| Index: bfd/doc/syms.texi
|
| diff --git a/bfd/doc/syms.texi b/bfd/doc/syms.texi
|
| deleted file mode 100644
|
| index 3d6638063e4a9072d4b17d751b2f32f2ff759cf4..0000000000000000000000000000000000000000
|
| --- a/bfd/doc/syms.texi
|
| +++ /dev/null
|
| @@ -1,480 +0,0 @@
|
| -@section Symbols
|
| -BFD tries to maintain as much symbol information as it can when
|
| -it moves information from file to file. BFD passes information
|
| -to applications though the @code{asymbol} structure. When the
|
| -application requests the symbol table, BFD reads the table in
|
| -the native form and translates parts of it into the internal
|
| -format. To maintain more than the information passed to
|
| -applications, some targets keep some information ``behind the
|
| -scenes'' in a structure only the particular back end knows
|
| -about. For example, the coff back end keeps the original
|
| -symbol table structure as well as the canonical structure when
|
| -a BFD is read in. On output, the coff back end can reconstruct
|
| -the output symbol table so that no information is lost, even
|
| -information unique to coff which BFD doesn't know or
|
| -understand. If a coff symbol table were read, but were written
|
| -through an a.out back end, all the coff specific information
|
| -would be lost. The symbol table of a BFD
|
| -is not necessarily read in until a canonicalize request is
|
| -made. Then the BFD back end fills in a table provided by the
|
| -application with pointers to the canonical information. To
|
| -output symbols, the application provides BFD with a table of
|
| -pointers to pointers to @code{asymbol}s. This allows applications
|
| -like the linker to output a symbol as it was read, since the ``behind
|
| -the scenes'' information will be still available.
|
| -@menu
|
| -* Reading Symbols::
|
| -* Writing Symbols::
|
| -* Mini Symbols::
|
| -* typedef asymbol::
|
| -* symbol handling functions::
|
| -@end menu
|
| -
|
| -@node Reading Symbols, Writing Symbols, Symbols, Symbols
|
| -@subsection Reading symbols
|
| -There are two stages to reading a symbol table from a BFD:
|
| -allocating storage, and the actual reading process. This is an
|
| -excerpt from an application which reads the symbol table:
|
| -
|
| -@example
|
| - long storage_needed;
|
| - asymbol **symbol_table;
|
| - long number_of_symbols;
|
| - long i;
|
| -
|
| - storage_needed = bfd_get_symtab_upper_bound (abfd);
|
| -
|
| - if (storage_needed < 0)
|
| - FAIL
|
| -
|
| - if (storage_needed == 0)
|
| - return;
|
| -
|
| - symbol_table = xmalloc (storage_needed);
|
| - ...
|
| - number_of_symbols =
|
| - bfd_canonicalize_symtab (abfd, symbol_table);
|
| -
|
| - if (number_of_symbols < 0)
|
| - FAIL
|
| -
|
| - for (i = 0; i < number_of_symbols; i++)
|
| - process_symbol (symbol_table[i]);
|
| -@end example
|
| -
|
| -All storage for the symbols themselves is in an objalloc
|
| -connected to the BFD; it is freed when the BFD is closed.
|
| -
|
| -@node Writing Symbols, Mini Symbols, Reading Symbols, Symbols
|
| -@subsection Writing symbols
|
| -Writing of a symbol table is automatic when a BFD open for
|
| -writing is closed. The application attaches a vector of
|
| -pointers to pointers to symbols to the BFD being written, and
|
| -fills in the symbol count. The close and cleanup code reads
|
| -through the table provided and performs all the necessary
|
| -operations. The BFD output code must always be provided with an
|
| -``owned'' symbol: one which has come from another BFD, or one
|
| -which has been created using @code{bfd_make_empty_symbol}. Here is an
|
| -example showing the creation of a symbol table with only one element:
|
| -
|
| -@example
|
| - #include "sysdep.h"
|
| - #include "bfd.h"
|
| - int main (void)
|
| - @{
|
| - bfd *abfd;
|
| - asymbol *ptrs[2];
|
| - asymbol *new;
|
| -
|
| - abfd = bfd_openw ("foo","a.out-sunos-big");
|
| - bfd_set_format (abfd, bfd_object);
|
| - new = bfd_make_empty_symbol (abfd);
|
| - new->name = "dummy_symbol";
|
| - new->section = bfd_make_section_old_way (abfd, ".text");
|
| - new->flags = BSF_GLOBAL;
|
| - new->value = 0x12345;
|
| -
|
| - ptrs[0] = new;
|
| - ptrs[1] = 0;
|
| -
|
| - bfd_set_symtab (abfd, ptrs, 1);
|
| - bfd_close (abfd);
|
| - return 0;
|
| - @}
|
| -
|
| - ./makesym
|
| - nm foo
|
| - 00012345 A dummy_symbol
|
| -@end example
|
| -
|
| -Many formats cannot represent arbitrary symbol information; for
|
| -instance, the @code{a.out} object format does not allow an
|
| -arbitrary number of sections. A symbol pointing to a section
|
| -which is not one of @code{.text}, @code{.data} or @code{.bss} cannot
|
| -be described.
|
| -
|
| -@node Mini Symbols, typedef asymbol, Writing Symbols, Symbols
|
| -@subsection Mini Symbols
|
| -Mini symbols provide read-only access to the symbol table.
|
| -They use less memory space, but require more time to access.
|
| -They can be useful for tools like nm or objdump, which may
|
| -have to handle symbol tables of extremely large executables.
|
| -
|
| -The @code{bfd_read_minisymbols} function will read the symbols
|
| -into memory in an internal form. It will return a @code{void *}
|
| -pointer to a block of memory, a symbol count, and the size of
|
| -each symbol. The pointer is allocated using @code{malloc}, and
|
| -should be freed by the caller when it is no longer needed.
|
| -
|
| -The function @code{bfd_minisymbol_to_symbol} will take a pointer
|
| -to a minisymbol, and a pointer to a structure returned by
|
| -@code{bfd_make_empty_symbol}, and return a @code{asymbol} structure.
|
| -The return value may or may not be the same as the value from
|
| -@code{bfd_make_empty_symbol} which was passed in.
|
| -
|
| -
|
| -@node typedef asymbol, symbol handling functions, Mini Symbols, Symbols
|
| -@subsection typedef asymbol
|
| -An @code{asymbol} has the form:
|
| -
|
| -
|
| -@example
|
| -
|
| -typedef struct bfd_symbol
|
| -@{
|
| - /* A pointer to the BFD which owns the symbol. This information
|
| - is necessary so that a back end can work out what additional
|
| - information (invisible to the application writer) is carried
|
| - with the symbol.
|
| -
|
| - This field is *almost* redundant, since you can use section->owner
|
| - instead, except that some symbols point to the global sections
|
| - bfd_@{abs,com,und@}_section. This could be fixed by making
|
| - these globals be per-bfd (or per-target-flavor). FIXME. */
|
| - struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */
|
| -
|
| - /* The text of the symbol. The name is left alone, and not copied; the
|
| - application may not alter it. */
|
| - const char *name;
|
| -
|
| - /* The value of the symbol. This really should be a union of a
|
| - numeric value with a pointer, since some flags indicate that
|
| - a pointer to another symbol is stored here. */
|
| - symvalue value;
|
| -
|
| - /* Attributes of a symbol. */
|
| -#define BSF_NO_FLAGS 0x00
|
| -
|
| - /* The symbol has local scope; @code{static} in @code{C}. The value
|
| - is the offset into the section of the data. */
|
| -#define BSF_LOCAL (1 << 0)
|
| -
|
| - /* The symbol has global scope; initialized data in @code{C}. The
|
| - value is the offset into the section of the data. */
|
| -#define BSF_GLOBAL (1 << 1)
|
| -
|
| - /* The symbol has global scope and is exported. The value is
|
| - the offset into the section of the data. */
|
| -#define BSF_EXPORT BSF_GLOBAL /* No real difference. */
|
| -
|
| - /* A normal C symbol would be one of:
|
| - @code{BSF_LOCAL}, @code{BSF_COMMON}, @code{BSF_UNDEFINED} or
|
| - @code{BSF_GLOBAL}. */
|
| -
|
| - /* The symbol is a debugging record. The value has an arbitrary
|
| - meaning, unless BSF_DEBUGGING_RELOC is also set. */
|
| -#define BSF_DEBUGGING (1 << 2)
|
| -
|
| - /* The symbol denotes a function entry point. Used in ELF,
|
| - perhaps others someday. */
|
| -#define BSF_FUNCTION (1 << 3)
|
| -
|
| - /* Used by the linker. */
|
| -#define BSF_KEEP (1 << 5)
|
| -#define BSF_KEEP_G (1 << 6)
|
| -
|
| - /* A weak global symbol, overridable without warnings by
|
| - a regular global symbol of the same name. */
|
| -#define BSF_WEAK (1 << 7)
|
| -
|
| - /* This symbol was created to point to a section, e.g. ELF's
|
| - STT_SECTION symbols. */
|
| -#define BSF_SECTION_SYM (1 << 8)
|
| -
|
| - /* The symbol used to be a common symbol, but now it is
|
| - allocated. */
|
| -#define BSF_OLD_COMMON (1 << 9)
|
| -
|
| - /* In some files the type of a symbol sometimes alters its
|
| - location in an output file - ie in coff a @code{ISFCN} symbol
|
| - which is also @code{C_EXT} symbol appears where it was
|
| - declared and not at the end of a section. This bit is set
|
| - by the target BFD part to convey this information. */
|
| -#define BSF_NOT_AT_END (1 << 10)
|
| -
|
| - /* Signal that the symbol is the label of constructor section. */
|
| -#define BSF_CONSTRUCTOR (1 << 11)
|
| -
|
| - /* Signal that the symbol is a warning symbol. The name is a
|
| - warning. The name of the next symbol is the one to warn about;
|
| - if a reference is made to a symbol with the same name as the next
|
| - symbol, a warning is issued by the linker. */
|
| -#define BSF_WARNING (1 << 12)
|
| -
|
| - /* Signal that the symbol is indirect. This symbol is an indirect
|
| - pointer to the symbol with the same name as the next symbol. */
|
| -#define BSF_INDIRECT (1 << 13)
|
| -
|
| - /* BSF_FILE marks symbols that contain a file name. This is used
|
| - for ELF STT_FILE symbols. */
|
| -#define BSF_FILE (1 << 14)
|
| -
|
| - /* Symbol is from dynamic linking information. */
|
| -#define BSF_DYNAMIC (1 << 15)
|
| -
|
| - /* The symbol denotes a data object. Used in ELF, and perhaps
|
| - others someday. */
|
| -#define BSF_OBJECT (1 << 16)
|
| -
|
| - /* This symbol is a debugging symbol. The value is the offset
|
| - into the section of the data. BSF_DEBUGGING should be set
|
| - as well. */
|
| -#define BSF_DEBUGGING_RELOC (1 << 17)
|
| -
|
| - /* This symbol is thread local. Used in ELF. */
|
| -#define BSF_THREAD_LOCAL (1 << 18)
|
| -
|
| - /* This symbol represents a complex relocation expression,
|
| - with the expression tree serialized in the symbol name. */
|
| -#define BSF_RELC (1 << 19)
|
| -
|
| - /* This symbol represents a signed complex relocation expression,
|
| - with the expression tree serialized in the symbol name. */
|
| -#define BSF_SRELC (1 << 20)
|
| -
|
| - /* This symbol was created by bfd_get_synthetic_symtab. */
|
| -#define BSF_SYNTHETIC (1 << 21)
|
| -
|
| - /* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
|
| - The dynamic linker will compute the value of this symbol by
|
| - calling the function that it points to. BSF_FUNCTION must
|
| - also be also set. */
|
| -#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
|
| - /* This symbol is a globally unique data object. The dynamic linker
|
| - will make sure that in the entire process there is just one symbol
|
| - with this name and type in use. BSF_OBJECT must also be set. */
|
| -#define BSF_GNU_UNIQUE (1 << 23)
|
| -
|
| - flagword flags;
|
| -
|
| - /* A pointer to the section to which this symbol is
|
| - relative. This will always be non NULL, there are special
|
| - sections for undefined and absolute symbols. */
|
| - struct bfd_section *section;
|
| -
|
| - /* Back end special data. */
|
| - union
|
| - @{
|
| - void *p;
|
| - bfd_vma i;
|
| - @}
|
| - udata;
|
| -@}
|
| -asymbol;
|
| -
|
| -@end example
|
| -
|
| -@node symbol handling functions, , typedef asymbol, Symbols
|
| -@subsection Symbol handling functions
|
| -
|
| -
|
| -@findex bfd_get_symtab_upper_bound
|
| -@subsubsection @code{bfd_get_symtab_upper_bound}
|
| -@strong{Description}@*
|
| -Return the number of bytes required to store a vector of pointers
|
| -to @code{asymbols} for all the symbols in the BFD @var{abfd},
|
| -including a terminal NULL pointer. If there are no symbols in
|
| -the BFD, then return 0. If an error occurs, return -1.
|
| -@example
|
| -#define bfd_get_symtab_upper_bound(abfd) \
|
| - BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
|
| -
|
| -@end example
|
| -
|
| -@findex bfd_is_local_label
|
| -@subsubsection @code{bfd_is_local_label}
|
| -@strong{Synopsis}
|
| -@example
|
| -bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
|
| -@end example
|
| -@strong{Description}@*
|
| -Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
|
| -a compiler generated local label, else return FALSE.
|
| -
|
| -@findex bfd_is_local_label_name
|
| -@subsubsection @code{bfd_is_local_label_name}
|
| -@strong{Synopsis}
|
| -@example
|
| -bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
|
| -@end example
|
| -@strong{Description}@*
|
| -Return TRUE if a symbol with the name @var{name} in the BFD
|
| -@var{abfd} is a compiler generated local label, else return
|
| -FALSE. This just checks whether the name has the form of a
|
| -local label.
|
| -@example
|
| -#define bfd_is_local_label_name(abfd, name) \
|
| - BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
|
| -
|
| -@end example
|
| -
|
| -@findex bfd_is_target_special_symbol
|
| -@subsubsection @code{bfd_is_target_special_symbol}
|
| -@strong{Synopsis}
|
| -@example
|
| -bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
|
| -@end example
|
| -@strong{Description}@*
|
| -Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
|
| -special to the particular target represented by the BFD. Such symbols
|
| -should normally not be mentioned to the user.
|
| -@example
|
| -#define bfd_is_target_special_symbol(abfd, sym) \
|
| - BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
|
| -
|
| -@end example
|
| -
|
| -@findex bfd_canonicalize_symtab
|
| -@subsubsection @code{bfd_canonicalize_symtab}
|
| -@strong{Description}@*
|
| -Read the symbols from the BFD @var{abfd}, and fills in
|
| -the vector @var{location} with pointers to the symbols and
|
| -a trailing NULL.
|
| -Return the actual number of symbol pointers, not
|
| -including the NULL.
|
| -@example
|
| -#define bfd_canonicalize_symtab(abfd, location) \
|
| - BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
|
| -
|
| -@end example
|
| -
|
| -@findex bfd_set_symtab
|
| -@subsubsection @code{bfd_set_symtab}
|
| -@strong{Synopsis}
|
| -@example
|
| -bfd_boolean bfd_set_symtab
|
| - (bfd *abfd, asymbol **location, unsigned int count);
|
| -@end example
|
| -@strong{Description}@*
|
| -Arrange that when the output BFD @var{abfd} is closed,
|
| -the table @var{location} of @var{count} pointers to symbols
|
| -will be written.
|
| -
|
| -@findex bfd_print_symbol_vandf
|
| -@subsubsection @code{bfd_print_symbol_vandf}
|
| -@strong{Synopsis}
|
| -@example
|
| -void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
|
| -@end example
|
| -@strong{Description}@*
|
| -Print the value and flags of the @var{symbol} supplied to the
|
| -stream @var{file}.
|
| -
|
| -@findex bfd_make_empty_symbol
|
| -@subsubsection @code{bfd_make_empty_symbol}
|
| -@strong{Description}@*
|
| -Create a new @code{asymbol} structure for the BFD @var{abfd}
|
| -and return a pointer to it.
|
| -
|
| -This routine is necessary because each back end has private
|
| -information surrounding the @code{asymbol}. Building your own
|
| -@code{asymbol} and pointing to it will not create the private
|
| -information, and will cause problems later on.
|
| -@example
|
| -#define bfd_make_empty_symbol(abfd) \
|
| - BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
|
| -
|
| -@end example
|
| -
|
| -@findex _bfd_generic_make_empty_symbol
|
| -@subsubsection @code{_bfd_generic_make_empty_symbol}
|
| -@strong{Synopsis}
|
| -@example
|
| -asymbol *_bfd_generic_make_empty_symbol (bfd *);
|
| -@end example
|
| -@strong{Description}@*
|
| -Create a new @code{asymbol} structure for the BFD @var{abfd}
|
| -and return a pointer to it. Used by core file routines,
|
| -binary back-end and anywhere else where no private info
|
| -is needed.
|
| -
|
| -@findex bfd_make_debug_symbol
|
| -@subsubsection @code{bfd_make_debug_symbol}
|
| -@strong{Description}@*
|
| -Create a new @code{asymbol} structure for the BFD @var{abfd},
|
| -to be used as a debugging symbol. Further details of its use have
|
| -yet to be worked out.
|
| -@example
|
| -#define bfd_make_debug_symbol(abfd,ptr,size) \
|
| - BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
|
| -
|
| -@end example
|
| -
|
| -@findex bfd_decode_symclass
|
| -@subsubsection @code{bfd_decode_symclass}
|
| -@strong{Description}@*
|
| -Return a character corresponding to the symbol
|
| -class of @var{symbol}, or '?' for an unknown class.
|
| -
|
| -@strong{Synopsis}
|
| -@example
|
| -int bfd_decode_symclass (asymbol *symbol);
|
| -@end example
|
| -@findex bfd_is_undefined_symclass
|
| -@subsubsection @code{bfd_is_undefined_symclass}
|
| -@strong{Description}@*
|
| -Returns non-zero if the class symbol returned by
|
| -bfd_decode_symclass represents an undefined symbol.
|
| -Returns zero otherwise.
|
| -
|
| -@strong{Synopsis}
|
| -@example
|
| -bfd_boolean bfd_is_undefined_symclass (int symclass);
|
| -@end example
|
| -@findex bfd_symbol_info
|
| -@subsubsection @code{bfd_symbol_info}
|
| -@strong{Description}@*
|
| -Fill in the basic info about symbol that nm needs.
|
| -Additional info may be added by the back-ends after
|
| -calling this function.
|
| -
|
| -@strong{Synopsis}
|
| -@example
|
| -void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
|
| -@end example
|
| -@findex bfd_copy_private_symbol_data
|
| -@subsubsection @code{bfd_copy_private_symbol_data}
|
| -@strong{Synopsis}
|
| -@example
|
| -bfd_boolean bfd_copy_private_symbol_data
|
| - (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
|
| -@end example
|
| -@strong{Description}@*
|
| -Copy private symbol information from @var{isym} in the BFD
|
| -@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
|
| -Return @code{TRUE} on success, @code{FALSE} on error. Possible error
|
| -returns are:
|
| -
|
| -@itemize @bullet
|
| -
|
| -@item
|
| -@code{bfd_error_no_memory} -
|
| -Not enough memory exists to create private data for @var{osec}.
|
| -@end itemize
|
| -@example
|
| -#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
|
| - BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
|
| - (ibfd, isymbol, obfd, osymbol))
|
| -
|
| -@end example
|
| -
|
|
|