Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(523)

Unified Diff: gdb/s390-tdep.c

Issue 124383005: GDB 7.6.50 (Closed) Base URL: http://git.chromium.org/native_client/nacl-gdb.git@upstream
Patch Set: Created 6 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « gdb/s390-tdep.h ('k') | gdb/score-tdep.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: gdb/s390-tdep.c
diff --git a/gdb/s390-tdep.c b/gdb/s390-tdep.c
deleted file mode 100644
index 620eaea7d58b925408d1f519e3c365d62c6210df..0000000000000000000000000000000000000000
--- a/gdb/s390-tdep.c
+++ /dev/null
@@ -1,3331 +0,0 @@
-/* Target-dependent code for GDB, the GNU debugger.
-
- Copyright (C) 2001-2012 Free Software Foundation, Inc.
-
- Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
- for IBM Deutschland Entwicklung GmbH, IBM Corporation.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-#include "defs.h"
-#include "arch-utils.h"
-#include "frame.h"
-#include "inferior.h"
-#include "symtab.h"
-#include "target.h"
-#include "gdbcore.h"
-#include "gdbcmd.h"
-#include "objfiles.h"
-#include "floatformat.h"
-#include "regcache.h"
-#include "trad-frame.h"
-#include "frame-base.h"
-#include "frame-unwind.h"
-#include "dwarf2-frame.h"
-#include "reggroups.h"
-#include "regset.h"
-#include "value.h"
-#include "gdb_assert.h"
-#include "dis-asm.h"
-#include "solib-svr4.h"
-#include "prologue-value.h"
-#include "linux-tdep.h"
-#include "s390-tdep.h"
-
-#include "stap-probe.h"
-#include "ax.h"
-#include "ax-gdb.h"
-#include "user-regs.h"
-#include "cli/cli-utils.h"
-#include <ctype.h>
-
-#include "features/s390-linux32.c"
-#include "features/s390-linux32v1.c"
-#include "features/s390-linux32v2.c"
-#include "features/s390-linux64.c"
-#include "features/s390-linux64v1.c"
-#include "features/s390-linux64v2.c"
-#include "features/s390x-linux64.c"
-#include "features/s390x-linux64v1.c"
-#include "features/s390x-linux64v2.c"
-
-/* The tdep structure. */
-
-struct gdbarch_tdep
-{
- /* ABI version. */
- enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
-
- /* Pseudo register numbers. */
- int gpr_full_regnum;
- int pc_regnum;
- int cc_regnum;
-
- /* Core file register sets. */
- const struct regset *gregset;
- int sizeof_gregset;
-
- const struct regset *fpregset;
- int sizeof_fpregset;
-};
-
-
-/* ABI call-saved register information. */
-
-static int
-s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- switch (tdep->abi)
- {
- case ABI_LINUX_S390:
- if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
- || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
- || regnum == S390_A0_REGNUM)
- return 1;
-
- break;
-
- case ABI_LINUX_ZSERIES:
- if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
- || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
- || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
- return 1;
-
- break;
- }
-
- return 0;
-}
-
-static int
-s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
-{
- /* The last-break address is read-only. */
- return regnum == S390_LAST_BREAK_REGNUM;
-}
-
-static void
-s390_write_pc (struct regcache *regcache, CORE_ADDR pc)
-{
- struct gdbarch *gdbarch = get_regcache_arch (regcache);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
-
- /* Set special SYSTEM_CALL register to 0 to prevent the kernel from
- messing with the PC we just installed, if we happen to be within
- an interrupted system call that the kernel wants to restart.
-
- Note that after we return from the dummy call, the SYSTEM_CALL and
- ORIG_R2 registers will be automatically restored, and the kernel
- continues to restart the system call at this point. */
- if (register_size (gdbarch, S390_SYSTEM_CALL_REGNUM) > 0)
- regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0);
-}
-
-
-/* DWARF Register Mapping. */
-
-static int s390_dwarf_regmap[] =
-{
- /* General Purpose Registers. */
- S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
- S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
- S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
- S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
-
- /* Floating Point Registers. */
- S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
- S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
- S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
- S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
-
- /* Control Registers (not mapped). */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
-
- /* Access Registers. */
- S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
- S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
- S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
- S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
-
- /* Program Status Word. */
- S390_PSWM_REGNUM,
- S390_PSWA_REGNUM,
-
- /* GPR Lower Half Access. */
- S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
- S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
- S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
- S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
-
- /* GNU/Linux-specific registers (not mapped). */
- -1, -1, -1,
-};
-
-/* Convert DWARF register number REG to the appropriate register
- number used by GDB. */
-static int
-s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
- GPRs. Note that call frame information still refers to the 32-bit
- lower halves, because s390_adjust_frame_regnum uses register numbers
- 66 .. 81 to access GPRs. */
- if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
- return tdep->gpr_full_regnum + reg;
-
- if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
- return s390_dwarf_regmap[reg];
-
- warning (_("Unmapped DWARF Register #%d encountered."), reg);
- return -1;
-}
-
-/* Translate a .eh_frame register to DWARF register, or adjust a
- .debug_frame register. */
-static int
-s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
-{
- /* See s390_dwarf_reg_to_regnum for comments. */
- return (num >= 0 && num < 16)? num + 66 : num;
-}
-
-
-/* Pseudo registers. */
-
-static const char *
-s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (regnum == tdep->pc_regnum)
- return "pc";
-
- if (regnum == tdep->cc_regnum)
- return "cc";
-
- if (tdep->gpr_full_regnum != -1
- && regnum >= tdep->gpr_full_regnum
- && regnum < tdep->gpr_full_regnum + 16)
- {
- static const char *full_name[] = {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
- };
- return full_name[regnum - tdep->gpr_full_regnum];
- }
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static struct type *
-s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (regnum == tdep->pc_regnum)
- return builtin_type (gdbarch)->builtin_func_ptr;
-
- if (regnum == tdep->cc_regnum)
- return builtin_type (gdbarch)->builtin_int;
-
- if (tdep->gpr_full_regnum != -1
- && regnum >= tdep->gpr_full_regnum
- && regnum < tdep->gpr_full_regnum + 16)
- return builtin_type (gdbarch)->builtin_uint64;
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static enum register_status
-s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
- int regnum, gdb_byte *buf)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int regsize = register_size (gdbarch, regnum);
- ULONGEST val;
-
- if (regnum == tdep->pc_regnum)
- {
- enum register_status status;
-
- status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
- if (status == REG_VALID)
- {
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- val &= 0x7fffffff;
- store_unsigned_integer (buf, regsize, byte_order, val);
- }
- return status;
- }
-
- if (regnum == tdep->cc_regnum)
- {
- enum register_status status;
-
- status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
- if (status == REG_VALID)
- {
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- val = (val >> 12) & 3;
- else
- val = (val >> 44) & 3;
- store_unsigned_integer (buf, regsize, byte_order, val);
- }
- return status;
- }
-
- if (tdep->gpr_full_regnum != -1
- && regnum >= tdep->gpr_full_regnum
- && regnum < tdep->gpr_full_regnum + 16)
- {
- enum register_status status;
- ULONGEST val_upper;
-
- regnum -= tdep->gpr_full_regnum;
-
- status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
- if (status == REG_VALID)
- status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
- &val_upper);
- if (status == REG_VALID)
- {
- val |= val_upper << 32;
- store_unsigned_integer (buf, regsize, byte_order, val);
- }
- return status;
- }
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static void
-s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
- int regnum, const gdb_byte *buf)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int regsize = register_size (gdbarch, regnum);
- ULONGEST val, psw;
-
- if (regnum == tdep->pc_regnum)
- {
- val = extract_unsigned_integer (buf, regsize, byte_order);
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- {
- regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
- val = (psw & 0x80000000) | (val & 0x7fffffff);
- }
- regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
- return;
- }
-
- if (regnum == tdep->cc_regnum)
- {
- val = extract_unsigned_integer (buf, regsize, byte_order);
- regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
- else
- val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
- regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
- return;
- }
-
- if (tdep->gpr_full_regnum != -1
- && regnum >= tdep->gpr_full_regnum
- && regnum < tdep->gpr_full_regnum + 16)
- {
- regnum -= tdep->gpr_full_regnum;
- val = extract_unsigned_integer (buf, regsize, byte_order);
- regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
- val & 0xffffffff);
- regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
- val >> 32);
- return;
- }
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-/* 'float' values are stored in the upper half of floating-point
- registers, even though we are otherwise a big-endian platform. */
-
-static struct value *
-s390_value_from_register (struct type *type, int regnum,
- struct frame_info *frame)
-{
- struct value *value = default_value_from_register (type, regnum, frame);
- int len = TYPE_LENGTH (check_typedef (type));
-
- if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
- set_value_offset (value, 0);
-
- return value;
-}
-
-/* Register groups. */
-
-static int
-s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
- struct reggroup *group)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- /* We usually save/restore the whole PSW, which includes PC and CC.
- However, some older gdbservers may not support saving/restoring
- the whole PSW yet, and will return an XML register description
- excluding those from the save/restore register groups. In those
- cases, we still need to explicitly save/restore PC and CC in order
- to push or pop frames. Since this doesn't hurt anything if we
- already save/restore the whole PSW (it's just redundant), we add
- PC and CC at this point unconditionally. */
- if (group == save_reggroup || group == restore_reggroup)
- return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
-
- return default_register_reggroup_p (gdbarch, regnum, group);
-}
-
-
-/* Core file register sets. */
-
-int s390_regmap_gregset[S390_NUM_REGS] =
-{
- /* Program Status Word. */
- 0x00, 0x04,
- /* General Purpose Registers. */
- 0x08, 0x0c, 0x10, 0x14,
- 0x18, 0x1c, 0x20, 0x24,
- 0x28, 0x2c, 0x30, 0x34,
- 0x38, 0x3c, 0x40, 0x44,
- /* Access Registers. */
- 0x48, 0x4c, 0x50, 0x54,
- 0x58, 0x5c, 0x60, 0x64,
- 0x68, 0x6c, 0x70, 0x74,
- 0x78, 0x7c, 0x80, 0x84,
- /* Floating Point Control Word. */
- -1,
- /* Floating Point Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GPR Uppper Halves. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GNU/Linux-specific optional "registers". */
- 0x88, -1, -1,
-};
-
-int s390x_regmap_gregset[S390_NUM_REGS] =
-{
- /* Program Status Word. */
- 0x00, 0x08,
- /* General Purpose Registers. */
- 0x10, 0x18, 0x20, 0x28,
- 0x30, 0x38, 0x40, 0x48,
- 0x50, 0x58, 0x60, 0x68,
- 0x70, 0x78, 0x80, 0x88,
- /* Access Registers. */
- 0x90, 0x94, 0x98, 0x9c,
- 0xa0, 0xa4, 0xa8, 0xac,
- 0xb0, 0xb4, 0xb8, 0xbc,
- 0xc0, 0xc4, 0xc8, 0xcc,
- /* Floating Point Control Word. */
- -1,
- /* Floating Point Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GPR Uppper Halves. */
- 0x10, 0x18, 0x20, 0x28,
- 0x30, 0x38, 0x40, 0x48,
- 0x50, 0x58, 0x60, 0x68,
- 0x70, 0x78, 0x80, 0x88,
- /* GNU/Linux-specific optional "registers". */
- 0xd0, -1, -1,
-};
-
-int s390_regmap_fpregset[S390_NUM_REGS] =
-{
- /* Program Status Word. */
- -1, -1,
- /* General Purpose Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Access Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Floating Point Control Word. */
- 0x00,
- /* Floating Point Registers. */
- 0x08, 0x10, 0x18, 0x20,
- 0x28, 0x30, 0x38, 0x40,
- 0x48, 0x50, 0x58, 0x60,
- 0x68, 0x70, 0x78, 0x80,
- /* GPR Uppper Halves. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GNU/Linux-specific optional "registers". */
- -1, -1, -1,
-};
-
-int s390_regmap_upper[S390_NUM_REGS] =
-{
- /* Program Status Word. */
- -1, -1,
- /* General Purpose Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Access Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Floating Point Control Word. */
- -1,
- /* Floating Point Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GPR Uppper Halves. */
- 0x00, 0x04, 0x08, 0x0c,
- 0x10, 0x14, 0x18, 0x1c,
- 0x20, 0x24, 0x28, 0x2c,
- 0x30, 0x34, 0x38, 0x3c,
- /* GNU/Linux-specific optional "registers". */
- -1, -1, -1,
-};
-
-int s390_regmap_last_break[S390_NUM_REGS] =
-{
- /* Program Status Word. */
- -1, -1,
- /* General Purpose Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Access Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Floating Point Control Word. */
- -1,
- /* Floating Point Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GPR Uppper Halves. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GNU/Linux-specific optional "registers". */
- -1, 4, -1,
-};
-
-int s390x_regmap_last_break[S390_NUM_REGS] =
-{
- /* Program Status Word. */
- -1, -1,
- /* General Purpose Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Access Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Floating Point Control Word. */
- -1,
- /* Floating Point Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GPR Uppper Halves. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GNU/Linux-specific optional "registers". */
- -1, 0, -1,
-};
-
-int s390_regmap_system_call[S390_NUM_REGS] =
-{
- /* Program Status Word. */
- -1, -1,
- /* General Purpose Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Access Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* Floating Point Control Word. */
- -1,
- /* Floating Point Registers. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GPR Uppper Halves. */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- /* GNU/Linux-specific optional "registers". */
- -1, -1, 0,
-};
-
-/* Supply register REGNUM from the register set REGSET to register cache
- REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
-static void
-s390_supply_regset (const struct regset *regset, struct regcache *regcache,
- int regnum, const void *regs, size_t len)
-{
- const int *offset = regset->descr;
- int i;
-
- for (i = 0; i < S390_NUM_REGS; i++)
- {
- if ((regnum == i || regnum == -1) && offset[i] != -1)
- regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
- }
-}
-
-/* Collect register REGNUM from the register cache REGCACHE and store
- it in the buffer specified by REGS and LEN as described by the
- general-purpose register set REGSET. If REGNUM is -1, do this for
- all registers in REGSET. */
-static void
-s390_collect_regset (const struct regset *regset,
- const struct regcache *regcache,
- int regnum, void *regs, size_t len)
-{
- const int *offset = regset->descr;
- int i;
-
- for (i = 0; i < S390_NUM_REGS; i++)
- {
- if ((regnum == i || regnum == -1) && offset[i] != -1)
- regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
- }
-}
-
-static const struct regset s390_gregset = {
- s390_regmap_gregset,
- s390_supply_regset,
- s390_collect_regset
-};
-
-static const struct regset s390x_gregset = {
- s390x_regmap_gregset,
- s390_supply_regset,
- s390_collect_regset
-};
-
-static const struct regset s390_fpregset = {
- s390_regmap_fpregset,
- s390_supply_regset,
- s390_collect_regset
-};
-
-static const struct regset s390_upper_regset = {
- s390_regmap_upper,
- s390_supply_regset,
- s390_collect_regset
-};
-
-static const struct regset s390_last_break_regset = {
- s390_regmap_last_break,
- s390_supply_regset,
- s390_collect_regset
-};
-
-static const struct regset s390x_last_break_regset = {
- s390x_regmap_last_break,
- s390_supply_regset,
- s390_collect_regset
-};
-
-static const struct regset s390_system_call_regset = {
- s390_regmap_system_call,
- s390_supply_regset,
- s390_collect_regset
-};
-
-static struct core_regset_section s390_linux32_regset_sections[] =
-{
- { ".reg", s390_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390_linux32v1_regset_sections[] =
-{
- { ".reg", s390_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { ".reg-s390-last-break", 8, "s390 last-break address" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390_linux32v2_regset_sections[] =
-{
- { ".reg", s390_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { ".reg-s390-last-break", 8, "s390 last-break address" },
- { ".reg-s390-system-call", 4, "s390 system-call" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390_linux64_regset_sections[] =
-{
- { ".reg", s390_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390_linux64v1_regset_sections[] =
-{
- { ".reg", s390_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
- { ".reg-s390-last-break", 8, "s930 last-break address" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390_linux64v2_regset_sections[] =
-{
- { ".reg", s390_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
- { ".reg-s390-last-break", 8, "s930 last-break address" },
- { ".reg-s390-system-call", 4, "s390 system-call" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390x_linux64_regset_sections[] =
-{
- { ".reg", s390x_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390x_linux64v1_regset_sections[] =
-{
- { ".reg", s390x_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { ".reg-s390-last-break", 8, "s930 last-break address" },
- { NULL, 0}
-};
-
-static struct core_regset_section s390x_linux64v2_regset_sections[] =
-{
- { ".reg", s390x_sizeof_gregset, "general-purpose" },
- { ".reg2", s390_sizeof_fpregset, "floating-point" },
- { ".reg-s390-last-break", 8, "s930 last-break address" },
- { ".reg-s390-system-call", 4, "s390 system-call" },
- { NULL, 0}
-};
-
-
-/* Return the appropriate register set for the core section identified
- by SECT_NAME and SECT_SIZE. */
-static const struct regset *
-s390_regset_from_core_section (struct gdbarch *gdbarch,
- const char *sect_name, size_t sect_size)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
- return tdep->gregset;
-
- if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
- return tdep->fpregset;
-
- if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
- return &s390_upper_regset;
-
- if (strcmp (sect_name, ".reg-s390-last-break") == 0 && sect_size >= 8)
- return (gdbarch_ptr_bit (gdbarch) == 32
- ? &s390_last_break_regset : &s390x_last_break_regset);
-
- if (strcmp (sect_name, ".reg-s390-system-call") == 0 && sect_size >= 4)
- return &s390_system_call_regset;
-
- return NULL;
-}
-
-static const struct target_desc *
-s390_core_read_description (struct gdbarch *gdbarch,
- struct target_ops *target, bfd *abfd)
-{
- asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
- asection *v1 = bfd_get_section_by_name (abfd, ".reg-s390-last-break");
- asection *v2 = bfd_get_section_by_name (abfd, ".reg-s390-system-call");
- asection *section = bfd_get_section_by_name (abfd, ".reg");
- if (!section)
- return NULL;
-
- switch (bfd_section_size (abfd, section))
- {
- case s390_sizeof_gregset:
- if (high_gprs)
- return (v2? tdesc_s390_linux64v2 :
- v1? tdesc_s390_linux64v1 : tdesc_s390_linux64);
- else
- return (v2? tdesc_s390_linux32v2 :
- v1? tdesc_s390_linux32v1 : tdesc_s390_linux32);
-
- case s390x_sizeof_gregset:
- return (v2? tdesc_s390x_linux64v2 :
- v1? tdesc_s390x_linux64v1 : tdesc_s390x_linux64);
-
- default:
- return NULL;
- }
-}
-
-
-/* Decoding S/390 instructions. */
-
-/* Named opcode values for the S/390 instructions we recognize. Some
- instructions have their opcode split across two fields; those are the
- op1_* and op2_* enums. */
-enum
- {
- op1_lhi = 0xa7, op2_lhi = 0x08,
- op1_lghi = 0xa7, op2_lghi = 0x09,
- op1_lgfi = 0xc0, op2_lgfi = 0x01,
- op_lr = 0x18,
- op_lgr = 0xb904,
- op_l = 0x58,
- op1_ly = 0xe3, op2_ly = 0x58,
- op1_lg = 0xe3, op2_lg = 0x04,
- op_lm = 0x98,
- op1_lmy = 0xeb, op2_lmy = 0x98,
- op1_lmg = 0xeb, op2_lmg = 0x04,
- op_st = 0x50,
- op1_sty = 0xe3, op2_sty = 0x50,
- op1_stg = 0xe3, op2_stg = 0x24,
- op_std = 0x60,
- op_stm = 0x90,
- op1_stmy = 0xeb, op2_stmy = 0x90,
- op1_stmg = 0xeb, op2_stmg = 0x24,
- op1_aghi = 0xa7, op2_aghi = 0x0b,
- op1_ahi = 0xa7, op2_ahi = 0x0a,
- op1_agfi = 0xc2, op2_agfi = 0x08,
- op1_afi = 0xc2, op2_afi = 0x09,
- op1_algfi= 0xc2, op2_algfi= 0x0a,
- op1_alfi = 0xc2, op2_alfi = 0x0b,
- op_ar = 0x1a,
- op_agr = 0xb908,
- op_a = 0x5a,
- op1_ay = 0xe3, op2_ay = 0x5a,
- op1_ag = 0xe3, op2_ag = 0x08,
- op1_slgfi= 0xc2, op2_slgfi= 0x04,
- op1_slfi = 0xc2, op2_slfi = 0x05,
- op_sr = 0x1b,
- op_sgr = 0xb909,
- op_s = 0x5b,
- op1_sy = 0xe3, op2_sy = 0x5b,
- op1_sg = 0xe3, op2_sg = 0x09,
- op_nr = 0x14,
- op_ngr = 0xb980,
- op_la = 0x41,
- op1_lay = 0xe3, op2_lay = 0x71,
- op1_larl = 0xc0, op2_larl = 0x00,
- op_basr = 0x0d,
- op_bas = 0x4d,
- op_bcr = 0x07,
- op_bc = 0x0d,
- op_bctr = 0x06,
- op_bctgr = 0xb946,
- op_bct = 0x46,
- op1_bctg = 0xe3, op2_bctg = 0x46,
- op_bxh = 0x86,
- op1_bxhg = 0xeb, op2_bxhg = 0x44,
- op_bxle = 0x87,
- op1_bxleg= 0xeb, op2_bxleg= 0x45,
- op1_bras = 0xa7, op2_bras = 0x05,
- op1_brasl= 0xc0, op2_brasl= 0x05,
- op1_brc = 0xa7, op2_brc = 0x04,
- op1_brcl = 0xc0, op2_brcl = 0x04,
- op1_brct = 0xa7, op2_brct = 0x06,
- op1_brctg= 0xa7, op2_brctg= 0x07,
- op_brxh = 0x84,
- op1_brxhg= 0xec, op2_brxhg= 0x44,
- op_brxle = 0x85,
- op1_brxlg= 0xec, op2_brxlg= 0x45,
- };
-
-
-/* Read a single instruction from address AT. */
-
-#define S390_MAX_INSTR_SIZE 6
-static int
-s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
-{
- static int s390_instrlen[] = { 2, 4, 4, 6 };
- int instrlen;
-
- if (target_read_memory (at, &instr[0], 2))
- return -1;
- instrlen = s390_instrlen[instr[0] >> 6];
- if (instrlen > 2)
- {
- if (target_read_memory (at + 2, &instr[2], instrlen - 2))
- return -1;
- }
- return instrlen;
-}
-
-
-/* The functions below are for recognizing and decoding S/390
- instructions of various formats. Each of them checks whether INSN
- is an instruction of the given format, with the specified opcodes.
- If it is, it sets the remaining arguments to the values of the
- instruction's fields, and returns a non-zero value; otherwise, it
- returns zero.
-
- These functions' arguments appear in the order they appear in the
- instruction, not in the machine-language form. So, opcodes always
- come first, even though they're sometimes scattered around the
- instructions. And displacements appear before base and extension
- registers, as they do in the assembly syntax, not at the end, as
- they do in the machine language. */
-static int
-is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
-{
- if (insn[0] == op1 && (insn[1] & 0xf) == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- /* i2 is a 16-bit signed quantity. */
- *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_ril (bfd_byte *insn, int op1, int op2,
- unsigned int *r1, int *i2)
-{
- if (insn[0] == op1 && (insn[1] & 0xf) == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- /* i2 is a signed quantity. If the host 'int' is 32 bits long,
- no sign extension is necessary, but we don't want to assume
- that. */
- *i2 = (((insn[2] << 24)
- | (insn[3] << 16)
- | (insn[4] << 8)
- | (insn[5])) ^ 0x80000000) - 0x80000000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
-{
- if (insn[0] == op)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r2 = insn[1] & 0xf;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
-{
- if (((insn[0] << 8) | insn[1]) == op)
- {
- /* Yes, insn[3]. insn[2] is unused in RRE format. */
- *r1 = (insn[3] >> 4) & 0xf;
- *r2 = insn[3] & 0xf;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rs (bfd_byte *insn, int op,
- unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
-{
- if (insn[0] == op)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r3 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- *d2 = ((insn[2] & 0xf) << 8) | insn[3];
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rsy (bfd_byte *insn, int op1, int op2,
- unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
-{
- if (insn[0] == op1
- && insn[5] == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r3 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- /* The 'long displacement' is a 20-bit signed integer. */
- *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
- ^ 0x80000) - 0x80000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rsi (bfd_byte *insn, int op,
- unsigned int *r1, unsigned int *r3, int *i2)
-{
- if (insn[0] == op)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r3 = insn[1] & 0xf;
- /* i2 is a 16-bit signed quantity. */
- *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rie (bfd_byte *insn, int op1, int op2,
- unsigned int *r1, unsigned int *r3, int *i2)
-{
- if (insn[0] == op1
- && insn[5] == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r3 = insn[1] & 0xf;
- /* i2 is a 16-bit signed quantity. */
- *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rx (bfd_byte *insn, int op,
- unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
-{
- if (insn[0] == op)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *x2 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- *d2 = ((insn[2] & 0xf) << 8) | insn[3];
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rxy (bfd_byte *insn, int op1, int op2,
- unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
-{
- if (insn[0] == op1
- && insn[5] == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *x2 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- /* The 'long displacement' is a 20-bit signed integer. */
- *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
- ^ 0x80000) - 0x80000;
- return 1;
- }
- else
- return 0;
-}
-
-
-/* Prologue analysis. */
-
-#define S390_NUM_GPRS 16
-#define S390_NUM_FPRS 16
-
-struct s390_prologue_data {
-
- /* The stack. */
- struct pv_area *stack;
-
- /* The size and byte-order of a GPR or FPR. */
- int gpr_size;
- int fpr_size;
- enum bfd_endian byte_order;
-
- /* The general-purpose registers. */
- pv_t gpr[S390_NUM_GPRS];
-
- /* The floating-point registers. */
- pv_t fpr[S390_NUM_FPRS];
-
- /* The offset relative to the CFA where the incoming GPR N was saved
- by the function prologue. 0 if not saved or unknown. */
- int gpr_slot[S390_NUM_GPRS];
-
- /* Likewise for FPRs. */
- int fpr_slot[S390_NUM_FPRS];
-
- /* Nonzero if the backchain was saved. This is assumed to be the
- case when the incoming SP is saved at the current SP location. */
- int back_chain_saved_p;
-};
-
-/* Return the effective address for an X-style instruction, like:
-
- L R1, D2(X2, B2)
-
- Here, X2 and B2 are registers, and D2 is a signed 20-bit
- constant; the effective address is the sum of all three. If either
- X2 or B2 are zero, then it doesn't contribute to the sum --- this
- means that r0 can't be used as either X2 or B2. */
-static pv_t
-s390_addr (struct s390_prologue_data *data,
- int d2, unsigned int x2, unsigned int b2)
-{
- pv_t result;
-
- result = pv_constant (d2);
- if (x2)
- result = pv_add (result, data->gpr[x2]);
- if (b2)
- result = pv_add (result, data->gpr[b2]);
-
- return result;
-}
-
-/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
-static void
-s390_store (struct s390_prologue_data *data,
- int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
- pv_t value)
-{
- pv_t addr = s390_addr (data, d2, x2, b2);
- pv_t offset;
-
- /* Check whether we are storing the backchain. */
- offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
-
- if (pv_is_constant (offset) && offset.k == 0)
- if (size == data->gpr_size
- && pv_is_register_k (value, S390_SP_REGNUM, 0))
- {
- data->back_chain_saved_p = 1;
- return;
- }
-
-
- /* Check whether we are storing a register into the stack. */
- if (!pv_area_store_would_trash (data->stack, addr))
- pv_area_store (data->stack, addr, size, value);
-
-
- /* Note: If this is some store we cannot identify, you might think we
- should forget our cached values, as any of those might have been hit.
-
- However, we make the assumption that the register save areas are only
- ever stored to once in any given function, and we do recognize these
- stores. Thus every store we cannot recognize does not hit our data. */
-}
-
-/* Do a SIZE-byte load from D2(X2,B2). */
-static pv_t
-s390_load (struct s390_prologue_data *data,
- int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
-
-{
- pv_t addr = s390_addr (data, d2, x2, b2);
-
- /* If it's a load from an in-line constant pool, then we can
- simulate that, under the assumption that the code isn't
- going to change between the time the processor actually
- executed it creating the current frame, and the time when
- we're analyzing the code to unwind past that frame. */
- if (pv_is_constant (addr))
- {
- struct target_section *secp;
- secp = target_section_by_addr (&current_target, addr.k);
- if (secp != NULL
- && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
- & SEC_READONLY))
- return pv_constant (read_memory_integer (addr.k, size,
- data->byte_order));
- }
-
- /* Check whether we are accessing one of our save slots. */
- return pv_area_fetch (data->stack, addr, size);
-}
-
-/* Function for finding saved registers in a 'struct pv_area'; we pass
- this to pv_area_scan.
-
- If VALUE is a saved register, ADDR says it was saved at a constant
- offset from the frame base, and SIZE indicates that the whole
- register was saved, record its offset in the reg_offset table in
- PROLOGUE_UNTYPED. */
-static void
-s390_check_for_saved (void *data_untyped, pv_t addr,
- CORE_ADDR size, pv_t value)
-{
- struct s390_prologue_data *data = data_untyped;
- int i, offset;
-
- if (!pv_is_register (addr, S390_SP_REGNUM))
- return;
-
- offset = 16 * data->gpr_size + 32 - addr.k;
-
- /* If we are storing the original value of a register, we want to
- record the CFA offset. If the same register is stored multiple
- times, the stack slot with the highest address counts. */
-
- for (i = 0; i < S390_NUM_GPRS; i++)
- if (size == data->gpr_size
- && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
- if (data->gpr_slot[i] == 0
- || data->gpr_slot[i] > offset)
- {
- data->gpr_slot[i] = offset;
- return;
- }
-
- for (i = 0; i < S390_NUM_FPRS; i++)
- if (size == data->fpr_size
- && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
- if (data->fpr_slot[i] == 0
- || data->fpr_slot[i] > offset)
- {
- data->fpr_slot[i] = offset;
- return;
- }
-}
-
-/* Analyze the prologue of the function starting at START_PC,
- continuing at most until CURRENT_PC. Initialize DATA to
- hold all information we find out about the state of the registers
- and stack slots. Return the address of the instruction after
- the last one that changed the SP, FP, or back chain; or zero
- on error. */
-static CORE_ADDR
-s390_analyze_prologue (struct gdbarch *gdbarch,
- CORE_ADDR start_pc,
- CORE_ADDR current_pc,
- struct s390_prologue_data *data)
-{
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-
- /* Our return value:
- The address of the instruction after the last one that changed
- the SP, FP, or back chain; zero if we got an error trying to
- read memory. */
- CORE_ADDR result = start_pc;
-
- /* The current PC for our abstract interpretation. */
- CORE_ADDR pc;
-
- /* The address of the next instruction after that. */
- CORE_ADDR next_pc;
-
- /* Set up everything's initial value. */
- {
- int i;
-
- data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
-
- /* For the purpose of prologue tracking, we consider the GPR size to
- be equal to the ABI word size, even if it is actually larger
- (i.e. when running a 32-bit binary under a 64-bit kernel). */
- data->gpr_size = word_size;
- data->fpr_size = 8;
- data->byte_order = gdbarch_byte_order (gdbarch);
-
- for (i = 0; i < S390_NUM_GPRS; i++)
- data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
-
- for (i = 0; i < S390_NUM_FPRS; i++)
- data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
-
- for (i = 0; i < S390_NUM_GPRS; i++)
- data->gpr_slot[i] = 0;
-
- for (i = 0; i < S390_NUM_FPRS; i++)
- data->fpr_slot[i] = 0;
-
- data->back_chain_saved_p = 0;
- }
-
- /* Start interpreting instructions, until we hit the frame's
- current PC or the first branch instruction. */
- for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
- {
- bfd_byte insn[S390_MAX_INSTR_SIZE];
- int insn_len = s390_readinstruction (insn, pc);
-
- bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
- bfd_byte *insn32 = word_size == 4 ? insn : dummy;
- bfd_byte *insn64 = word_size == 8 ? insn : dummy;
-
- /* Fields for various kinds of instructions. */
- unsigned int b2, r1, r2, x2, r3;
- int i2, d2;
-
- /* The values of SP and FP before this instruction,
- for detecting instructions that change them. */
- pv_t pre_insn_sp, pre_insn_fp;
- /* Likewise for the flag whether the back chain was saved. */
- int pre_insn_back_chain_saved_p;
-
- /* If we got an error trying to read the instruction, report it. */
- if (insn_len < 0)
- {
- result = 0;
- break;
- }
-
- next_pc = pc + insn_len;
-
- pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
- pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
- pre_insn_back_chain_saved_p = data->back_chain_saved_p;
-
-
- /* LHI r1, i2 --- load halfword immediate. */
- /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
- /* LGFI r1, i2 --- load fullword immediate. */
- if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
- || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
- || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
- data->gpr[r1] = pv_constant (i2);
-
- /* LR r1, r2 --- load from register. */
- /* LGR r1, r2 --- load from register (64-bit version). */
- else if (is_rr (insn32, op_lr, &r1, &r2)
- || is_rre (insn64, op_lgr, &r1, &r2))
- data->gpr[r1] = data->gpr[r2];
-
- /* L r1, d2(x2, b2) --- load. */
- /* LY r1, d2(x2, b2) --- load (long-displacement version). */
- /* LG r1, d2(x2, b2) --- load (64-bit version). */
- else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
- data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
-
- /* ST r1, d2(x2, b2) --- store. */
- /* STY r1, d2(x2, b2) --- store (long-displacement version). */
- /* STG r1, d2(x2, b2) --- store (64-bit version). */
- else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
- s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
-
- /* STD r1, d2(x2,b2) --- store floating-point register. */
- else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
- s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
-
- /* STM r1, r3, d2(b2) --- store multiple. */
- /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
- version). */
- /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
- else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
- || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
- || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
- {
- for (; r1 <= r3; r1++, d2 += data->gpr_size)
- s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
- }
-
- /* AHI r1, i2 --- add halfword immediate. */
- /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
- /* AFI r1, i2 --- add fullword immediate. */
- /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
- else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
- || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
- || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
- || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
- data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
-
- /* ALFI r1, i2 --- add logical immediate. */
- /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
- else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
- || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
- data->gpr[r1] = pv_add_constant (data->gpr[r1],
- (CORE_ADDR)i2 & 0xffffffff);
-
- /* AR r1, r2 -- add register. */
- /* AGR r1, r2 -- add register (64-bit version). */
- else if (is_rr (insn32, op_ar, &r1, &r2)
- || is_rre (insn64, op_agr, &r1, &r2))
- data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
-
- /* A r1, d2(x2, b2) -- add. */
- /* AY r1, d2(x2, b2) -- add (long-displacement version). */
- /* AG r1, d2(x2, b2) -- add (64-bit version). */
- else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
- data->gpr[r1] = pv_add (data->gpr[r1],
- s390_load (data, d2, x2, b2, data->gpr_size));
-
- /* SLFI r1, i2 --- subtract logical immediate. */
- /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
- else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
- || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
- data->gpr[r1] = pv_add_constant (data->gpr[r1],
- -((CORE_ADDR)i2 & 0xffffffff));
-
- /* SR r1, r2 -- subtract register. */
- /* SGR r1, r2 -- subtract register (64-bit version). */
- else if (is_rr (insn32, op_sr, &r1, &r2)
- || is_rre (insn64, op_sgr, &r1, &r2))
- data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
-
- /* S r1, d2(x2, b2) -- subtract. */
- /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
- /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
- else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
- data->gpr[r1] = pv_subtract (data->gpr[r1],
- s390_load (data, d2, x2, b2, data->gpr_size));
-
- /* LA r1, d2(x2, b2) --- load address. */
- /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
- else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
- || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
- data->gpr[r1] = s390_addr (data, d2, x2, b2);
-
- /* LARL r1, i2 --- load address relative long. */
- else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
- data->gpr[r1] = pv_constant (pc + i2 * 2);
-
- /* BASR r1, 0 --- branch and save.
- Since r2 is zero, this saves the PC in r1, but doesn't branch. */
- else if (is_rr (insn, op_basr, &r1, &r2)
- && r2 == 0)
- data->gpr[r1] = pv_constant (next_pc);
-
- /* BRAS r1, i2 --- branch relative and save. */
- else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
- {
- data->gpr[r1] = pv_constant (next_pc);
- next_pc = pc + i2 * 2;
-
- /* We'd better not interpret any backward branches. We'll
- never terminate. */
- if (next_pc <= pc)
- break;
- }
-
- /* Terminate search when hitting any other branch instruction. */
- else if (is_rr (insn, op_basr, &r1, &r2)
- || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
- || is_rr (insn, op_bcr, &r1, &r2)
- || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
- || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
- || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
- || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
- break;
-
- else
- /* An instruction we don't know how to simulate. The only
- safe thing to do would be to set every value we're tracking
- to 'unknown'. Instead, we'll be optimistic: we assume that
- we *can* interpret every instruction that the compiler uses
- to manipulate any of the data we're interested in here --
- then we can just ignore anything else. */
- ;
-
- /* Record the address after the last instruction that changed
- the FP, SP, or backlink. Ignore instructions that changed
- them back to their original values --- those are probably
- restore instructions. (The back chain is never restored,
- just popped.) */
- {
- pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
- pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
-
- if ((! pv_is_identical (pre_insn_sp, sp)
- && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
- && sp.kind != pvk_unknown)
- || (! pv_is_identical (pre_insn_fp, fp)
- && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
- && fp.kind != pvk_unknown)
- || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
- result = next_pc;
- }
- }
-
- /* Record where all the registers were saved. */
- pv_area_scan (data->stack, s390_check_for_saved, data);
-
- free_pv_area (data->stack);
- data->stack = NULL;
-
- return result;
-}
-
-/* Advance PC across any function entry prologue instructions to reach
- some "real" code. */
-static CORE_ADDR
-s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- struct s390_prologue_data data;
- CORE_ADDR skip_pc;
- skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
- return skip_pc ? skip_pc : pc;
-}
-
-/* Return true if we are in the functin's epilogue, i.e. after the
- instruction that destroyed the function's stack frame. */
-static int
-s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-
- /* In frameless functions, there's not frame to destroy and thus
- we don't care about the epilogue.
-
- In functions with frame, the epilogue sequence is a pair of
- a LM-type instruction that restores (amongst others) the
- return register %r14 and the stack pointer %r15, followed
- by a branch 'br %r14' --or equivalent-- that effects the
- actual return.
-
- In that situation, this function needs to return 'true' in
- exactly one case: when pc points to that branch instruction.
-
- Thus we try to disassemble the one instructions immediately
- preceding pc and check whether it is an LM-type instruction
- modifying the stack pointer.
-
- Note that disassembling backwards is not reliable, so there
- is a slight chance of false positives here ... */
-
- bfd_byte insn[6];
- unsigned int r1, r3, b2;
- int d2;
-
- if (word_size == 4
- && !target_read_memory (pc - 4, insn, 4)
- && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
- && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
- return 1;
-
- if (word_size == 4
- && !target_read_memory (pc - 6, insn, 6)
- && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
- && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
- return 1;
-
- if (word_size == 8
- && !target_read_memory (pc - 6, insn, 6)
- && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
- && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
- return 1;
-
- return 0;
-}
-
-/* Displaced stepping. */
-
-/* Fix up the state of registers and memory after having single-stepped
- a displaced instruction. */
-static void
-s390_displaced_step_fixup (struct gdbarch *gdbarch,
- struct displaced_step_closure *closure,
- CORE_ADDR from, CORE_ADDR to,
- struct regcache *regs)
-{
- /* Since we use simple_displaced_step_copy_insn, our closure is a
- copy of the instruction. */
- gdb_byte *insn = (gdb_byte *) closure;
- static int s390_instrlen[] = { 2, 4, 4, 6 };
- int insnlen = s390_instrlen[insn[0] >> 6];
-
- /* Fields for various kinds of instructions. */
- unsigned int b2, r1, r2, x2, r3;
- int i2, d2;
-
- /* Get current PC and addressing mode bit. */
- CORE_ADDR pc = regcache_read_pc (regs);
- ULONGEST amode = 0;
-
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- {
- regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
- amode &= 0x80000000;
- }
-
- if (debug_displaced)
- fprintf_unfiltered (gdb_stdlog,
- "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
- paddress (gdbarch, from), paddress (gdbarch, to),
- paddress (gdbarch, pc), insnlen, (int) amode);
-
- /* Handle absolute branch and save instructions. */
- if (is_rr (insn, op_basr, &r1, &r2)
- || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
- {
- /* Recompute saved return address in R1. */
- regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
- amode | (from + insnlen));
- }
-
- /* Handle absolute branch instructions. */
- else if (is_rr (insn, op_bcr, &r1, &r2)
- || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
- || is_rr (insn, op_bctr, &r1, &r2)
- || is_rre (insn, op_bctgr, &r1, &r2)
- || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
- || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
- || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
- || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
- || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
- || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
- {
- /* Update PC iff branch was *not* taken. */
- if (pc == to + insnlen)
- regcache_write_pc (regs, from + insnlen);
- }
-
- /* Handle PC-relative branch and save instructions. */
- else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
- || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
- {
- /* Update PC. */
- regcache_write_pc (regs, pc - to + from);
- /* Recompute saved return address in R1. */
- regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
- amode | (from + insnlen));
- }
-
- /* Handle PC-relative branch instructions. */
- else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
- || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
- || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
- || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
- || is_rsi (insn, op_brxh, &r1, &r3, &i2)
- || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
- || is_rsi (insn, op_brxle, &r1, &r3, &i2)
- || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
- {
- /* Update PC. */
- regcache_write_pc (regs, pc - to + from);
- }
-
- /* Handle LOAD ADDRESS RELATIVE LONG. */
- else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
- {
- /* Update PC. */
- regcache_write_pc (regs, from + insnlen);
- /* Recompute output address in R1. */
- regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
- amode | (from + i2 * 2));
- }
-
- /* If we executed a breakpoint instruction, point PC right back at it. */
- else if (insn[0] == 0x0 && insn[1] == 0x1)
- regcache_write_pc (regs, from);
-
- /* For any other insn, PC points right after the original instruction. */
- else
- regcache_write_pc (regs, from + insnlen);
-
- if (debug_displaced)
- fprintf_unfiltered (gdb_stdlog,
- "displaced: (s390) pc is now %s\n",
- paddress (gdbarch, regcache_read_pc (regs)));
-}
-
-
-/* Helper routine to unwind pseudo registers. */
-
-static struct value *
-s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- struct type *type = register_type (gdbarch, regnum);
-
- /* Unwind PC via PSW address. */
- if (regnum == tdep->pc_regnum)
- {
- struct value *val;
-
- val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
- if (!value_optimized_out (val))
- {
- LONGEST pswa = value_as_long (val);
-
- if (TYPE_LENGTH (type) == 4)
- return value_from_pointer (type, pswa & 0x7fffffff);
- else
- return value_from_pointer (type, pswa);
- }
- }
-
- /* Unwind CC via PSW mask. */
- if (regnum == tdep->cc_regnum)
- {
- struct value *val;
-
- val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
- if (!value_optimized_out (val))
- {
- LONGEST pswm = value_as_long (val);
-
- if (TYPE_LENGTH (type) == 4)
- return value_from_longest (type, (pswm >> 12) & 3);
- else
- return value_from_longest (type, (pswm >> 44) & 3);
- }
- }
-
- /* Unwind full GPRs to show at least the lower halves (as the
- upper halves are undefined). */
- if (tdep->gpr_full_regnum != -1
- && regnum >= tdep->gpr_full_regnum
- && regnum < tdep->gpr_full_regnum + 16)
- {
- int reg = regnum - tdep->gpr_full_regnum;
- struct value *val;
-
- val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
- if (!value_optimized_out (val))
- return value_cast (type, val);
- }
-
- return allocate_optimized_out_value (type);
-}
-
-static struct value *
-s390_trad_frame_prev_register (struct frame_info *this_frame,
- struct trad_frame_saved_reg saved_regs[],
- int regnum)
-{
- if (regnum < S390_NUM_REGS)
- return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
- else
- return s390_unwind_pseudo_register (this_frame, regnum);
-}
-
-
-/* Normal stack frames. */
-
-struct s390_unwind_cache {
-
- CORE_ADDR func;
- CORE_ADDR frame_base;
- CORE_ADDR local_base;
-
- struct trad_frame_saved_reg *saved_regs;
-};
-
-static int
-s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
- struct s390_unwind_cache *info)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- struct s390_prologue_data data;
- pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
- pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
- int i;
- CORE_ADDR cfa;
- CORE_ADDR func;
- CORE_ADDR result;
- ULONGEST reg;
- CORE_ADDR prev_sp;
- int frame_pointer;
- int size;
- struct frame_info *next_frame;
-
- /* Try to find the function start address. If we can't find it, we don't
- bother searching for it -- with modern compilers this would be mostly
- pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
- or else a valid backchain ... */
- func = get_frame_func (this_frame);
- if (!func)
- return 0;
-
- /* Try to analyze the prologue. */
- result = s390_analyze_prologue (gdbarch, func,
- get_frame_pc (this_frame), &data);
- if (!result)
- return 0;
-
- /* If this was successful, we should have found the instruction that
- sets the stack pointer register to the previous value of the stack
- pointer minus the frame size. */
- if (!pv_is_register (*sp, S390_SP_REGNUM))
- return 0;
-
- /* A frame size of zero at this point can mean either a real
- frameless function, or else a failure to find the prologue.
- Perform some sanity checks to verify we really have a
- frameless function. */
- if (sp->k == 0)
- {
- /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
- size zero. This is only possible if the next frame is a sentinel
- frame, a dummy frame, or a signal trampoline frame. */
- /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
- needed, instead the code should simpliy rely on its
- analysis. */
- next_frame = get_next_frame (this_frame);
- while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
- next_frame = get_next_frame (next_frame);
- if (next_frame
- && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
- return 0;
-
- /* If we really have a frameless function, %r14 must be valid
- -- in particular, it must point to a different function. */
- reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
- reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
- if (get_pc_function_start (reg) == func)
- {
- /* However, there is one case where it *is* valid for %r14
- to point to the same function -- if this is a recursive
- call, and we have stopped in the prologue *before* the
- stack frame was allocated.
-
- Recognize this case by looking ahead a bit ... */
-
- struct s390_prologue_data data2;
- pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
-
- if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
- && pv_is_register (*sp, S390_SP_REGNUM)
- && sp->k != 0))
- return 0;
- }
- }
-
-
- /* OK, we've found valid prologue data. */
- size = -sp->k;
-
- /* If the frame pointer originally also holds the same value
- as the stack pointer, we're probably using it. If it holds
- some other value -- even a constant offset -- it is most
- likely used as temp register. */
- if (pv_is_identical (*sp, *fp))
- frame_pointer = S390_FRAME_REGNUM;
- else
- frame_pointer = S390_SP_REGNUM;
-
- /* If we've detected a function with stack frame, we'll still have to
- treat it as frameless if we're currently within the function epilog
- code at a point where the frame pointer has already been restored.
- This can only happen in an innermost frame. */
- /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
- instead the code should simpliy rely on its analysis. */
- next_frame = get_next_frame (this_frame);
- while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
- next_frame = get_next_frame (next_frame);
- if (size > 0
- && (next_frame == NULL
- || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
- {
- /* See the comment in s390_in_function_epilogue_p on why this is
- not completely reliable ... */
- if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
- {
- memset (&data, 0, sizeof (data));
- size = 0;
- frame_pointer = S390_SP_REGNUM;
- }
- }
-
- /* Once we know the frame register and the frame size, we can unwind
- the current value of the frame register from the next frame, and
- add back the frame size to arrive that the previous frame's
- stack pointer value. */
- prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
- cfa = prev_sp + 16*word_size + 32;
-
- /* Set up ABI call-saved/call-clobbered registers. */
- for (i = 0; i < S390_NUM_REGS; i++)
- if (!s390_register_call_saved (gdbarch, i))
- trad_frame_set_unknown (info->saved_regs, i);
-
- /* CC is always call-clobbered. */
- trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
-
- /* Record the addresses of all register spill slots the prologue parser
- has recognized. Consider only registers defined as call-saved by the
- ABI; for call-clobbered registers the parser may have recognized
- spurious stores. */
-
- for (i = 0; i < 16; i++)
- if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
- && data.gpr_slot[i] != 0)
- info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
-
- for (i = 0; i < 16; i++)
- if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
- && data.fpr_slot[i] != 0)
- info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
-
- /* Function return will set PC to %r14. */
- info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
-
- /* In frameless functions, we unwind simply by moving the return
- address to the PC. However, if we actually stored to the
- save area, use that -- we might only think the function frameless
- because we're in the middle of the prologue ... */
- if (size == 0
- && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
- {
- info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
- }
-
- /* Another sanity check: unless this is a frameless function,
- we should have found spill slots for SP and PC.
- If not, we cannot unwind further -- this happens e.g. in
- libc's thread_start routine. */
- if (size > 0)
- {
- if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
- || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
- prev_sp = -1;
- }
-
- /* We use the current value of the frame register as local_base,
- and the top of the register save area as frame_base. */
- if (prev_sp != -1)
- {
- info->frame_base = prev_sp + 16*word_size + 32;
- info->local_base = prev_sp - size;
- }
-
- info->func = func;
- return 1;
-}
-
-static void
-s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
- struct s390_unwind_cache *info)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR backchain;
- ULONGEST reg;
- LONGEST sp;
- int i;
-
- /* Set up ABI call-saved/call-clobbered registers. */
- for (i = 0; i < S390_NUM_REGS; i++)
- if (!s390_register_call_saved (gdbarch, i))
- trad_frame_set_unknown (info->saved_regs, i);
-
- /* CC is always call-clobbered. */
- trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
-
- /* Get the backchain. */
- reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
- backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
-
- /* A zero backchain terminates the frame chain. As additional
- sanity check, let's verify that the spill slot for SP in the
- save area pointed to by the backchain in fact links back to
- the save area. */
- if (backchain != 0
- && safe_read_memory_integer (backchain + 15*word_size,
- word_size, byte_order, &sp)
- && (CORE_ADDR)sp == backchain)
- {
- /* We don't know which registers were saved, but it will have
- to be at least %r14 and %r15. This will allow us to continue
- unwinding, but other prev-frame registers may be incorrect ... */
- info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
- info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
-
- /* Function return will set PC to %r14. */
- info->saved_regs[S390_PSWA_REGNUM]
- = info->saved_regs[S390_RETADDR_REGNUM];
-
- /* We use the current value of the frame register as local_base,
- and the top of the register save area as frame_base. */
- info->frame_base = backchain + 16*word_size + 32;
- info->local_base = reg;
- }
-
- info->func = get_frame_pc (this_frame);
-}
-
-static struct s390_unwind_cache *
-s390_frame_unwind_cache (struct frame_info *this_frame,
- void **this_prologue_cache)
-{
- struct s390_unwind_cache *info;
- if (*this_prologue_cache)
- return *this_prologue_cache;
-
- info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
- *this_prologue_cache = info;
- info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
- info->func = -1;
- info->frame_base = -1;
- info->local_base = -1;
-
- /* Try to use prologue analysis to fill the unwind cache.
- If this fails, fall back to reading the stack backchain. */
- if (!s390_prologue_frame_unwind_cache (this_frame, info))
- s390_backchain_frame_unwind_cache (this_frame, info);
-
- return info;
-}
-
-static void
-s390_frame_this_id (struct frame_info *this_frame,
- void **this_prologue_cache,
- struct frame_id *this_id)
-{
- struct s390_unwind_cache *info
- = s390_frame_unwind_cache (this_frame, this_prologue_cache);
-
- if (info->frame_base == -1)
- return;
-
- *this_id = frame_id_build (info->frame_base, info->func);
-}
-
-static struct value *
-s390_frame_prev_register (struct frame_info *this_frame,
- void **this_prologue_cache, int regnum)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct s390_unwind_cache *info
- = s390_frame_unwind_cache (this_frame, this_prologue_cache);
-
- return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
-}
-
-static const struct frame_unwind s390_frame_unwind = {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- s390_frame_this_id,
- s390_frame_prev_register,
- NULL,
- default_frame_sniffer
-};
-
-
-/* Code stubs and their stack frames. For things like PLTs and NULL
- function calls (where there is no true frame and the return address
- is in the RETADDR register). */
-
-struct s390_stub_unwind_cache
-{
- CORE_ADDR frame_base;
- struct trad_frame_saved_reg *saved_regs;
-};
-
-static struct s390_stub_unwind_cache *
-s390_stub_frame_unwind_cache (struct frame_info *this_frame,
- void **this_prologue_cache)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- struct s390_stub_unwind_cache *info;
- ULONGEST reg;
-
- if (*this_prologue_cache)
- return *this_prologue_cache;
-
- info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
- *this_prologue_cache = info;
- info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
-
- /* The return address is in register %r14. */
- info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
-
- /* Retrieve stack pointer and determine our frame base. */
- reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
- info->frame_base = reg + 16*word_size + 32;
-
- return info;
-}
-
-static void
-s390_stub_frame_this_id (struct frame_info *this_frame,
- void **this_prologue_cache,
- struct frame_id *this_id)
-{
- struct s390_stub_unwind_cache *info
- = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
- *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
-}
-
-static struct value *
-s390_stub_frame_prev_register (struct frame_info *this_frame,
- void **this_prologue_cache, int regnum)
-{
- struct s390_stub_unwind_cache *info
- = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
- return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
-}
-
-static int
-s390_stub_frame_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame,
- void **this_prologue_cache)
-{
- CORE_ADDR addr_in_block;
- bfd_byte insn[S390_MAX_INSTR_SIZE];
-
- /* If the current PC points to non-readable memory, we assume we
- have trapped due to an invalid function pointer call. We handle
- the non-existing current function like a PLT stub. */
- addr_in_block = get_frame_address_in_block (this_frame);
- if (in_plt_section (addr_in_block, NULL)
- || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
- return 1;
- return 0;
-}
-
-static const struct frame_unwind s390_stub_frame_unwind = {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- s390_stub_frame_this_id,
- s390_stub_frame_prev_register,
- NULL,
- s390_stub_frame_sniffer
-};
-
-
-/* Signal trampoline stack frames. */
-
-struct s390_sigtramp_unwind_cache {
- CORE_ADDR frame_base;
- struct trad_frame_saved_reg *saved_regs;
-};
-
-static struct s390_sigtramp_unwind_cache *
-s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
- void **this_prologue_cache)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct s390_sigtramp_unwind_cache *info;
- ULONGEST this_sp, prev_sp;
- CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
- int i;
-
- if (*this_prologue_cache)
- return *this_prologue_cache;
-
- info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
- *this_prologue_cache = info;
- info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
-
- this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
- next_ra = get_frame_pc (this_frame);
- next_cfa = this_sp + 16*word_size + 32;
-
- /* New-style RT frame:
- retcode + alignment (8 bytes)
- siginfo (128 bytes)
- ucontext (contains sigregs at offset 5 words). */
- if (next_ra == next_cfa)
- {
- sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
- /* sigregs are followed by uc_sigmask (8 bytes), then by the
- upper GPR halves if present. */
- sigreg_high_off = 8;
- }
-
- /* Old-style RT frame and all non-RT frames:
- old signal mask (8 bytes)
- pointer to sigregs. */
- else
- {
- sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
- word_size, byte_order);
- /* sigregs are followed by signo (4 bytes), then by the
- upper GPR halves if present. */
- sigreg_high_off = 4;
- }
-
- /* The sigregs structure looks like this:
- long psw_mask;
- long psw_addr;
- long gprs[16];
- int acrs[16];
- int fpc;
- int __pad;
- double fprs[16]; */
-
- /* PSW mask and address. */
- info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
- sigreg_ptr += word_size;
- info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
- sigreg_ptr += word_size;
-
- /* Then the GPRs. */
- for (i = 0; i < 16; i++)
- {
- info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
- sigreg_ptr += word_size;
- }
-
- /* Then the ACRs. */
- for (i = 0; i < 16; i++)
- {
- info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
- sigreg_ptr += 4;
- }
-
- /* The floating-point control word. */
- info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
- sigreg_ptr += 8;
-
- /* And finally the FPRs. */
- for (i = 0; i < 16; i++)
- {
- info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
- sigreg_ptr += 8;
- }
-
- /* If we have them, the GPR upper halves are appended at the end. */
- sigreg_ptr += sigreg_high_off;
- if (tdep->gpr_full_regnum != -1)
- for (i = 0; i < 16; i++)
- {
- info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
- sigreg_ptr += 4;
- }
-
- /* Restore the previous frame's SP. */
- prev_sp = read_memory_unsigned_integer (
- info->saved_regs[S390_SP_REGNUM].addr,
- word_size, byte_order);
-
- /* Determine our frame base. */
- info->frame_base = prev_sp + 16*word_size + 32;
-
- return info;
-}
-
-static void
-s390_sigtramp_frame_this_id (struct frame_info *this_frame,
- void **this_prologue_cache,
- struct frame_id *this_id)
-{
- struct s390_sigtramp_unwind_cache *info
- = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
- *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
-}
-
-static struct value *
-s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
- void **this_prologue_cache, int regnum)
-{
- struct s390_sigtramp_unwind_cache *info
- = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
- return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
-}
-
-static int
-s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame,
- void **this_prologue_cache)
-{
- CORE_ADDR pc = get_frame_pc (this_frame);
- bfd_byte sigreturn[2];
-
- if (target_read_memory (pc, sigreturn, 2))
- return 0;
-
- if (sigreturn[0] != 0x0a /* svc */)
- return 0;
-
- if (sigreturn[1] != 119 /* sigreturn */
- && sigreturn[1] != 173 /* rt_sigreturn */)
- return 0;
-
- return 1;
-}
-
-static const struct frame_unwind s390_sigtramp_frame_unwind = {
- SIGTRAMP_FRAME,
- default_frame_unwind_stop_reason,
- s390_sigtramp_frame_this_id,
- s390_sigtramp_frame_prev_register,
- NULL,
- s390_sigtramp_frame_sniffer
-};
-
-
-/* Frame base handling. */
-
-static CORE_ADDR
-s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
-{
- struct s390_unwind_cache *info
- = s390_frame_unwind_cache (this_frame, this_cache);
- return info->frame_base;
-}
-
-static CORE_ADDR
-s390_local_base_address (struct frame_info *this_frame, void **this_cache)
-{
- struct s390_unwind_cache *info
- = s390_frame_unwind_cache (this_frame, this_cache);
- return info->local_base;
-}
-
-static const struct frame_base s390_frame_base = {
- &s390_frame_unwind,
- s390_frame_base_address,
- s390_local_base_address,
- s390_local_base_address
-};
-
-static CORE_ADDR
-s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- ULONGEST pc;
- pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
- return gdbarch_addr_bits_remove (gdbarch, pc);
-}
-
-static CORE_ADDR
-s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- ULONGEST sp;
- sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
- return gdbarch_addr_bits_remove (gdbarch, sp);
-}
-
-
-/* DWARF-2 frame support. */
-
-static struct value *
-s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
- int regnum)
-{
- return s390_unwind_pseudo_register (this_frame, regnum);
-}
-
-static void
-s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
- struct dwarf2_frame_state_reg *reg,
- struct frame_info *this_frame)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- /* The condition code (and thus PSW mask) is call-clobbered. */
- if (regnum == S390_PSWM_REGNUM)
- reg->how = DWARF2_FRAME_REG_UNDEFINED;
-
- /* The PSW address unwinds to the return address. */
- else if (regnum == S390_PSWA_REGNUM)
- reg->how = DWARF2_FRAME_REG_RA;
-
- /* Fixed registers are call-saved or call-clobbered
- depending on the ABI in use. */
- else if (regnum < S390_NUM_REGS)
- {
- if (s390_register_call_saved (gdbarch, regnum))
- reg->how = DWARF2_FRAME_REG_SAME_VALUE;
- else
- reg->how = DWARF2_FRAME_REG_UNDEFINED;
- }
-
- /* We install a special function to unwind pseudos. */
- else
- {
- reg->how = DWARF2_FRAME_REG_FN;
- reg->loc.fn = s390_dwarf2_prev_register;
- }
-}
-
-
-/* Dummy function calls. */
-
-/* Return non-zero if TYPE is an integer-like type, zero otherwise.
- "Integer-like" types are those that should be passed the way
- integers are: integers, enums, ranges, characters, and booleans. */
-static int
-is_integer_like (struct type *type)
-{
- enum type_code code = TYPE_CODE (type);
-
- return (code == TYPE_CODE_INT
- || code == TYPE_CODE_ENUM
- || code == TYPE_CODE_RANGE
- || code == TYPE_CODE_CHAR
- || code == TYPE_CODE_BOOL);
-}
-
-/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
- "Pointer-like" types are those that should be passed the way
- pointers are: pointers and references. */
-static int
-is_pointer_like (struct type *type)
-{
- enum type_code code = TYPE_CODE (type);
-
- return (code == TYPE_CODE_PTR
- || code == TYPE_CODE_REF);
-}
-
-
-/* Return non-zero if TYPE is a `float singleton' or `double
- singleton', zero otherwise.
-
- A `T singleton' is a struct type with one member, whose type is
- either T or a `T singleton'. So, the following are all float
- singletons:
-
- struct { float x };
- struct { struct { float x; } x; };
- struct { struct { struct { float x; } x; } x; };
-
- ... and so on.
-
- All such structures are passed as if they were floats or doubles,
- as the (revised) ABI says. */
-static int
-is_float_singleton (struct type *type)
-{
- if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
- {
- struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
- CHECK_TYPEDEF (singleton_type);
-
- return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
- || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
- || is_float_singleton (singleton_type));
- }
-
- return 0;
-}
-
-
-/* Return non-zero if TYPE is a struct-like type, zero otherwise.
- "Struct-like" types are those that should be passed as structs are:
- structs and unions.
-
- As an odd quirk, not mentioned in the ABI, GCC passes float and
- double singletons as if they were a plain float, double, etc. (The
- corresponding union types are handled normally.) So we exclude
- those types here. *shrug* */
-static int
-is_struct_like (struct type *type)
-{
- enum type_code code = TYPE_CODE (type);
-
- return (code == TYPE_CODE_UNION
- || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
-}
-
-
-/* Return non-zero if TYPE is a float-like type, zero otherwise.
- "Float-like" types are those that should be passed as
- floating-point values are.
-
- You'd think this would just be floats, doubles, long doubles, etc.
- But as an odd quirk, not mentioned in the ABI, GCC passes float and
- double singletons as if they were a plain float, double, etc. (The
- corresponding union types are handled normally.) So we include
- those types here. *shrug* */
-static int
-is_float_like (struct type *type)
-{
- return (TYPE_CODE (type) == TYPE_CODE_FLT
- || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
- || is_float_singleton (type));
-}
-
-
-static int
-is_power_of_two (unsigned int n)
-{
- return ((n & (n - 1)) == 0);
-}
-
-/* Return non-zero if TYPE should be passed as a pointer to a copy,
- zero otherwise. */
-static int
-s390_function_arg_pass_by_reference (struct type *type)
-{
- unsigned length = TYPE_LENGTH (type);
- if (length > 8)
- return 1;
-
- return (is_struct_like (type) && !is_power_of_two (TYPE_LENGTH (type)))
- || TYPE_CODE (type) == TYPE_CODE_COMPLEX
- || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type));
-}
-
-/* Return non-zero if TYPE should be passed in a float register
- if possible. */
-static int
-s390_function_arg_float (struct type *type)
-{
- unsigned length = TYPE_LENGTH (type);
- if (length > 8)
- return 0;
-
- return is_float_like (type);
-}
-
-/* Return non-zero if TYPE should be passed in an integer register
- (or a pair of integer registers) if possible. */
-static int
-s390_function_arg_integer (struct type *type)
-{
- unsigned length = TYPE_LENGTH (type);
- if (length > 8)
- return 0;
-
- return is_integer_like (type)
- || is_pointer_like (type)
- || (is_struct_like (type) && is_power_of_two (length));
-}
-
-/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
- word as required for the ABI. */
-static LONGEST
-extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct type *type = check_typedef (value_type (arg));
-
- /* Even structs get passed in the least significant bits of the
- register / memory word. It's not really right to extract them as
- an integer, but it does take care of the extension. */
- if (TYPE_UNSIGNED (type))
- return extract_unsigned_integer (value_contents (arg),
- TYPE_LENGTH (type), byte_order);
- else
- return extract_signed_integer (value_contents (arg),
- TYPE_LENGTH (type), byte_order);
-}
-
-
-/* Return the alignment required by TYPE. */
-static int
-alignment_of (struct type *type)
-{
- int alignment;
-
- if (is_integer_like (type)
- || is_pointer_like (type)
- || TYPE_CODE (type) == TYPE_CODE_FLT
- || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
- alignment = TYPE_LENGTH (type);
- else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION)
- {
- int i;
-
- alignment = 1;
- for (i = 0; i < TYPE_NFIELDS (type); i++)
- {
- int field_alignment
- = alignment_of (check_typedef (TYPE_FIELD_TYPE (type, i)));
-
- if (field_alignment > alignment)
- alignment = field_alignment;
- }
- }
- else
- alignment = 1;
-
- /* Check that everything we ever return is a power of two. Lots of
- code doesn't want to deal with aligning things to arbitrary
- boundaries. */
- gdb_assert ((alignment & (alignment - 1)) == 0);
-
- return alignment;
-}
-
-
-/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
- place to be passed to a function, as specified by the "GNU/Linux
- for S/390 ELF Application Binary Interface Supplement".
-
- SP is the current stack pointer. We must put arguments, links,
- padding, etc. whereever they belong, and return the new stack
- pointer value.
-
- If STRUCT_RETURN is non-zero, then the function we're calling is
- going to return a structure by value; STRUCT_ADDR is the address of
- a block we've allocated for it on the stack.
-
- Our caller has taken care of any type promotions needed to satisfy
- prototypes or the old K&R argument-passing rules. */
-static CORE_ADDR
-s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int i;
-
- /* If the i'th argument is passed as a reference to a copy, then
- copy_addr[i] is the address of the copy we made. */
- CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
-
- /* Reserve space for the reference-to-copy area. */
- for (i = 0; i < nargs; i++)
- {
- struct value *arg = args[i];
- struct type *type = check_typedef (value_type (arg));
- unsigned length = TYPE_LENGTH (type);
-
- if (s390_function_arg_pass_by_reference (type))
- {
- sp -= length;
- sp = align_down (sp, alignment_of (type));
- copy_addr[i] = sp;
- }
- }
-
- /* Reserve space for the parameter area. As a conservative
- simplification, we assume that everything will be passed on the
- stack. Since every argument larger than 8 bytes will be
- passed by reference, we use this simple upper bound. */
- sp -= nargs * 8;
-
- /* After all that, make sure it's still aligned on an eight-byte
- boundary. */
- sp = align_down (sp, 8);
-
- /* Allocate the standard frame areas: the register save area, the
- word reserved for the compiler (which seems kind of meaningless),
- and the back chain pointer. */
- sp -= 16*word_size + 32;
-
- /* Now we have the final SP value. Make sure we didn't underflow;
- on 31-bit, this would result in addresses with the high bit set,
- which causes confusion elsewhere. Note that if we error out
- here, stack and registers remain untouched. */
- if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
- error (_("Stack overflow"));
-
-
- /* Finally, place the actual parameters, working from SP towards
- higher addresses. The code above is supposed to reserve enough
- space for this. */
- {
- int fr = 0;
- int gr = 2;
- CORE_ADDR starg = sp + 16*word_size + 32;
-
- /* A struct is returned using general register 2. */
- if (struct_return)
- {
- regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
- struct_addr);
- gr++;
- }
-
- for (i = 0; i < nargs; i++)
- {
- struct value *arg = args[i];
- struct type *type = check_typedef (value_type (arg));
- unsigned length = TYPE_LENGTH (type);
-
- if (s390_function_arg_pass_by_reference (type))
- {
- /* Actually copy the argument contents to the stack slot
- that was reserved above. */
- write_memory (copy_addr[i], value_contents (arg), length);
-
- if (gr <= 6)
- {
- regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
- copy_addr[i]);
- gr++;
- }
- else
- {
- write_memory_unsigned_integer (starg, word_size, byte_order,
- copy_addr[i]);
- starg += word_size;
- }
- }
- else if (s390_function_arg_float (type))
- {
- /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
- the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
- if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
- {
- /* When we store a single-precision value in an FP register,
- it occupies the leftmost bits. */
- regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
- 0, length, value_contents (arg));
- fr += 2;
- }
- else
- {
- /* When we store a single-precision value in a stack slot,
- it occupies the rightmost bits. */
- starg = align_up (starg + length, word_size);
- write_memory (starg - length, value_contents (arg), length);
- }
- }
- else if (s390_function_arg_integer (type) && length <= word_size)
- {
- if (gr <= 6)
- {
- /* Integer arguments are always extended to word size. */
- regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
- extend_simple_arg (gdbarch,
- arg));
- gr++;
- }
- else
- {
- /* Integer arguments are always extended to word size. */
- write_memory_signed_integer (starg, word_size, byte_order,
- extend_simple_arg (gdbarch, arg));
- starg += word_size;
- }
- }
- else if (s390_function_arg_integer (type) && length == 2*word_size)
- {
- if (gr <= 5)
- {
- regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
- value_contents (arg));
- regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
- value_contents (arg) + word_size);
- gr += 2;
- }
- else
- {
- /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
- in it, then don't go back and use it again later. */
- gr = 7;
-
- write_memory (starg, value_contents (arg), length);
- starg += length;
- }
- }
- else
- internal_error (__FILE__, __LINE__, _("unknown argument type"));
- }
- }
-
- /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */
- if (word_size == 4)
- {
- ULONGEST pswa;
- regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
- bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
- }
- regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
-
- /* Store updated stack pointer. */
- regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
-
- /* We need to return the 'stack part' of the frame ID,
- which is actually the top of the register save area. */
- return sp + 16*word_size + 32;
-}
-
-/* Assuming THIS_FRAME is a dummy, return the frame ID of that
- dummy frame. The frame ID's base needs to match the TOS value
- returned by push_dummy_call, and the PC match the dummy frame's
- breakpoint. */
-static struct frame_id
-s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
- sp = gdbarch_addr_bits_remove (gdbarch, sp);
-
- return frame_id_build (sp + 16*word_size + 32,
- get_frame_pc (this_frame));
-}
-
-static CORE_ADDR
-s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
- /* Both the 32- and 64-bit ABI's say that the stack pointer should
- always be aligned on an eight-byte boundary. */
- return (addr & -8);
-}
-
-
-/* Function return value access. */
-
-static enum return_value_convention
-s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
-{
- int length = TYPE_LENGTH (type);
- if (length > 8)
- return RETURN_VALUE_STRUCT_CONVENTION;
-
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_ARRAY:
- case TYPE_CODE_COMPLEX:
- return RETURN_VALUE_STRUCT_CONVENTION;
-
- default:
- return RETURN_VALUE_REGISTER_CONVENTION;
- }
-}
-
-static enum return_value_convention
-s390_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *out, const gdb_byte *in)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- enum return_value_convention rvc;
- int length;
-
- type = check_typedef (type);
- rvc = s390_return_value_convention (gdbarch, type);
- length = TYPE_LENGTH (type);
-
- if (in)
- {
- switch (rvc)
- {
- case RETURN_VALUE_REGISTER_CONVENTION:
- if (TYPE_CODE (type) == TYPE_CODE_FLT
- || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
- {
- /* When we store a single-precision value in an FP register,
- it occupies the leftmost bits. */
- regcache_cooked_write_part (regcache, S390_F0_REGNUM,
- 0, length, in);
- }
- else if (length <= word_size)
- {
- /* Integer arguments are always extended to word size. */
- if (TYPE_UNSIGNED (type))
- regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
- extract_unsigned_integer (in, length, byte_order));
- else
- regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
- extract_signed_integer (in, length, byte_order));
- }
- else if (length == 2*word_size)
- {
- regcache_cooked_write (regcache, S390_R2_REGNUM, in);
- regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
- }
- else
- internal_error (__FILE__, __LINE__, _("invalid return type"));
- break;
-
- case RETURN_VALUE_STRUCT_CONVENTION:
- error (_("Cannot set function return value."));
- break;
- }
- }
- else if (out)
- {
- switch (rvc)
- {
- case RETURN_VALUE_REGISTER_CONVENTION:
- if (TYPE_CODE (type) == TYPE_CODE_FLT
- || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
- {
- /* When we store a single-precision value in an FP register,
- it occupies the leftmost bits. */
- regcache_cooked_read_part (regcache, S390_F0_REGNUM,
- 0, length, out);
- }
- else if (length <= word_size)
- {
- /* Integer arguments occupy the rightmost bits. */
- regcache_cooked_read_part (regcache, S390_R2_REGNUM,
- word_size - length, length, out);
- }
- else if (length == 2*word_size)
- {
- regcache_cooked_read (regcache, S390_R2_REGNUM, out);
- regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
- }
- else
- internal_error (__FILE__, __LINE__, _("invalid return type"));
- break;
-
- case RETURN_VALUE_STRUCT_CONVENTION:
- error (_("Function return value unknown."));
- break;
- }
- }
-
- return rvc;
-}
-
-
-/* Breakpoints. */
-
-static const gdb_byte *
-s390_breakpoint_from_pc (struct gdbarch *gdbarch,
- CORE_ADDR *pcptr, int *lenptr)
-{
- static const gdb_byte breakpoint[] = { 0x0, 0x1 };
-
- *lenptr = sizeof (breakpoint);
- return breakpoint;
-}
-
-
-/* Address handling. */
-
-static CORE_ADDR
-s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
- return addr & 0x7fffffff;
-}
-
-static int
-s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
-{
- if (byte_size == 4)
- return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
- else
- return 0;
-}
-
-static const char *
-s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
-{
- if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
- return "mode32";
- else
- return NULL;
-}
-
-static int
-s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
- const char *name,
- int *type_flags_ptr)
-{
- if (strcmp (name, "mode32") == 0)
- {
- *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
- return 1;
- }
- else
- return 0;
-}
-
-/* Implementation of `gdbarch_stap_is_single_operand', as defined in
- gdbarch.h. */
-
-static int
-s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
-{
- return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement
- or indirection. */
- || *s == '%' /* Register access. */
- || isdigit (*s)); /* Literal number. */
-}
-
-/* Set up gdbarch struct. */
-
-static struct gdbarch *
-s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
- const struct target_desc *tdesc = info.target_desc;
- struct tdesc_arch_data *tdesc_data = NULL;
- struct gdbarch *gdbarch;
- struct gdbarch_tdep *tdep;
- int tdep_abi;
- int have_upper = 0;
- int have_linux_v1 = 0;
- int have_linux_v2 = 0;
- int first_pseudo_reg, last_pseudo_reg;
-
- /* Default ABI and register size. */
- switch (info.bfd_arch_info->mach)
- {
- case bfd_mach_s390_31:
- tdep_abi = ABI_LINUX_S390;
- break;
-
- case bfd_mach_s390_64:
- tdep_abi = ABI_LINUX_ZSERIES;
- break;
-
- default:
- return NULL;
- }
-
- /* Use default target description if none provided by the target. */
- if (!tdesc_has_registers (tdesc))
- {
- if (tdep_abi == ABI_LINUX_S390)
- tdesc = tdesc_s390_linux32;
- else
- tdesc = tdesc_s390x_linux64;
- }
-
- /* Check any target description for validity. */
- if (tdesc_has_registers (tdesc))
- {
- static const char *const gprs[] = {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
- };
- static const char *const fprs[] = {
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
- };
- static const char *const acrs[] = {
- "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
- "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
- };
- static const char *const gprs_lower[] = {
- "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
- "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
- };
- static const char *const gprs_upper[] = {
- "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
- "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
- };
- const struct tdesc_feature *feature;
- int i, valid_p = 1;
-
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
- if (feature == NULL)
- return NULL;
-
- tdesc_data = tdesc_data_alloc ();
-
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_PSWM_REGNUM, "pswm");
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_PSWA_REGNUM, "pswa");
-
- if (tdesc_unnumbered_register (feature, "r0"))
- {
- for (i = 0; i < 16; i++)
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_R0_REGNUM + i, gprs[i]);
- }
- else
- {
- have_upper = 1;
-
- for (i = 0; i < 16; i++)
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_R0_REGNUM + i,
- gprs_lower[i]);
- for (i = 0; i < 16; i++)
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_R0_UPPER_REGNUM + i,
- gprs_upper[i]);
- }
-
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
- if (feature == NULL)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
-
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_FPC_REGNUM, "fpc");
- for (i = 0; i < 16; i++)
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_F0_REGNUM + i, fprs[i]);
-
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
- if (feature == NULL)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
-
- for (i = 0; i < 16; i++)
- valid_p &= tdesc_numbered_register (feature, tdesc_data,
- S390_A0_REGNUM + i, acrs[i]);
-
- /* Optional GNU/Linux-specific "registers". */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
- if (feature)
- {
- tdesc_numbered_register (feature, tdesc_data,
- S390_ORIG_R2_REGNUM, "orig_r2");
-
- if (tdesc_numbered_register (feature, tdesc_data,
- S390_LAST_BREAK_REGNUM, "last_break"))
- have_linux_v1 = 1;
-
- if (tdesc_numbered_register (feature, tdesc_data,
- S390_SYSTEM_CALL_REGNUM, "system_call"))
- have_linux_v2 = 1;
-
- if (have_linux_v2 > have_linux_v1)
- valid_p = 0;
- }
-
- if (!valid_p)
- {
- tdesc_data_cleanup (tdesc_data);
- return NULL;
- }
- }
-
- /* Find a candidate among extant architectures. */
- for (arches = gdbarch_list_lookup_by_info (arches, &info);
- arches != NULL;
- arches = gdbarch_list_lookup_by_info (arches->next, &info))
- {
- tdep = gdbarch_tdep (arches->gdbarch);
- if (!tdep)
- continue;
- if (tdep->abi != tdep_abi)
- continue;
- if ((tdep->gpr_full_regnum != -1) != have_upper)
- continue;
- if (tdesc_data != NULL)
- tdesc_data_cleanup (tdesc_data);
- return arches->gdbarch;
- }
-
- /* Otherwise create a new gdbarch for the specified machine type. */
- tdep = XCALLOC (1, struct gdbarch_tdep);
- tdep->abi = tdep_abi;
- gdbarch = gdbarch_alloc (&info, tdep);
-
- set_gdbarch_believe_pcc_promotion (gdbarch, 0);
- set_gdbarch_char_signed (gdbarch, 0);
-
- /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
- We can safely let them default to 128-bit, since the debug info
- will give the size of type actually used in each case. */
- set_gdbarch_long_double_bit (gdbarch, 128);
- set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
-
- /* Amount PC must be decremented by after a breakpoint. This is
- often the number of bytes returned by gdbarch_breakpoint_from_pc but not
- always. */
- set_gdbarch_decr_pc_after_break (gdbarch, 2);
- /* Stack grows downward. */
- set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
- set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
- set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
- set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
-
- set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
- set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
- set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
- set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
- set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
- set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
- set_gdbarch_regset_from_core_section (gdbarch,
- s390_regset_from_core_section);
- set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
- set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
- set_gdbarch_write_pc (gdbarch, s390_write_pc);
- set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
- set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
- set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
- set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
- set_tdesc_pseudo_register_reggroup_p (gdbarch,
- s390_pseudo_register_reggroup_p);
- tdesc_use_registers (gdbarch, tdesc, tdesc_data);
-
- /* Assign pseudo register numbers. */
- first_pseudo_reg = gdbarch_num_regs (gdbarch);
- last_pseudo_reg = first_pseudo_reg;
- tdep->gpr_full_regnum = -1;
- if (have_upper)
- {
- tdep->gpr_full_regnum = last_pseudo_reg;
- last_pseudo_reg += 16;
- }
- tdep->pc_regnum = last_pseudo_reg++;
- tdep->cc_regnum = last_pseudo_reg++;
- set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
- set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
-
- /* Inferior function calls. */
- set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
- set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
- set_gdbarch_frame_align (gdbarch, s390_frame_align);
- set_gdbarch_return_value (gdbarch, s390_return_value);
-
- /* Frame handling. */
- dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
- dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
- dwarf2_append_unwinders (gdbarch);
- frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
- frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
- frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
- frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
- frame_base_set_default (gdbarch, &s390_frame_base);
- set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
- set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
-
- /* Displaced stepping. */
- set_gdbarch_displaced_step_copy_insn (gdbarch,
- simple_displaced_step_copy_insn);
- set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
- set_gdbarch_displaced_step_free_closure (gdbarch,
- simple_displaced_step_free_closure);
- set_gdbarch_displaced_step_location (gdbarch,
- displaced_step_at_entry_point);
- set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
-
- /* Note that GNU/Linux is the only OS supported on this
- platform. */
- linux_init_abi (info, gdbarch);
-
- switch (tdep->abi)
- {
- case ABI_LINUX_S390:
- tdep->gregset = &s390_gregset;
- tdep->sizeof_gregset = s390_sizeof_gregset;
- tdep->fpregset = &s390_fpregset;
- tdep->sizeof_fpregset = s390_sizeof_fpregset;
-
- set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
- set_solib_svr4_fetch_link_map_offsets
- (gdbarch, svr4_ilp32_fetch_link_map_offsets);
-
- if (have_upper)
- {
- if (have_linux_v2)
- set_gdbarch_core_regset_sections (gdbarch,
- s390_linux64v2_regset_sections);
- else if (have_linux_v1)
- set_gdbarch_core_regset_sections (gdbarch,
- s390_linux64v1_regset_sections);
- else
- set_gdbarch_core_regset_sections (gdbarch,
- s390_linux64_regset_sections);
- }
- else
- {
- if (have_linux_v2)
- set_gdbarch_core_regset_sections (gdbarch,
- s390_linux32v2_regset_sections);
- else if (have_linux_v1)
- set_gdbarch_core_regset_sections (gdbarch,
- s390_linux32v1_regset_sections);
- else
- set_gdbarch_core_regset_sections (gdbarch,
- s390_linux32_regset_sections);
- }
- break;
-
- case ABI_LINUX_ZSERIES:
- tdep->gregset = &s390x_gregset;
- tdep->sizeof_gregset = s390x_sizeof_gregset;
- tdep->fpregset = &s390_fpregset;
- tdep->sizeof_fpregset = s390_sizeof_fpregset;
-
- set_gdbarch_long_bit (gdbarch, 64);
- set_gdbarch_long_long_bit (gdbarch, 64);
- set_gdbarch_ptr_bit (gdbarch, 64);
- set_solib_svr4_fetch_link_map_offsets
- (gdbarch, svr4_lp64_fetch_link_map_offsets);
- set_gdbarch_address_class_type_flags (gdbarch,
- s390_address_class_type_flags);
- set_gdbarch_address_class_type_flags_to_name (gdbarch,
- s390_address_class_type_flags_to_name);
- set_gdbarch_address_class_name_to_type_flags (gdbarch,
- s390_address_class_name_to_type_flags);
-
- if (have_linux_v2)
- set_gdbarch_core_regset_sections (gdbarch,
- s390x_linux64v2_regset_sections);
- else if (have_linux_v1)
- set_gdbarch_core_regset_sections (gdbarch,
- s390x_linux64v1_regset_sections);
- else
- set_gdbarch_core_regset_sections (gdbarch,
- s390x_linux64_regset_sections);
- break;
- }
-
- set_gdbarch_print_insn (gdbarch, print_insn_s390);
-
- set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
-
- /* Enable TLS support. */
- set_gdbarch_fetch_tls_load_module_address (gdbarch,
- svr4_fetch_objfile_link_map);
-
- set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
-
- /* SystemTap functions. */
- set_gdbarch_stap_register_prefix (gdbarch, "%");
- set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
- set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
- set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand);
-
- return gdbarch;
-}
-
-
-extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
-
-void
-_initialize_s390_tdep (void)
-{
- /* Hook us into the gdbarch mechanism. */
- register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
-
- /* Initialize the GNU/Linux target descriptions. */
- initialize_tdesc_s390_linux32 ();
- initialize_tdesc_s390_linux32v1 ();
- initialize_tdesc_s390_linux32v2 ();
- initialize_tdesc_s390_linux64 ();
- initialize_tdesc_s390_linux64v1 ();
- initialize_tdesc_s390_linux64v2 ();
- initialize_tdesc_s390x_linux64 ();
- initialize_tdesc_s390x_linux64v1 ();
- initialize_tdesc_s390x_linux64v2 ();
-}
« no previous file with comments | « gdb/s390-tdep.h ('k') | gdb/score-tdep.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698