) & 0x1f; |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x ret x%u\n", |
+ core_addr_to_string_nz (addr), insn, *rn); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents the following instruction: |
+ STP rt, rt2, [rn, #imm] |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ RT1 receives the 'rt' field from the decoded instruction. |
+ RT2 receives the 'rt2' field from the decoded instruction. |
+ RN receives the 'rn' field from the decoded instruction. |
+ IMM receives the 'imm' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_stp_offset (CORE_ADDR addr, |
+ uint32_t insn, |
+ unsigned *rt1, unsigned *rt2, unsigned *rn, int32_t *imm) |
+{ |
+ if (decode_masked_match (insn, 0xffc00000, 0xa9000000)) |
+ { |
+ *rt1 = (insn >> 0) & 0x1f; |
+ *rn = (insn >> 5) & 0x1f; |
+ *rt2 = (insn >> 10) & 0x1f; |
+ *imm = extract_signed_bitfield (insn, 7, 15); |
+ *imm <<= 3; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]\n", |
+ core_addr_to_string_nz (addr), insn, |
+ *rt1, *rt2, *rn, *imm); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents the following instruction: |
+ STP rt, rt2, [rn, #imm]! |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ RT1 receives the 'rt' field from the decoded instruction. |
+ RT2 receives the 'rt2' field from the decoded instruction. |
+ RN receives the 'rn' field from the decoded instruction. |
+ IMM receives the 'imm' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_stp_offset_wb (CORE_ADDR addr, |
+ uint32_t insn, |
+ unsigned *rt1, unsigned *rt2, unsigned *rn, |
+ int32_t *imm) |
+{ |
+ if (decode_masked_match (insn, 0xffc00000, 0xa9800000)) |
+ { |
+ *rt1 = (insn >> 0) & 0x1f; |
+ *rn = (insn >> 5) & 0x1f; |
+ *rt2 = (insn >> 10) & 0x1f; |
+ *imm = extract_signed_bitfield (insn, 7, 15); |
+ *imm <<= 3; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]!\n", |
+ core_addr_to_string_nz (addr), insn, |
+ *rt1, *rt2, *rn, *imm); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents the following instruction: |
+ STUR rt, [rn, #imm] |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ IS64 receives size field from the decoded instruction. |
+ RT receives the 'rt' field from the decoded instruction. |
+ RN receives the 'rn' field from the decoded instruction. |
+ IMM receives the 'imm' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_stur (CORE_ADDR addr, uint32_t insn, int *is64, unsigned *rt, |
+ unsigned *rn, int32_t *imm) |
+{ |
+ if (decode_masked_match (insn, 0xbfe00c00, 0xb8000000)) |
+ { |
+ *is64 = (insn >> 30) & 1; |
+ *rt = (insn >> 0) & 0x1f; |
+ *rn = (insn >> 5) & 0x1f; |
+ *imm = extract_signed_bitfield (insn, 9, 12); |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x stur %c%u, [x%u + #%d]\n", |
+ core_addr_to_string_nz (addr), insn, |
+ *is64 ? 'x' : 'w', *rt, *rn, *imm); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Decode an opcode if it represents a TB or TBNZ instruction. |
+ |
+ ADDR specifies the address of the opcode. |
+ INSN specifies the opcode to test. |
+ OP receives the 'op' field from the decoded instruction. |
+ BIT receives the bit position field from the decoded instruction. |
+ RT receives 'rt' field from the decoded instruction. |
+ IMM receives 'imm' field from the decoded instruction. |
+ |
+ Return 1 if the opcodes matches and is decoded, otherwise 0. */ |
+ |
+static int |
+decode_tb (CORE_ADDR addr, |
+ uint32_t insn, unsigned *op, unsigned *bit, unsigned *rt, |
+ int32_t *imm) |
+{ |
+ if (decode_masked_match (insn, 0x7e000000, 0x36000000)) |
+ { |
+ /* tbz b011 0110 bbbb biii iiii iiii iiir rrrr */ |
+ /* tbnz B011 0111 bbbb biii iiii iiii iiir rrrr */ |
+ |
+ *rt = (insn >> 0) & 0x1f; |
+ *op = insn & (1 << 24); |
+ *bit = ((insn >> (31 - 4)) & 0x20) | ((insn >> 19) & 0x1f); |
+ *imm = extract_signed_bitfield (insn, 14, 5) << 2; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "decode: 0x%s 0x%x %s x%u, #%u, 0x%s\n", |
+ core_addr_to_string_nz (addr), insn, |
+ *op ? "tbnz" : "tbz", *rt, *bit, |
+ core_addr_to_string_nz (addr + *imm)); |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* Analyze a prologue, looking for a recognizable stack frame |
+ and frame pointer. Scan until we encounter a store that could |
+ clobber the stack frame unexpectedly, or an unknown instruction. */ |
+ |
+static CORE_ADDR |
+aarch64_analyze_prologue (struct gdbarch *gdbarch, |
+ CORE_ADDR start, CORE_ADDR limit, |
+ struct aarch64_prologue_cache *cache) |
+{ |
+ enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
+ int i; |
+ pv_t regs[AARCH64_X_REGISTER_COUNT]; |
+ struct pv_area *stack; |
+ struct cleanup *back_to; |
+ |
+ for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++) |
+ regs[i] = pv_register (i, 0); |
+ stack = make_pv_area (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
+ back_to = make_cleanup_free_pv_area (stack); |
+ |
+ for (; start < limit; start += 4) |
+ { |
+ uint32_t insn; |
+ unsigned rd; |
+ unsigned rn; |
+ unsigned rm; |
+ unsigned rt; |
+ unsigned rt1; |
+ unsigned rt2; |
+ int op_is_sub; |
+ int32_t imm; |
+ unsigned cond; |
+ int is64; |
+ unsigned is_link; |
+ unsigned op; |
+ unsigned bit; |
+ int32_t offset; |
+ |
+ insn = read_memory_unsigned_integer (start, 4, byte_order_for_code); |
+ |
+ if (decode_add_sub_imm (start, insn, &rd, &rn, &imm)) |
+ regs[rd] = pv_add_constant (regs[rn], imm); |
+ else if (decode_adrp (start, insn, &rd)) |
+ regs[rd] = pv_unknown (); |
+ else if (decode_b (start, insn, &is_link, &offset)) |
+ { |
+ /* Stop analysis on branch. */ |
+ break; |
+ } |
+ else if (decode_bcond (start, insn, &cond, &offset)) |
+ { |
+ /* Stop analysis on branch. */ |
+ break; |
+ } |
+ else if (decode_br (start, insn, &is_link, &rn)) |
+ { |
+ /* Stop analysis on branch. */ |
+ break; |
+ } |
+ else if (decode_cb (start, insn, &is64, &op, &rn, &offset)) |
+ { |
+ /* Stop analysis on branch. */ |
+ break; |
+ } |
+ else if (decode_eret (start, insn)) |
+ { |
+ /* Stop analysis on branch. */ |
+ break; |
+ } |
+ else if (decode_movz (start, insn, &rd)) |
+ regs[rd] = pv_unknown (); |
+ else |
+ if (decode_orr_shifted_register_x (start, insn, &rd, &rn, &rm, &imm)) |
+ { |
+ if (imm == 0 && rn == 31) |
+ regs[rd] = regs[rm]; |
+ else |
+ { |
+ if (aarch64_debug) |
+ fprintf_unfiltered |
+ (gdb_stdlog, |
+ "aarch64: prologue analysis gave up addr=0x%s " |
+ "opcode=0x%x (orr x register)\n", |
+ core_addr_to_string_nz (start), |
+ insn); |
+ break; |
+ } |
+ } |
+ else if (decode_ret (start, insn, &rn)) |
+ { |
+ /* Stop analysis on branch. */ |
+ break; |
+ } |
+ else if (decode_stur (start, insn, &is64, &rt, &rn, &offset)) |
+ { |
+ pv_area_store (stack, pv_add_constant (regs[rn], offset), |
+ is64 ? 8 : 4, regs[rt]); |
+ } |
+ else if (decode_stp_offset (start, insn, &rt1, &rt2, &rn, &imm)) |
+ { |
+ /* If recording this store would invalidate the store area |
+ (perhaps because rn is not known) then we should abandon |
+ further prologue analysis. */ |
+ if (pv_area_store_would_trash (stack, |
+ pv_add_constant (regs[rn], imm))) |
+ break; |
+ |
+ if (pv_area_store_would_trash (stack, |
+ pv_add_constant (regs[rn], imm + 8))) |
+ break; |
+ |
+ pv_area_store (stack, pv_add_constant (regs[rn], imm), 8, |
+ regs[rt1]); |
+ pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8, |
+ regs[rt2]); |
+ } |
+ else if (decode_stp_offset_wb (start, insn, &rt1, &rt2, &rn, &imm)) |
+ { |
+ /* If recording this store would invalidate the store area |
+ (perhaps because rn is not known) then we should abandon |
+ further prologue analysis. */ |
+ if (pv_area_store_would_trash (stack, |
+ pv_add_constant (regs[rn], imm))) |
+ break; |
+ |
+ if (pv_area_store_would_trash (stack, |
+ pv_add_constant (regs[rn], imm + 8))) |
+ break; |
+ |
+ pv_area_store (stack, pv_add_constant (regs[rn], imm), 8, |
+ regs[rt1]); |
+ pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8, |
+ regs[rt2]); |
+ regs[rn] = pv_add_constant (regs[rn], imm); |
+ } |
+ else if (decode_tb (start, insn, &op, &bit, &rn, &offset)) |
+ { |
+ /* Stop analysis on branch. */ |
+ break; |
+ } |
+ else |
+ { |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "aarch64: prologue analysis gave up addr=0x%s" |
+ " opcode=0x%x\n", |
+ core_addr_to_string_nz (start), insn); |
+ break; |
+ } |
+ } |
+ |
+ if (cache == NULL) |
+ { |
+ do_cleanups (back_to); |
+ return start; |
+ } |
+ |
+ if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM)) |
+ { |
+ /* Frame pointer is fp. Frame size is constant. */ |
+ cache->framereg = AARCH64_FP_REGNUM; |
+ cache->framesize = -regs[AARCH64_FP_REGNUM].k; |
+ } |
+ else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM)) |
+ { |
+ /* Try the stack pointer. */ |
+ cache->framesize = -regs[AARCH64_SP_REGNUM].k; |
+ cache->framereg = AARCH64_SP_REGNUM; |
+ } |
+ else |
+ { |
+ /* We're just out of luck. We don't know where the frame is. */ |
+ cache->framereg = -1; |
+ cache->framesize = 0; |
+ } |
+ |
+ for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++) |
+ { |
+ CORE_ADDR offset; |
+ |
+ if (pv_area_find_reg (stack, gdbarch, i, &offset)) |
+ cache->saved_regs[i].addr = offset; |
+ } |
+ |
+ do_cleanups (back_to); |
+ return start; |
+} |
+ |
+/* Implement the "skip_prologue" gdbarch method. */ |
+ |
+static CORE_ADDR |
+aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
+{ |
+ unsigned long inst; |
+ CORE_ADDR skip_pc; |
+ CORE_ADDR func_addr, limit_pc; |
+ struct symtab_and_line sal; |
+ |
+ /* See if we can determine the end of the prologue via the symbol |
+ table. If so, then return either PC, or the PC after the |
+ prologue, whichever is greater. */ |
+ if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
+ { |
+ CORE_ADDR post_prologue_pc |
+ = skip_prologue_using_sal (gdbarch, func_addr); |
+ |
+ if (post_prologue_pc != 0) |
+ return max (pc, post_prologue_pc); |
+ } |
+ |
+ /* Can't determine prologue from the symbol table, need to examine |
+ instructions. */ |
+ |
+ /* Find an upper limit on the function prologue using the debug |
+ information. If the debug information could not be used to |
+ provide that bound, then use an arbitrary large number as the |
+ upper bound. */ |
+ limit_pc = skip_prologue_using_sal (gdbarch, pc); |
+ if (limit_pc == 0) |
+ limit_pc = pc + 128; /* Magic. */ |
+ |
+ /* Try disassembling prologue. */ |
+ return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
+} |
+ |
+/* Scan the function prologue for THIS_FRAME and populate the prologue |
+ cache CACHE. */ |
+ |
+static void |
+aarch64_scan_prologue (struct frame_info *this_frame, |
+ struct aarch64_prologue_cache *cache) |
+{ |
+ CORE_ADDR block_addr = get_frame_address_in_block (this_frame); |
+ CORE_ADDR prologue_start; |
+ CORE_ADDR prologue_end; |
+ CORE_ADDR prev_pc = get_frame_pc (this_frame); |
+ struct gdbarch *gdbarch = get_frame_arch (this_frame); |
+ |
+ /* Assume we do not find a frame. */ |
+ cache->framereg = -1; |
+ cache->framesize = 0; |
+ |
+ if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
+ &prologue_end)) |
+ { |
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0); |
+ |
+ if (sal.line == 0) |
+ { |
+ /* No line info so use the current PC. */ |
+ prologue_end = prev_pc; |
+ } |
+ else if (sal.end < prologue_end) |
+ { |
+ /* The next line begins after the function end. */ |
+ prologue_end = sal.end; |
+ } |
+ |
+ prologue_end = min (prologue_end, prev_pc); |
+ aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
+ } |
+ else |
+ { |
+ CORE_ADDR frame_loc; |
+ LONGEST saved_fp; |
+ LONGEST saved_lr; |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ |
+ frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM); |
+ if (frame_loc == 0) |
+ return; |
+ |
+ cache->framereg = AARCH64_FP_REGNUM; |
+ cache->framesize = 16; |
+ cache->saved_regs[29].addr = 0; |
+ cache->saved_regs[30].addr = 8; |
+ } |
+} |
+ |
+/* Allocate an aarch64_prologue_cache and fill it with information |
+ about the prologue of *THIS_FRAME. */ |
+ |
+static struct aarch64_prologue_cache * |
+aarch64_make_prologue_cache (struct frame_info *this_frame) |
+{ |
+ struct aarch64_prologue_cache *cache; |
+ CORE_ADDR unwound_fp; |
+ int reg; |
+ |
+ cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache); |
+ cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
+ |
+ aarch64_scan_prologue (this_frame, cache); |
+ |
+ if (cache->framereg == -1) |
+ return cache; |
+ |
+ unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
+ if (unwound_fp == 0) |
+ return cache; |
+ |
+ cache->prev_sp = unwound_fp + cache->framesize; |
+ |
+ /* Calculate actual addresses of saved registers using offsets |
+ determined by aarch64_analyze_prologue. */ |
+ for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
+ if (trad_frame_addr_p (cache->saved_regs, reg)) |
+ cache->saved_regs[reg].addr += cache->prev_sp; |
+ |
+ return cache; |
+} |
+ |
+/* Our frame ID for a normal frame is the current function's starting |
+ PC and the caller's SP when we were called. */ |
+ |
+static void |
+aarch64_prologue_this_id (struct frame_info *this_frame, |
+ void **this_cache, struct frame_id *this_id) |
+{ |
+ struct aarch64_prologue_cache *cache; |
+ struct frame_id id; |
+ CORE_ADDR pc, func; |
+ |
+ if (*this_cache == NULL) |
+ *this_cache = aarch64_make_prologue_cache (this_frame); |
+ cache = *this_cache; |
+ |
+ /* This is meant to halt the backtrace at "_start". */ |
+ pc = get_frame_pc (this_frame); |
+ if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) |
+ return; |
+ |
+ /* If we've hit a wall, stop. */ |
+ if (cache->prev_sp == 0) |
+ return; |
+ |
+ func = get_frame_func (this_frame); |
+ id = frame_id_build (cache->prev_sp, func); |
+ *this_id = id; |
+} |
+ |
+/* Implement the "prev_register" frame_unwind method. */ |
+ |
+static struct value * |
+aarch64_prologue_prev_register (struct frame_info *this_frame, |
+ void **this_cache, int prev_regnum) |
+{ |
+ struct gdbarch *gdbarch = get_frame_arch (this_frame); |
+ struct aarch64_prologue_cache *cache; |
+ |
+ if (*this_cache == NULL) |
+ *this_cache = aarch64_make_prologue_cache (this_frame); |
+ cache = *this_cache; |
+ |
+ /* If we are asked to unwind the PC, then we need to return the LR |
+ instead. The prologue may save PC, but it will point into this |
+ frame's prologue, not the next frame's resume location. */ |
+ if (prev_regnum == AARCH64_PC_REGNUM) |
+ { |
+ CORE_ADDR lr; |
+ |
+ lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM); |
+ return frame_unwind_got_constant (this_frame, prev_regnum, lr); |
+ } |
+ |
+ /* SP is generally not saved to the stack, but this frame is |
+ identified by the next frame's stack pointer at the time of the |
+ call. The value was already reconstructed into PREV_SP. */ |
+ /* |
+ +----------+ ^ |
+ | saved lr | | |
+ +->| saved fp |--+ |
+ | | | |
+ | | | <- Previous SP |
+ | +----------+ |
+ | | saved lr | |
+ +--| saved fp |<- FP |
+ | | |
+ | |<- SP |
+ +----------+ */ |
+ if (prev_regnum == AARCH64_SP_REGNUM) |
+ return frame_unwind_got_constant (this_frame, prev_regnum, |
+ cache->prev_sp); |
+ |
+ return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
+ prev_regnum); |
+} |
+ |
+/* AArch64 prologue unwinder. */ |
+struct frame_unwind aarch64_prologue_unwind = |
+{ |
+ NORMAL_FRAME, |
+ default_frame_unwind_stop_reason, |
+ aarch64_prologue_this_id, |
+ aarch64_prologue_prev_register, |
+ NULL, |
+ default_frame_sniffer |
+}; |
+ |
+/* Allocate an aarch64_prologue_cache and fill it with information |
+ about the prologue of *THIS_FRAME. */ |
+ |
+static struct aarch64_prologue_cache * |
+aarch64_make_stub_cache (struct frame_info *this_frame) |
+{ |
+ int reg; |
+ struct aarch64_prologue_cache *cache; |
+ CORE_ADDR unwound_fp; |
+ |
+ cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache); |
+ cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
+ |
+ cache->prev_sp |
+ = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM); |
+ |
+ return cache; |
+} |
+ |
+/* Our frame ID for a stub frame is the current SP and LR. */ |
+ |
+static void |
+aarch64_stub_this_id (struct frame_info *this_frame, |
+ void **this_cache, struct frame_id *this_id) |
+{ |
+ struct aarch64_prologue_cache *cache; |
+ |
+ if (*this_cache == NULL) |
+ *this_cache = aarch64_make_stub_cache (this_frame); |
+ cache = *this_cache; |
+ |
+ *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
+} |
+ |
+/* Implement the "sniffer" frame_unwind method. */ |
+ |
+static int |
+aarch64_stub_unwind_sniffer (const struct frame_unwind *self, |
+ struct frame_info *this_frame, |
+ void **this_prologue_cache) |
+{ |
+ CORE_ADDR addr_in_block; |
+ gdb_byte dummy[4]; |
+ |
+ addr_in_block = get_frame_address_in_block (this_frame); |
+ if (in_plt_section (addr_in_block) |
+ /* We also use the stub winder if the target memory is unreadable |
+ to avoid having the prologue unwinder trying to read it. */ |
+ || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) |
+ return 1; |
+ |
+ return 0; |
+} |
+ |
+/* AArch64 stub unwinder. */ |
+struct frame_unwind aarch64_stub_unwind = |
+{ |
+ NORMAL_FRAME, |
+ default_frame_unwind_stop_reason, |
+ aarch64_stub_this_id, |
+ aarch64_prologue_prev_register, |
+ NULL, |
+ aarch64_stub_unwind_sniffer |
+}; |
+ |
+/* Return the frame base address of *THIS_FRAME. */ |
+ |
+static CORE_ADDR |
+aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
+{ |
+ struct aarch64_prologue_cache *cache; |
+ |
+ if (*this_cache == NULL) |
+ *this_cache = aarch64_make_prologue_cache (this_frame); |
+ cache = *this_cache; |
+ |
+ return cache->prev_sp - cache->framesize; |
+} |
+ |
+/* AArch64 default frame base information. */ |
+struct frame_base aarch64_normal_base = |
+{ |
+ &aarch64_prologue_unwind, |
+ aarch64_normal_frame_base, |
+ aarch64_normal_frame_base, |
+ aarch64_normal_frame_base |
+}; |
+ |
+/* Assuming THIS_FRAME is a dummy, return the frame ID of that |
+ dummy frame. The frame ID's base needs to match the TOS value |
+ saved by save_dummy_frame_tos () and returned from |
+ aarch64_push_dummy_call, and the PC needs to match the dummy |
+ frame's breakpoint. */ |
+ |
+static struct frame_id |
+aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
+{ |
+ return frame_id_build (get_frame_register_unsigned (this_frame, |
+ AARCH64_SP_REGNUM), |
+ get_frame_pc (this_frame)); |
+} |
+ |
+/* Implement the "unwind_pc" gdbarch method. */ |
+ |
+static CORE_ADDR |
+aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) |
+{ |
+ CORE_ADDR pc |
+ = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM); |
+ |
+ return pc; |
+} |
+ |
+/* Implement the "unwind_sp" gdbarch method. */ |
+ |
+static CORE_ADDR |
+aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) |
+{ |
+ return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM); |
+} |
+ |
+/* Return the value of the REGNUM register in the previous frame of |
+ *THIS_FRAME. */ |
+ |
+static struct value * |
+aarch64_dwarf2_prev_register (struct frame_info *this_frame, |
+ void **this_cache, int regnum) |
+{ |
+ struct gdbarch *gdbarch = get_frame_arch (this_frame); |
+ CORE_ADDR lr; |
+ |
+ switch (regnum) |
+ { |
+ case AARCH64_PC_REGNUM: |
+ lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM); |
+ return frame_unwind_got_constant (this_frame, regnum, lr); |
+ |
+ default: |
+ internal_error (__FILE__, __LINE__, |
+ _("Unexpected register %d"), regnum); |
+ } |
+} |
+ |
+/* Implement the "init_reg" dwarf2_frame_ops method. */ |
+ |
+static void |
+aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, |
+ struct dwarf2_frame_state_reg *reg, |
+ struct frame_info *this_frame) |
+{ |
+ switch (regnum) |
+ { |
+ case AARCH64_PC_REGNUM: |
+ reg->how = DWARF2_FRAME_REG_FN; |
+ reg->loc.fn = aarch64_dwarf2_prev_register; |
+ break; |
+ case AARCH64_SP_REGNUM: |
+ reg->how = DWARF2_FRAME_REG_CFA; |
+ break; |
+ } |
+} |
+ |
+/* When arguments must be pushed onto the stack, they go on in reverse |
+ order. The code below implements a FILO (stack) to do this. */ |
+ |
+typedef struct |
+{ |
+ /* Value to pass on stack. */ |
+ const void *data; |
+ |
+ /* Size in bytes of value to pass on stack. */ |
+ int len; |
+} stack_item_t; |
+ |
+DEF_VEC_O (stack_item_t); |
+ |
+/* Return the alignment (in bytes) of the given type. */ |
+ |
+static int |
+aarch64_type_align (struct type *t) |
+{ |
+ int n; |
+ int align; |
+ int falign; |
+ |
+ t = check_typedef (t); |
+ switch (TYPE_CODE (t)) |
+ { |
+ default: |
+ /* Should never happen. */ |
+ internal_error (__FILE__, __LINE__, _("unknown type alignment")); |
+ return 4; |
+ |
+ case TYPE_CODE_PTR: |
+ case TYPE_CODE_ENUM: |
+ case TYPE_CODE_INT: |
+ case TYPE_CODE_FLT: |
+ case TYPE_CODE_SET: |
+ case TYPE_CODE_RANGE: |
+ case TYPE_CODE_BITSTRING: |
+ case TYPE_CODE_REF: |
+ case TYPE_CODE_CHAR: |
+ case TYPE_CODE_BOOL: |
+ return TYPE_LENGTH (t); |
+ |
+ case TYPE_CODE_ARRAY: |
+ case TYPE_CODE_COMPLEX: |
+ return aarch64_type_align (TYPE_TARGET_TYPE (t)); |
+ |
+ case TYPE_CODE_STRUCT: |
+ case TYPE_CODE_UNION: |
+ align = 1; |
+ for (n = 0; n < TYPE_NFIELDS (t); n++) |
+ { |
+ falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n)); |
+ if (falign > align) |
+ align = falign; |
+ } |
+ return align; |
+ } |
+} |
+ |
+/* Return 1 if *TY is a homogeneous floating-point aggregate as |
+ defined in the AAPCS64 ABI document; otherwise return 0. */ |
+ |
+static int |
+is_hfa (struct type *ty) |
+{ |
+ switch (TYPE_CODE (ty)) |
+ { |
+ case TYPE_CODE_ARRAY: |
+ { |
+ struct type *target_ty = TYPE_TARGET_TYPE (ty); |
+ if (TYPE_CODE (target_ty) == TYPE_CODE_FLT && TYPE_LENGTH (ty) <= 4) |
+ return 1; |
+ break; |
+ } |
+ |
+ case TYPE_CODE_UNION: |
+ case TYPE_CODE_STRUCT: |
+ { |
+ if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4) |
+ { |
+ struct type *member0_type; |
+ |
+ member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0)); |
+ if (TYPE_CODE (member0_type) == TYPE_CODE_FLT) |
+ { |
+ int i; |
+ |
+ for (i = 0; i < TYPE_NFIELDS (ty); i++) |
+ { |
+ struct type *member1_type; |
+ |
+ member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i)); |
+ if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type) |
+ || (TYPE_LENGTH (member0_type) |
+ != TYPE_LENGTH (member1_type))) |
+ return 0; |
+ } |
+ return 1; |
+ } |
+ } |
+ return 0; |
+ } |
+ |
+ default: |
+ break; |
+ } |
+ |
+ return 0; |
+} |
+ |
+/* AArch64 function call information structure. */ |
+struct aarch64_call_info |
+{ |
+ /* the current argument number. */ |
+ unsigned argnum; |
+ |
+ /* The next general purpose register number, equivalent to NGRN as |
+ described in the AArch64 Procedure Call Standard. */ |
+ unsigned ngrn; |
+ |
+ /* The next SIMD and floating point register number, equivalent to |
+ NSRN as described in the AArch64 Procedure Call Standard. */ |
+ unsigned nsrn; |
+ |
+ /* The next stacked argument address, equivalent to NSAA as |
+ described in the AArch64 Procedure Call Standard. */ |
+ unsigned nsaa; |
+ |
+ /* Stack item vector. */ |
+ VEC(stack_item_t) *si; |
+}; |
+ |
+/* Pass a value in a sequence of consecutive X registers. The caller |
+ is responsbile for ensuring sufficient registers are available. */ |
+ |
+static void |
+pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache, |
+ struct aarch64_call_info *info, struct type *type, |
+ const bfd_byte *buf) |
+{ |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ int len = TYPE_LENGTH (type); |
+ enum type_code typecode = TYPE_CODE (type); |
+ int regnum = AARCH64_X0_REGNUM + info->ngrn; |
+ |
+ info->argnum++; |
+ |
+ while (len > 0) |
+ { |
+ int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE; |
+ CORE_ADDR regval = extract_unsigned_integer (buf, partial_len, |
+ byte_order); |
+ |
+ |
+ /* Adjust sub-word struct/union args when big-endian. */ |
+ if (byte_order == BFD_ENDIAN_BIG |
+ && partial_len < X_REGISTER_SIZE |
+ && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) |
+ regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT); |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", |
+ info->argnum, |
+ gdbarch_register_name (gdbarch, regnum), |
+ phex (regval, X_REGISTER_SIZE)); |
+ regcache_cooked_write_unsigned (regcache, regnum, regval); |
+ len -= partial_len; |
+ buf += partial_len; |
+ regnum++; |
+ } |
+} |
+ |
+/* Attempt to marshall a value in a V register. Return 1 if |
+ successful, or 0 if insufficient registers are available. This |
+ function, unlike the equivalent pass_in_x() function does not |
+ handle arguments spread across multiple registers. */ |
+ |
+static int |
+pass_in_v (struct gdbarch *gdbarch, |
+ struct regcache *regcache, |
+ struct aarch64_call_info *info, |
+ const bfd_byte *buf) |
+{ |
+ if (info->nsrn < 8) |
+ { |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ int regnum = AARCH64_V0_REGNUM + info->nsrn; |
+ |
+ info->argnum++; |
+ info->nsrn++; |
+ |
+ regcache_cooked_write (regcache, regnum, buf); |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, "arg %d in %s\n", |
+ info->argnum, |
+ gdbarch_register_name (gdbarch, regnum)); |
+ return 1; |
+ } |
+ info->nsrn = 8; |
+ return 0; |
+} |
+ |
+/* Marshall an argument onto the stack. */ |
+ |
+static void |
+pass_on_stack (struct aarch64_call_info *info, struct type *type, |
+ const bfd_byte *buf) |
+{ |
+ int len = TYPE_LENGTH (type); |
+ int align; |
+ stack_item_t item; |
+ |
+ info->argnum++; |
+ |
+ align = aarch64_type_align (type); |
+ |
+ /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the |
+ Natural alignment of the argument's type. */ |
+ align = align_up (align, 8); |
+ |
+ /* The AArch64 PCS requires at most doubleword alignment. */ |
+ if (align > 16) |
+ align = 16; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, "arg %d len=%d @ sp + %d\n", |
+ info->argnum, len, info->nsaa); |
+ |
+ item.len = len; |
+ item.data = buf; |
+ VEC_safe_push (stack_item_t, info->si, &item); |
+ |
+ info->nsaa += len; |
+ if (info->nsaa & (align - 1)) |
+ { |
+ /* Push stack alignment padding. */ |
+ int pad = align - (info->nsaa & (align - 1)); |
+ |
+ item.len = pad; |
+ item.data = buf; |
+ |
+ VEC_safe_push (stack_item_t, info->si, &item); |
+ info->nsaa += pad; |
+ } |
+} |
+ |
+/* Marshall an argument into a sequence of one or more consecutive X |
+ registers or, if insufficient X registers are available then onto |
+ the stack. */ |
+ |
+static void |
+pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache, |
+ struct aarch64_call_info *info, struct type *type, |
+ const bfd_byte *buf) |
+{ |
+ int len = TYPE_LENGTH (type); |
+ int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE; |
+ |
+ /* PCS C.13 - Pass in registers if we have enough spare */ |
+ if (info->ngrn + nregs <= 8) |
+ { |
+ pass_in_x (gdbarch, regcache, info, type, buf); |
+ info->ngrn += nregs; |
+ } |
+ else |
+ { |
+ info->ngrn = 8; |
+ pass_on_stack (info, type, buf); |
+ } |
+} |
+ |
+/* Pass a value in a V register, or on the stack if insufficient are |
+ available. */ |
+ |
+static void |
+pass_in_v_or_stack (struct gdbarch *gdbarch, |
+ struct regcache *regcache, |
+ struct aarch64_call_info *info, |
+ struct type *type, |
+ const bfd_byte *buf) |
+{ |
+ if (!pass_in_v (gdbarch, regcache, info, buf)) |
+ pass_on_stack (info, type, buf); |
+} |
+ |
+/* Implement the "push_dummy_call" gdbarch method. */ |
+ |
+static CORE_ADDR |
+aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
+ struct regcache *regcache, CORE_ADDR bp_addr, |
+ int nargs, |
+ struct value **args, CORE_ADDR sp, int struct_return, |
+ CORE_ADDR struct_addr) |
+{ |
+ int nstack = 0; |
+ int argnum; |
+ int x_argreg; |
+ int v_argreg; |
+ struct aarch64_call_info info; |
+ struct type *func_type; |
+ struct type *return_type; |
+ int lang_struct_return; |
+ |
+ memset (&info, 0, sizeof (info)); |
+ |
+ /* We need to know what the type of the called function is in order |
+ to determine the number of named/anonymous arguments for the |
+ actual argument placement, and the return type in order to handle |
+ return value correctly. |
+ |
+ The generic code above us views the decision of return in memory |
+ or return in registers as a two stage processes. The language |
+ handler is consulted first and may decide to return in memory (eg |
+ class with copy constructor returned by value), this will cause |
+ the generic code to allocate space AND insert an initial leading |
+ argument. |
+ |
+ If the language code does not decide to pass in memory then the |
+ target code is consulted. |
+ |
+ If the language code decides to pass in memory we want to move |
+ the pointer inserted as the initial argument from the argument |
+ list and into X8, the conventional AArch64 struct return pointer |
+ register. |
+ |
+ This is slightly awkward, ideally the flag "lang_struct_return" |
+ would be passed to the targets implementation of push_dummy_call. |
+ Rather that change the target interface we call the language code |
+ directly ourselves. */ |
+ |
+ func_type = check_typedef (value_type (function)); |
+ |
+ /* Dereference function pointer types. */ |
+ if (TYPE_CODE (func_type) == TYPE_CODE_PTR) |
+ func_type = TYPE_TARGET_TYPE (func_type); |
+ |
+ gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC |
+ || TYPE_CODE (func_type) == TYPE_CODE_METHOD); |
+ |
+ /* If language_pass_by_reference () returned true we will have been |
+ given an additional initial argument, a hidden pointer to the |
+ return slot in memory. */ |
+ return_type = TYPE_TARGET_TYPE (func_type); |
+ lang_struct_return = language_pass_by_reference (return_type); |
+ |
+ /* Set the return address. For the AArch64, the return breakpoint |
+ is always at BP_ADDR. */ |
+ regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr); |
+ |
+ /* If we were given an initial argument for the return slot because |
+ lang_struct_return was true, lose it. */ |
+ if (lang_struct_return) |
+ { |
+ args++; |
+ nargs--; |
+ } |
+ |
+ /* The struct_return pointer occupies X8. */ |
+ if (struct_return || lang_struct_return) |
+ { |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n", |
+ gdbarch_register_name |
+ (gdbarch, |
+ AARCH64_STRUCT_RETURN_REGNUM), |
+ paddress (gdbarch, struct_addr)); |
+ regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM, |
+ struct_addr); |
+ } |
+ |
+ for (argnum = 0; argnum < nargs; argnum++) |
+ { |
+ struct value *arg = args[argnum]; |
+ struct type *arg_type; |
+ int len; |
+ |
+ arg_type = check_typedef (value_type (arg)); |
+ len = TYPE_LENGTH (arg_type); |
+ |
+ switch (TYPE_CODE (arg_type)) |
+ { |
+ case TYPE_CODE_INT: |
+ case TYPE_CODE_BOOL: |
+ case TYPE_CODE_CHAR: |
+ case TYPE_CODE_RANGE: |
+ case TYPE_CODE_ENUM: |
+ if (len < 4) |
+ { |
+ /* Promote to 32 bit integer. */ |
+ if (TYPE_UNSIGNED (arg_type)) |
+ arg_type = builtin_type (gdbarch)->builtin_uint32; |
+ else |
+ arg_type = builtin_type (gdbarch)->builtin_int32; |
+ arg = value_cast (arg_type, arg); |
+ } |
+ pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, |
+ value_contents (arg)); |
+ break; |
+ |
+ case TYPE_CODE_COMPLEX: |
+ if (info.nsrn <= 6) |
+ { |
+ const bfd_byte *buf = value_contents (arg); |
+ struct type *target_type = |
+ check_typedef (TYPE_TARGET_TYPE (arg_type)); |
+ |
+ pass_in_v (gdbarch, regcache, &info, buf); |
+ pass_in_v (gdbarch, regcache, &info, |
+ buf + TYPE_LENGTH (target_type)); |
+ } |
+ else |
+ { |
+ info.nsrn = 8; |
+ pass_on_stack (&info, arg_type, value_contents (arg)); |
+ } |
+ break; |
+ case TYPE_CODE_FLT: |
+ pass_in_v_or_stack (gdbarch, regcache, &info, arg_type, |
+ value_contents (arg)); |
+ break; |
+ |
+ case TYPE_CODE_STRUCT: |
+ case TYPE_CODE_ARRAY: |
+ case TYPE_CODE_UNION: |
+ if (is_hfa (arg_type)) |
+ { |
+ int elements = TYPE_NFIELDS (arg_type); |
+ |
+ /* Homogeneous Aggregates */ |
+ if (info.nsrn + elements < 8) |
+ { |
+ int i; |
+ |
+ for (i = 0; i < elements; i++) |
+ { |
+ /* We know that we have sufficient registers |
+ available therefore this will never fallback |
+ to the stack. */ |
+ struct value *field = |
+ value_primitive_field (arg, 0, i, arg_type); |
+ struct type *field_type = |
+ check_typedef (value_type (field)); |
+ |
+ pass_in_v_or_stack (gdbarch, regcache, &info, field_type, |
+ value_contents_writeable (field)); |
+ } |
+ } |
+ else |
+ { |
+ info.nsrn = 8; |
+ pass_on_stack (&info, arg_type, value_contents (arg)); |
+ } |
+ } |
+ else if (len > 16) |
+ { |
+ /* PCS B.7 Aggregates larger than 16 bytes are passed by |
+ invisible reference. */ |
+ |
+ /* Allocate aligned storage. */ |
+ sp = align_down (sp - len, 16); |
+ |
+ /* Write the real data into the stack. */ |
+ write_memory (sp, value_contents (arg), len); |
+ |
+ /* Construct the indirection. */ |
+ arg_type = lookup_pointer_type (arg_type); |
+ arg = value_from_pointer (arg_type, sp); |
+ pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, |
+ value_contents (arg)); |
+ } |
+ else |
+ /* PCS C.15 / C.18 multiple values pass. */ |
+ pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, |
+ value_contents (arg)); |
+ break; |
+ |
+ default: |
+ pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, |
+ value_contents (arg)); |
+ break; |
+ } |
+ } |
+ |
+ /* Make sure stack retains 16 byte alignment. */ |
+ if (info.nsaa & 15) |
+ sp -= 16 - (info.nsaa & 15); |
+ |
+ while (!VEC_empty (stack_item_t, info.si)) |
+ { |
+ stack_item_t *si = VEC_last (stack_item_t, info.si); |
+ |
+ sp -= si->len; |
+ write_memory (sp, si->data, si->len); |
+ VEC_pop (stack_item_t, info.si); |
+ } |
+ |
+ VEC_free (stack_item_t, info.si); |
+ |
+ /* Finally, update the SP register. */ |
+ regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp); |
+ |
+ return sp; |
+} |
+ |
+/* Implement the "frame_align" gdbarch method. */ |
+ |
+static CORE_ADDR |
+aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
+{ |
+ /* Align the stack to sixteen bytes. */ |
+ return sp & ~(CORE_ADDR) 15; |
+} |
+ |
+/* Return the type for an AdvSISD Q register. */ |
+ |
+static struct type * |
+aarch64_vnq_type (struct gdbarch *gdbarch) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ if (tdep->vnq_type == NULL) |
+ { |
+ struct type *t; |
+ struct type *elem; |
+ |
+ t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq", |
+ TYPE_CODE_UNION); |
+ |
+ elem = builtin_type (gdbarch)->builtin_uint128; |
+ append_composite_type_field (t, "u", elem); |
+ |
+ elem = builtin_type (gdbarch)->builtin_int128; |
+ append_composite_type_field (t, "s", elem); |
+ |
+ tdep->vnq_type = t; |
+ } |
+ |
+ return tdep->vnq_type; |
+} |
+ |
+/* Return the type for an AdvSISD D register. */ |
+ |
+static struct type * |
+aarch64_vnd_type (struct gdbarch *gdbarch) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ if (tdep->vnd_type == NULL) |
+ { |
+ struct type *t; |
+ struct type *elem; |
+ |
+ t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd", |
+ TYPE_CODE_UNION); |
+ |
+ elem = builtin_type (gdbarch)->builtin_double; |
+ append_composite_type_field (t, "f", elem); |
+ |
+ elem = builtin_type (gdbarch)->builtin_uint64; |
+ append_composite_type_field (t, "u", elem); |
+ |
+ elem = builtin_type (gdbarch)->builtin_int64; |
+ append_composite_type_field (t, "s", elem); |
+ |
+ tdep->vnd_type = t; |
+ } |
+ |
+ return tdep->vnd_type; |
+} |
+ |
+/* Return the type for an AdvSISD S register. */ |
+ |
+static struct type * |
+aarch64_vns_type (struct gdbarch *gdbarch) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ if (tdep->vns_type == NULL) |
+ { |
+ struct type *t; |
+ struct type *elem; |
+ |
+ t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns", |
+ TYPE_CODE_UNION); |
+ |
+ elem = builtin_type (gdbarch)->builtin_float; |
+ append_composite_type_field (t, "f", elem); |
+ |
+ elem = builtin_type (gdbarch)->builtin_uint32; |
+ append_composite_type_field (t, "u", elem); |
+ |
+ elem = builtin_type (gdbarch)->builtin_int32; |
+ append_composite_type_field (t, "s", elem); |
+ |
+ tdep->vns_type = t; |
+ } |
+ |
+ return tdep->vns_type; |
+} |
+ |
+/* Return the type for an AdvSISD H register. */ |
+ |
+static struct type * |
+aarch64_vnh_type (struct gdbarch *gdbarch) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ if (tdep->vnh_type == NULL) |
+ { |
+ struct type *t; |
+ struct type *elem; |
+ |
+ t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh", |
+ TYPE_CODE_UNION); |
+ |
+ elem = builtin_type (gdbarch)->builtin_uint16; |
+ append_composite_type_field (t, "u", elem); |
+ |
+ elem = builtin_type (gdbarch)->builtin_int16; |
+ append_composite_type_field (t, "s", elem); |
+ |
+ tdep->vnh_type = t; |
+ } |
+ |
+ return tdep->vnh_type; |
+} |
+ |
+/* Return the type for an AdvSISD B register. */ |
+ |
+static struct type * |
+aarch64_vnb_type (struct gdbarch *gdbarch) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ if (tdep->vnb_type == NULL) |
+ { |
+ struct type *t; |
+ struct type *elem; |
+ |
+ t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb", |
+ TYPE_CODE_UNION); |
+ |
+ elem = builtin_type (gdbarch)->builtin_uint8; |
+ append_composite_type_field (t, "u", elem); |
+ |
+ elem = builtin_type (gdbarch)->builtin_int8; |
+ append_composite_type_field (t, "s", elem); |
+ |
+ tdep->vnb_type = t; |
+ } |
+ |
+ return tdep->vnb_type; |
+} |
+ |
+/* Implement the "dwarf2_reg_to_regnum" gdbarch method. */ |
+ |
+static int |
+aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
+{ |
+ if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30) |
+ return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0; |
+ |
+ if (reg == AARCH64_DWARF_SP) |
+ return AARCH64_SP_REGNUM; |
+ |
+ if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31) |
+ return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0; |
+ |
+ return -1; |
+} |
+ |
+ |
+/* Implement the "print_insn" gdbarch method. */ |
+ |
+static int |
+aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info) |
+{ |
+ info->symbols = NULL; |
+ return print_insn_aarch64 (memaddr, info); |
+} |
+ |
+/* AArch64 BRK software debug mode instruction. |
+ Note that AArch64 code is always little-endian. |
+ 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */ |
+static const gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4}; |
+ |
+/* Implement the "breakpoint_from_pc" gdbarch method. */ |
+ |
+static const gdb_byte * |
+aarch64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, |
+ int *lenptr) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ *lenptr = sizeof (aarch64_default_breakpoint); |
+ return aarch64_default_breakpoint; |
+} |
+ |
+/* Extract from an array REGS containing the (raw) register state a |
+ function return value of type TYPE, and copy that, in virtual |
+ format, into VALBUF. */ |
+ |
+static void |
+aarch64_extract_return_value (struct type *type, struct regcache *regs, |
+ gdb_byte *valbuf) |
+{ |
+ struct gdbarch *gdbarch = get_regcache_arch (regs); |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ |
+ if (TYPE_CODE (type) == TYPE_CODE_FLT) |
+ { |
+ bfd_byte buf[V_REGISTER_SIZE]; |
+ int len = TYPE_LENGTH (type); |
+ |
+ regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf); |
+ memcpy (valbuf, buf, len); |
+ } |
+ else if (TYPE_CODE (type) == TYPE_CODE_INT |
+ || TYPE_CODE (type) == TYPE_CODE_CHAR |
+ || TYPE_CODE (type) == TYPE_CODE_BOOL |
+ || TYPE_CODE (type) == TYPE_CODE_PTR |
+ || TYPE_CODE (type) == TYPE_CODE_REF |
+ || TYPE_CODE (type) == TYPE_CODE_ENUM) |
+ { |
+ /* If the the type is a plain integer, then the access is |
+ straight-forward. Otherwise we have to play around a bit |
+ more. */ |
+ int len = TYPE_LENGTH (type); |
+ int regno = AARCH64_X0_REGNUM; |
+ ULONGEST tmp; |
+ |
+ while (len > 0) |
+ { |
+ /* By using store_unsigned_integer we avoid having to do |
+ anything special for small big-endian values. */ |
+ regcache_cooked_read_unsigned (regs, regno++, &tmp); |
+ store_unsigned_integer (valbuf, |
+ (len > X_REGISTER_SIZE |
+ ? X_REGISTER_SIZE : len), byte_order, tmp); |
+ len -= X_REGISTER_SIZE; |
+ valbuf += X_REGISTER_SIZE; |
+ } |
+ } |
+ else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX) |
+ { |
+ int regno = AARCH64_V0_REGNUM; |
+ bfd_byte buf[V_REGISTER_SIZE]; |
+ struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); |
+ int len = TYPE_LENGTH (target_type); |
+ |
+ regcache_cooked_read (regs, regno, buf); |
+ memcpy (valbuf, buf, len); |
+ valbuf += len; |
+ regcache_cooked_read (regs, regno + 1, buf); |
+ memcpy (valbuf, buf, len); |
+ valbuf += len; |
+ } |
+ else if (is_hfa (type)) |
+ { |
+ int elements = TYPE_NFIELDS (type); |
+ struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0)); |
+ int len = TYPE_LENGTH (member_type); |
+ int i; |
+ |
+ for (i = 0; i < elements; i++) |
+ { |
+ int regno = AARCH64_V0_REGNUM + i; |
+ bfd_byte buf[X_REGISTER_SIZE]; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "read HFA return value element %d from %s\n", |
+ i + 1, |
+ gdbarch_register_name (gdbarch, regno)); |
+ regcache_cooked_read (regs, regno, buf); |
+ |
+ memcpy (valbuf, buf, len); |
+ valbuf += len; |
+ } |
+ } |
+ else |
+ { |
+ /* For a structure or union the behaviour is as if the value had |
+ been stored to word-aligned memory and then loaded into |
+ registers with 64-bit load instruction(s). */ |
+ int len = TYPE_LENGTH (type); |
+ int regno = AARCH64_X0_REGNUM; |
+ bfd_byte buf[X_REGISTER_SIZE]; |
+ |
+ while (len > 0) |
+ { |
+ regcache_cooked_read (regs, regno++, buf); |
+ memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len); |
+ len -= X_REGISTER_SIZE; |
+ valbuf += X_REGISTER_SIZE; |
+ } |
+ } |
+} |
+ |
+ |
+/* Will a function return an aggregate type in memory or in a |
+ register? Return 0 if an aggregate type can be returned in a |
+ register, 1 if it must be returned in memory. */ |
+ |
+static int |
+aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type) |
+{ |
+ int nRc; |
+ enum type_code code; |
+ |
+ CHECK_TYPEDEF (type); |
+ |
+ /* In the AArch64 ABI, "integer" like aggregate types are returned |
+ in registers. For an aggregate type to be integer like, its size |
+ must be less than or equal to 4 * X_REGISTER_SIZE. */ |
+ |
+ if (is_hfa (type)) |
+ { |
+ /* PCS B.5 If the argument is a Named HFA, then the argument is |
+ used unmodified. */ |
+ return 0; |
+ } |
+ |
+ if (TYPE_LENGTH (type) > 16) |
+ { |
+ /* PCS B.6 Aggregates larger than 16 bytes are passed by |
+ invisible reference. */ |
+ |
+ return 1; |
+ } |
+ |
+ return 0; |
+} |
+ |
+/* Write into appropriate registers a function return value of type |
+ TYPE, given in virtual format. */ |
+ |
+static void |
+aarch64_store_return_value (struct type *type, struct regcache *regs, |
+ const gdb_byte *valbuf) |
+{ |
+ struct gdbarch *gdbarch = get_regcache_arch (regs); |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ |
+ if (TYPE_CODE (type) == TYPE_CODE_FLT) |
+ { |
+ bfd_byte buf[V_REGISTER_SIZE]; |
+ int len = TYPE_LENGTH (type); |
+ |
+ memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len); |
+ regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf); |
+ } |
+ else if (TYPE_CODE (type) == TYPE_CODE_INT |
+ || TYPE_CODE (type) == TYPE_CODE_CHAR |
+ || TYPE_CODE (type) == TYPE_CODE_BOOL |
+ || TYPE_CODE (type) == TYPE_CODE_PTR |
+ || TYPE_CODE (type) == TYPE_CODE_REF |
+ || TYPE_CODE (type) == TYPE_CODE_ENUM) |
+ { |
+ if (TYPE_LENGTH (type) <= X_REGISTER_SIZE) |
+ { |
+ /* Values of one word or less are zero/sign-extended and |
+ returned in r0. */ |
+ bfd_byte tmpbuf[X_REGISTER_SIZE]; |
+ LONGEST val = unpack_long (type, valbuf); |
+ |
+ store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val); |
+ regcache_cooked_write (regs, AARCH64_X0_REGNUM, tmpbuf); |
+ } |
+ else |
+ { |
+ /* Integral values greater than one word are stored in |
+ consecutive registers starting with r0. This will always |
+ be a multiple of the regiser size. */ |
+ int len = TYPE_LENGTH (type); |
+ int regno = AARCH64_X0_REGNUM; |
+ |
+ while (len > 0) |
+ { |
+ regcache_cooked_write (regs, regno++, valbuf); |
+ len -= X_REGISTER_SIZE; |
+ valbuf += X_REGISTER_SIZE; |
+ } |
+ } |
+ } |
+ else if (is_hfa (type)) |
+ { |
+ int elements = TYPE_NFIELDS (type); |
+ struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0)); |
+ int len = TYPE_LENGTH (member_type); |
+ int i; |
+ |
+ for (i = 0; i < elements; i++) |
+ { |
+ int regno = AARCH64_V0_REGNUM + i; |
+ bfd_byte tmpbuf[MAX_REGISTER_SIZE]; |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, |
+ "write HFA return value element %d to %s\n", |
+ i + 1, |
+ gdbarch_register_name (gdbarch, regno)); |
+ |
+ memcpy (tmpbuf, valbuf, len); |
+ regcache_cooked_write (regs, regno, tmpbuf); |
+ valbuf += len; |
+ } |
+ } |
+ else |
+ { |
+ /* For a structure or union the behaviour is as if the value had |
+ been stored to word-aligned memory and then loaded into |
+ registers with 64-bit load instruction(s). */ |
+ int len = TYPE_LENGTH (type); |
+ int regno = AARCH64_X0_REGNUM; |
+ bfd_byte tmpbuf[X_REGISTER_SIZE]; |
+ |
+ while (len > 0) |
+ { |
+ memcpy (tmpbuf, valbuf, |
+ len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len); |
+ regcache_cooked_write (regs, regno++, tmpbuf); |
+ len -= X_REGISTER_SIZE; |
+ valbuf += X_REGISTER_SIZE; |
+ } |
+ } |
+} |
+ |
+/* Implement the "return_value" gdbarch method. */ |
+ |
+static enum return_value_convention |
+aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value, |
+ struct type *valtype, struct regcache *regcache, |
+ gdb_byte *readbuf, const gdb_byte *writebuf) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
+ || TYPE_CODE (valtype) == TYPE_CODE_UNION |
+ || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) |
+ { |
+ if (aarch64_return_in_memory (gdbarch, valtype)) |
+ { |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, "return value in memory\n"); |
+ return RETURN_VALUE_STRUCT_CONVENTION; |
+ } |
+ } |
+ |
+ if (writebuf) |
+ aarch64_store_return_value (valtype, regcache, writebuf); |
+ |
+ if (readbuf) |
+ aarch64_extract_return_value (valtype, regcache, readbuf); |
+ |
+ if (aarch64_debug) |
+ fprintf_unfiltered (gdb_stdlog, "return value in registers\n"); |
+ |
+ return RETURN_VALUE_REGISTER_CONVENTION; |
+} |
+ |
+/* Implement the "get_longjmp_target" gdbarch method. */ |
+ |
+static int |
+aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
+{ |
+ CORE_ADDR jb_addr; |
+ gdb_byte buf[X_REGISTER_SIZE]; |
+ struct gdbarch *gdbarch = get_frame_arch (frame); |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ |
+ jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM); |
+ |
+ if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, |
+ X_REGISTER_SIZE)) |
+ return 0; |
+ |
+ *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order); |
+ return 1; |
+} |
+ |
+ |
+/* Return the pseudo register name corresponding to register regnum. */ |
+ |
+static const char * |
+aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) |
+{ |
+ static const char *const q_name[] = |
+ { |
+ "q0", "q1", "q2", "q3", |
+ "q4", "q5", "q6", "q7", |
+ "q8", "q9", "q10", "q11", |
+ "q12", "q13", "q14", "q15", |
+ "q16", "q17", "q18", "q19", |
+ "q20", "q21", "q22", "q23", |
+ "q24", "q25", "q26", "q27", |
+ "q28", "q29", "q30", "q31", |
+ }; |
+ |
+ static const char *const d_name[] = |
+ { |
+ "d0", "d1", "d2", "d3", |
+ "d4", "d5", "d6", "d7", |
+ "d8", "d9", "d10", "d11", |
+ "d12", "d13", "d14", "d15", |
+ "d16", "d17", "d18", "d19", |
+ "d20", "d21", "d22", "d23", |
+ "d24", "d25", "d26", "d27", |
+ "d28", "d29", "d30", "d31", |
+ }; |
+ |
+ static const char *const s_name[] = |
+ { |
+ "s0", "s1", "s2", "s3", |
+ "s4", "s5", "s6", "s7", |
+ "s8", "s9", "s10", "s11", |
+ "s12", "s13", "s14", "s15", |
+ "s16", "s17", "s18", "s19", |
+ "s20", "s21", "s22", "s23", |
+ "s24", "s25", "s26", "s27", |
+ "s28", "s29", "s30", "s31", |
+ }; |
+ |
+ static const char *const h_name[] = |
+ { |
+ "h0", "h1", "h2", "h3", |
+ "h4", "h5", "h6", "h7", |
+ "h8", "h9", "h10", "h11", |
+ "h12", "h13", "h14", "h15", |
+ "h16", "h17", "h18", "h19", |
+ "h20", "h21", "h22", "h23", |
+ "h24", "h25", "h26", "h27", |
+ "h28", "h29", "h30", "h31", |
+ }; |
+ |
+ static const char *const b_name[] = |
+ { |
+ "b0", "b1", "b2", "b3", |
+ "b4", "b5", "b6", "b7", |
+ "b8", "b9", "b10", "b11", |
+ "b12", "b13", "b14", "b15", |
+ "b16", "b17", "b18", "b19", |
+ "b20", "b21", "b22", "b23", |
+ "b24", "b25", "b26", "b27", |
+ "b28", "b29", "b30", "b31", |
+ }; |
+ |
+ regnum -= gdbarch_num_regs (gdbarch); |
+ |
+ if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32) |
+ return q_name[regnum - AARCH64_Q0_REGNUM]; |
+ |
+ if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32) |
+ return d_name[regnum - AARCH64_D0_REGNUM]; |
+ |
+ if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32) |
+ return s_name[regnum - AARCH64_S0_REGNUM]; |
+ |
+ if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32) |
+ return h_name[regnum - AARCH64_H0_REGNUM]; |
+ |
+ if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32) |
+ return b_name[regnum - AARCH64_B0_REGNUM]; |
+ |
+ internal_error (__FILE__, __LINE__, |
+ _("aarch64_pseudo_register_name: bad register number %d"), |
+ regnum); |
+} |
+ |
+/* Implement the "pseudo_register_type" tdesc_arch_data method. */ |
+ |
+static struct type * |
+aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
+{ |
+ regnum -= gdbarch_num_regs (gdbarch); |
+ |
+ if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32) |
+ return aarch64_vnq_type (gdbarch); |
+ |
+ if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32) |
+ return aarch64_vnd_type (gdbarch); |
+ |
+ if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32) |
+ return aarch64_vns_type (gdbarch); |
+ |
+ if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32) |
+ return aarch64_vnh_type (gdbarch); |
+ |
+ if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32) |
+ return aarch64_vnb_type (gdbarch); |
+ |
+ internal_error (__FILE__, __LINE__, |
+ _("aarch64_pseudo_register_type: bad register number %d"), |
+ regnum); |
+} |
+ |
+/* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */ |
+ |
+static int |
+aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
+ struct reggroup *group) |
+{ |
+ regnum -= gdbarch_num_regs (gdbarch); |
+ |
+ if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32) |
+ return group == all_reggroup || group == vector_reggroup; |
+ else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32) |
+ return (group == all_reggroup || group == vector_reggroup |
+ || group == float_reggroup); |
+ else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32) |
+ return (group == all_reggroup || group == vector_reggroup |
+ || group == float_reggroup); |
+ else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32) |
+ return group == all_reggroup || group == vector_reggroup; |
+ else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32) |
+ return group == all_reggroup || group == vector_reggroup; |
+ |
+ return group == all_reggroup; |
+} |
+ |
+/* Implement the "pseudo_register_read_value" gdbarch method. */ |
+ |
+static struct value * |
+aarch64_pseudo_read_value (struct gdbarch *gdbarch, |
+ struct regcache *regcache, |
+ int regnum) |
+{ |
+ gdb_byte reg_buf[MAX_REGISTER_SIZE]; |
+ struct value *result_value; |
+ gdb_byte *buf; |
+ |
+ result_value = allocate_value (register_type (gdbarch, regnum)); |
+ VALUE_LVAL (result_value) = lval_register; |
+ VALUE_REGNUM (result_value) = regnum; |
+ buf = value_contents_raw (result_value); |
+ |
+ regnum -= gdbarch_num_regs (gdbarch); |
+ |
+ if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32) |
+ { |
+ enum register_status status; |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM; |
+ status = regcache_raw_read (regcache, v_regnum, reg_buf); |
+ if (status != REG_VALID) |
+ mark_value_bytes_unavailable (result_value, 0, |
+ TYPE_LENGTH (value_type (result_value))); |
+ else |
+ memcpy (buf, reg_buf, Q_REGISTER_SIZE); |
+ return result_value; |
+ } |
+ |
+ if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32) |
+ { |
+ enum register_status status; |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM; |
+ status = regcache_raw_read (regcache, v_regnum, reg_buf); |
+ if (status != REG_VALID) |
+ mark_value_bytes_unavailable (result_value, 0, |
+ TYPE_LENGTH (value_type (result_value))); |
+ else |
+ memcpy (buf, reg_buf, D_REGISTER_SIZE); |
+ return result_value; |
+ } |
+ |
+ if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32) |
+ { |
+ enum register_status status; |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM; |
+ status = regcache_raw_read (regcache, v_regnum, reg_buf); |
+ memcpy (buf, reg_buf, S_REGISTER_SIZE); |
+ return result_value; |
+ } |
+ |
+ if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32) |
+ { |
+ enum register_status status; |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM; |
+ status = regcache_raw_read (regcache, v_regnum, reg_buf); |
+ if (status != REG_VALID) |
+ mark_value_bytes_unavailable (result_value, 0, |
+ TYPE_LENGTH (value_type (result_value))); |
+ else |
+ memcpy (buf, reg_buf, H_REGISTER_SIZE); |
+ return result_value; |
+ } |
+ |
+ if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32) |
+ { |
+ enum register_status status; |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM; |
+ status = regcache_raw_read (regcache, v_regnum, reg_buf); |
+ if (status != REG_VALID) |
+ mark_value_bytes_unavailable (result_value, 0, |
+ TYPE_LENGTH (value_type (result_value))); |
+ else |
+ memcpy (buf, reg_buf, B_REGISTER_SIZE); |
+ return result_value; |
+ } |
+ |
+ gdb_assert_not_reached ("regnum out of bound"); |
+} |
+ |
+/* Implement the "pseudo_register_write" gdbarch method. */ |
+ |
+static void |
+aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, |
+ int regnum, const gdb_byte *buf) |
+{ |
+ gdb_byte reg_buf[MAX_REGISTER_SIZE]; |
+ |
+ /* Ensure the register buffer is zero, we want gdb writes of the |
+ various 'scalar' pseudo registers to behavior like architectural |
+ writes, register width bytes are written the remainder are set to |
+ zero. */ |
+ memset (reg_buf, 0, sizeof (reg_buf)); |
+ |
+ regnum -= gdbarch_num_regs (gdbarch); |
+ |
+ if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32) |
+ { |
+ /* pseudo Q registers */ |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM; |
+ memcpy (reg_buf, buf, Q_REGISTER_SIZE); |
+ regcache_raw_write (regcache, v_regnum, reg_buf); |
+ return; |
+ } |
+ |
+ if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32) |
+ { |
+ /* pseudo D registers */ |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM; |
+ memcpy (reg_buf, buf, D_REGISTER_SIZE); |
+ regcache_raw_write (regcache, v_regnum, reg_buf); |
+ return; |
+ } |
+ |
+ if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32) |
+ { |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM; |
+ memcpy (reg_buf, buf, S_REGISTER_SIZE); |
+ regcache_raw_write (regcache, v_regnum, reg_buf); |
+ return; |
+ } |
+ |
+ if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32) |
+ { |
+ /* pseudo H registers */ |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM; |
+ memcpy (reg_buf, buf, H_REGISTER_SIZE); |
+ regcache_raw_write (regcache, v_regnum, reg_buf); |
+ return; |
+ } |
+ |
+ if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32) |
+ { |
+ /* pseudo B registers */ |
+ unsigned v_regnum; |
+ |
+ v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM; |
+ memcpy (reg_buf, buf, B_REGISTER_SIZE); |
+ regcache_raw_write (regcache, v_regnum, reg_buf); |
+ return; |
+ } |
+ |
+ gdb_assert_not_reached ("regnum out of bound"); |
+} |
+ |
+/* Callback function for user_reg_add. */ |
+ |
+static struct value * |
+value_of_aarch64_user_reg (struct frame_info *frame, const void *baton) |
+{ |
+ const int *reg_p = baton; |
+ |
+ return value_of_register (*reg_p, frame); |
+} |
+ |
+ |
+/* Initialize the current architecture based on INFO. If possible, |
+ re-use an architecture from ARCHES, which is a list of |
+ architectures already created during this debugging session. |
+ |
+ Called e.g. at program startup, when reading a core file, and when |
+ reading a binary file. */ |
+ |
+static struct gdbarch * |
+aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
+{ |
+ struct gdbarch_tdep *tdep; |
+ struct gdbarch *gdbarch; |
+ struct gdbarch_list *best_arch; |
+ struct tdesc_arch_data *tdesc_data = NULL; |
+ const struct target_desc *tdesc = info.target_desc; |
+ int i; |
+ int have_fpa_registers = 1; |
+ int valid_p = 1; |
+ const struct tdesc_feature *feature; |
+ int num_regs = 0; |
+ int num_pseudo_regs = 0; |
+ |
+ /* Ensure we always have a target descriptor. */ |
+ if (!tdesc_has_registers (tdesc)) |
+ tdesc = tdesc_aarch64; |
+ |
+ gdb_assert (tdesc); |
+ |
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core"); |
+ |
+ if (feature == NULL) |
+ return NULL; |
+ |
+ tdesc_data = tdesc_data_alloc (); |
+ |
+ /* Validate the descriptor provides the mandatory core R registers |
+ and allocate their numbers. */ |
+ for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++) |
+ valid_p &= |
+ tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i, |
+ aarch64_r_register_names[i]); |
+ |
+ num_regs = AARCH64_X0_REGNUM + i; |
+ |
+ /* Look for the V registers. */ |
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu"); |
+ if (feature) |
+ { |
+ /* Validate the descriptor provides the mandatory V registers |
+ and allocate their numbers. */ |
+ for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++) |
+ valid_p &= |
+ tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i, |
+ aarch64_v_register_names[i]); |
+ |
+ num_regs = AARCH64_V0_REGNUM + i; |
+ |
+ num_pseudo_regs += 32; /* add the Qn scalar register pseudos */ |
+ num_pseudo_regs += 32; /* add the Dn scalar register pseudos */ |
+ num_pseudo_regs += 32; /* add the Sn scalar register pseudos */ |
+ num_pseudo_regs += 32; /* add the Hn scalar register pseudos */ |
+ num_pseudo_regs += 32; /* add the Bn scalar register pseudos */ |
+ } |
+ |
+ if (!valid_p) |
+ { |
+ tdesc_data_cleanup (tdesc_data); |
+ return NULL; |
+ } |
+ |
+ /* AArch64 code is always little-endian. */ |
+ info.byte_order_for_code = BFD_ENDIAN_LITTLE; |
+ |
+ /* If there is already a candidate, use it. */ |
+ for (best_arch = gdbarch_list_lookup_by_info (arches, &info); |
+ best_arch != NULL; |
+ best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) |
+ { |
+ /* Found a match. */ |
+ break; |
+ } |
+ |
+ if (best_arch != NULL) |
+ { |
+ if (tdesc_data != NULL) |
+ tdesc_data_cleanup (tdesc_data); |
+ return best_arch->gdbarch; |
+ } |
+ |
+ tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); |
+ gdbarch = gdbarch_alloc (&info, tdep); |
+ |
+ /* This should be low enough for everything. */ |
+ tdep->lowest_pc = 0x20; |
+ tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
+ tdep->jb_elt_size = 8; |
+ |
+ set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call); |
+ set_gdbarch_frame_align (gdbarch, aarch64_frame_align); |
+ |
+ /* Frame handling. */ |
+ set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id); |
+ set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc); |
+ set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp); |
+ |
+ /* Advance PC across function entry code. */ |
+ set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue); |
+ |
+ /* The stack grows downward. */ |
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
+ |
+ /* Breakpoint manipulation. */ |
+ set_gdbarch_breakpoint_from_pc (gdbarch, aarch64_breakpoint_from_pc); |
+ set_gdbarch_cannot_step_breakpoint (gdbarch, 1); |
+ set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
+ |
+ /* Information about registers, etc. */ |
+ set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM); |
+ set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM); |
+ set_gdbarch_num_regs (gdbarch, num_regs); |
+ |
+ set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs); |
+ set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value); |
+ set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write); |
+ set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name); |
+ set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type); |
+ set_tdesc_pseudo_register_reggroup_p (gdbarch, |
+ aarch64_pseudo_register_reggroup_p); |
+ |
+ /* ABI */ |
+ set_gdbarch_short_bit (gdbarch, 16); |
+ set_gdbarch_int_bit (gdbarch, 32); |
+ set_gdbarch_float_bit (gdbarch, 32); |
+ set_gdbarch_double_bit (gdbarch, 64); |
+ set_gdbarch_long_double_bit (gdbarch, 128); |
+ set_gdbarch_long_bit (gdbarch, 64); |
+ set_gdbarch_long_long_bit (gdbarch, 64); |
+ set_gdbarch_ptr_bit (gdbarch, 64); |
+ set_gdbarch_char_signed (gdbarch, 0); |
+ set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
+ set_gdbarch_double_format (gdbarch, floatformats_ieee_double); |
+ set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
+ |
+ /* Internal <-> external register number maps. */ |
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum); |
+ |
+ /* Returning results. */ |
+ set_gdbarch_return_value (gdbarch, aarch64_return_value); |
+ |
+ /* Disassembly. */ |
+ set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn); |
+ |
+ /* Virtual tables. */ |
+ set_gdbarch_vbit_in_delta (gdbarch, 1); |
+ |
+ /* Hook in the ABI-specific overrides, if they have been registered. */ |
+ info.target_desc = tdesc; |
+ info.tdep_info = (void *) tdesc_data; |
+ gdbarch_init_osabi (info, gdbarch); |
+ |
+ dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg); |
+ |
+ /* Add some default predicates. */ |
+ frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind); |
+ dwarf2_append_unwinders (gdbarch); |
+ frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind); |
+ |
+ frame_base_set_default (gdbarch, &aarch64_normal_base); |
+ |
+ /* Now we have tuned the configuration, set a few final things, |
+ based on what the OS ABI has told us. */ |
+ |
+ if (tdep->jb_pc >= 0) |
+ set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target); |
+ |
+ tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
+ |
+ /* Add standard register aliases. */ |
+ for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++) |
+ user_reg_add (gdbarch, aarch64_register_aliases[i].name, |
+ value_of_aarch64_user_reg, |
+ &aarch64_register_aliases[i].regnum); |
+ |
+ return gdbarch; |
+} |
+ |
+static void |
+aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
+{ |
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
+ |
+ if (tdep == NULL) |
+ return; |
+ |
+ fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"), |
+ paddress (gdbarch, tdep->lowest_pc)); |
+} |
+ |
+/* Suppress warning from -Wmissing-prototypes. */ |
+extern initialize_file_ftype _initialize_aarch64_tdep; |
+ |
+void |
+_initialize_aarch64_tdep (void) |
+{ |
+ gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init, |
+ aarch64_dump_tdep); |
+ |
+ initialize_tdesc_aarch64 (); |
+ |
+ /* Debug this file's internals. */ |
+ add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\ |
+Set AArch64 debugging."), _("\ |
+Show AArch64 debugging."), _("\ |
+When on, AArch64 specific debugging is enabled."), |
+ NULL, |
+ show_aarch64_debug, |
+ &setdebuglist, &showdebuglist); |
+} |