Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(23)

Side by Side Diff: gdb/ppc64-tdep.c

Issue 124383005: GDB 7.6.50 (Closed) Base URL: http://git.chromium.org/native_client/nacl-gdb.git@upstream
Patch Set: Created 6 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « gdb/ppc64-tdep.h ('k') | gdb/ppcbug-rom.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "gdbcore.h"
23 #include "ppc-tdep.h"
24 #include "ppc64-tdep.h"
25 #include "elf-bfd.h"
26
27 /* Macros for matching instructions. Note that, since all the
28 operands are masked off before they're or-ed into the instruction,
29 you can use -1 to make masks. */
30
31 #define insn_d(opcd, rts, ra, d) \
32 ((((opcd) & 0x3f) << 26) \
33 | (((rts) & 0x1f) << 21) \
34 | (((ra) & 0x1f) << 16) \
35 | ((d) & 0xffff))
36
37 #define insn_ds(opcd, rts, ra, d, xo) \
38 ((((opcd) & 0x3f) << 26) \
39 | (((rts) & 0x1f) << 21) \
40 | (((ra) & 0x1f) << 16) \
41 | ((d) & 0xfffc) \
42 | ((xo) & 0x3))
43
44 #define insn_xfx(opcd, rts, spr, xo) \
45 ((((opcd) & 0x3f) << 26) \
46 | (((rts) & 0x1f) << 21) \
47 | (((spr) & 0x1f) << 16) \
48 | (((spr) & 0x3e0) << 6) \
49 | (((xo) & 0x3ff) << 1))
50
51 /* If PLT is the address of a 64-bit PowerPC PLT entry,
52 return the function's entry point. */
53
54 static CORE_ADDR
55 ppc64_plt_entry_point (struct gdbarch *gdbarch, CORE_ADDR plt)
56 {
57 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
58 /* The first word of the PLT entry is the function entry point. */
59 return (CORE_ADDR) read_memory_unsigned_integer (plt, 8, byte_order);
60 }
61
62 /* Patterns for the standard linkage functions. These are built by
63 build_plt_stub in bfd/elf64-ppc.c. */
64
65 /* Old ELFv1 PLT call stub. */
66
67 static struct ppc_insn_pattern ppc64_standard_linkage1[] =
68 {
69 /* addis r12, r2, <any> */
70 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
71
72 /* std r2, 40(r1) */
73 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
74
75 /* ld r11, <any>(r12) */
76 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
77
78 /* addis r12, r12, 1 <optional> */
79 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
80
81 /* ld r2, <any>(r12) */
82 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
83
84 /* addis r12, r12, 1 <optional> */
85 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
86
87 /* mtctr r11 */
88 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
89
90 /* ld r11, <any>(r12) <optional> */
91 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
92
93 /* bctr */
94 { -1, 0x4e800420, 0 },
95
96 { 0, 0, 0 }
97 };
98
99 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
100 Also supports older stub with different placement of std 2,40(1),
101 a stub that omits the std 2,40(1), and both versions of power7
102 thread safety read barriers. Note that there are actually two more
103 instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
104 but there isn't any need to match them. */
105
106 static struct ppc_insn_pattern ppc64_standard_linkage2[] =
107 {
108 /* std r2, 40(r1) <optional> */
109 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
110
111 /* addis r12, r2, <any> */
112 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
113
114 /* std r2, 40(r1) <optional> */
115 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
116
117 /* ld r11, <any>(r12) */
118 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
119
120 /* addi r12, r12, <any> <optional> */
121 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
122
123 /* mtctr r11 */
124 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
125
126 /* xor r11, r11, r11 <optional> */
127 { -1, 0x7d6b5a78, 1 },
128
129 /* add r12, r12, r11 <optional> */
130 { -1, 0x7d8c5a14, 1 },
131
132 /* ld r2, <any>(r12) */
133 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
134
135 /* ld r11, <any>(r12) <optional> */
136 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
137
138 /* bctr <optional> */
139 { -1, 0x4e800420, 1 },
140
141 /* cmpldi r2, 0 <optional> */
142 { -1, 0x28220000, 1 },
143
144 { 0, 0, 0 }
145 };
146
147 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2. */
148
149 static struct ppc_insn_pattern ppc64_standard_linkage3[] =
150 {
151 /* std r2, 40(r1) <optional> */
152 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
153
154 /* ld r11, <any>(r2) */
155 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
156
157 /* addi r2, r2, <any> <optional> */
158 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
159
160 /* mtctr r11 */
161 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
162
163 /* xor r11, r11, r11 <optional> */
164 { -1, 0x7d6b5a78, 1 },
165
166 /* add r2, r2, r11 <optional> */
167 { -1, 0x7c425a14, 1 },
168
169 /* ld r11, <any>(r2) <optional> */
170 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
171
172 /* ld r2, <any>(r2) */
173 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
174
175 /* bctr <optional> */
176 { -1, 0x4e800420, 1 },
177
178 /* cmpldi r2, 0 <optional> */
179 { -1, 0x28220000, 1 },
180
181 { 0, 0, 0 }
182 };
183
184 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
185 A more modern variant of ppc64_standard_linkage2 differing in
186 register usage. */
187
188 static struct ppc_insn_pattern ppc64_standard_linkage4[] =
189 {
190 /* std r2, 40(r1) <optional> */
191 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
192
193 /* addis r11, r2, <any> */
194 { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
195
196 /* ld r12, <any>(r11) */
197 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
198
199 /* addi r11, r11, <any> <optional> */
200 { insn_d (-1, -1, -1, 0), insn_d (14, 11, 11, 0), 1 },
201
202 /* mtctr r12 */
203 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
204
205 /* xor r2, r12, r12 <optional> */
206 { -1, 0x7d826278, 1 },
207
208 /* add r11, r11, r2 <optional> */
209 { -1, 0x7d6b1214, 1 },
210
211 /* ld r2, <any>(r11) */
212 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 11, 0, 0), 0 },
213
214 /* ld r11, <any>(r11) <optional> */
215 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 11, 0, 0), 1 },
216
217 /* bctr <optional> */
218 { -1, 0x4e800420, 1 },
219
220 /* cmpldi r2, 0 <optional> */
221 { -1, 0x28220000, 1 },
222
223 { 0, 0, 0 }
224 };
225
226 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.
227 A more modern variant of ppc64_standard_linkage3 differing in
228 register usage. */
229
230 static struct ppc_insn_pattern ppc64_standard_linkage5[] =
231 {
232 /* std r2, 40(r1) <optional> */
233 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
234
235 /* ld r12, <any>(r2) */
236 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
237
238 /* addi r2, r2, <any> <optional> */
239 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
240
241 /* mtctr r12 */
242 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
243
244 /* xor r11, r12, r12 <optional> */
245 { -1, 0x7d8b6278, 1 },
246
247 /* add r2, r2, r11 <optional> */
248 { -1, 0x7c425a14, 1 },
249
250 /* ld r11, <any>(r2) <optional> */
251 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
252
253 /* ld r2, <any>(r2) */
254 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
255
256 /* bctr <optional> */
257 { -1, 0x4e800420, 1 },
258
259 /* cmpldi r2, 0 <optional> */
260 { -1, 0x28220000, 1 },
261
262 { 0, 0, 0 }
263 };
264
265 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2. */
266
267 static struct ppc_insn_pattern ppc64_standard_linkage6[] =
268 {
269 /* std r2, 24(r1) <optional> */
270 { -1, insn_ds (62, 2, 1, 24, 0), 1 },
271
272 /* addis r11, r2, <any> */
273 { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
274
275 /* ld r12, <any>(r11) */
276 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
277
278 /* mtctr r12 */
279 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
280
281 /* bctr */
282 { -1, 0x4e800420, 0 },
283
284 { 0, 0, 0 }
285 };
286
287 /* ELFv2 PLT call stub to access PLT entries within +/- 32k of r2. */
288
289 static struct ppc_insn_pattern ppc64_standard_linkage7[] =
290 {
291 /* std r2, 24(r1) <optional> */
292 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
293
294 /* ld r12, <any>(r2) */
295 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
296
297 /* mtctr r12 */
298 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
299
300 /* bctr */
301 { -1, 0x4e800420, 0 },
302
303 { 0, 0, 0 }
304 };
305
306 /* When the dynamic linker is doing lazy symbol resolution, the first
307 call to a function in another object will go like this:
308
309 - The user's function calls the linkage function:
310
311 100003d4: 4b ff ff ad bl 10000380 <nnnn.plt_call.printf>
312 100003d8: e8 41 00 28 ld r2,40(r1)
313
314 - The linkage function loads the entry point and toc pointer from
315 the function descriptor in the PLT, and jumps to it:
316
317 <nnnn.plt_call.printf>:
318 10000380: f8 41 00 28 std r2,40(r1)
319 10000384: e9 62 80 78 ld r11,-32648(r2)
320 10000388: 7d 69 03 a6 mtctr r11
321 1000038c: e8 42 80 80 ld r2,-32640(r2)
322 10000390: 28 22 00 00 cmpldi r2,0
323 10000394: 4c e2 04 20 bnectr+
324 10000398: 48 00 03 a0 b 10000738 <printf@plt>
325
326 - But since this is the first time that PLT entry has been used, it
327 sends control to its glink entry. That loads the number of the
328 PLT entry and jumps to the common glink0 code:
329
330 <printf@plt>:
331 10000738: 38 00 00 01 li r0,1
332 1000073c: 4b ff ff bc b 100006f8 <__glink_PLTresolve>
333
334 - The common glink0 code then transfers control to the dynamic
335 linker's fixup code:
336
337 100006f0: 0000000000010440 .quad plt0 - (. + 16)
338 <__glink_PLTresolve>:
339 100006f8: 7d 88 02 a6 mflr r12
340 100006fc: 42 9f 00 05 bcl 20,4*cr7+so,10000700
341 10000700: 7d 68 02 a6 mflr r11
342 10000704: e8 4b ff f0 ld r2,-16(r11)
343 10000708: 7d 88 03 a6 mtlr r12
344 1000070c: 7d 82 5a 14 add r12,r2,r11
345 10000710: e9 6c 00 00 ld r11,0(r12)
346 10000714: e8 4c 00 08 ld r2,8(r12)
347 10000718: 7d 69 03 a6 mtctr r11
348 1000071c: e9 6c 00 10 ld r11,16(r12)
349 10000720: 4e 80 04 20 bctr
350
351 Eventually, this code will figure out how to skip all of this,
352 including the dynamic linker. At the moment, we just get through
353 the linkage function. */
354
355 /* If the current thread is about to execute a series of instructions
356 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
357 from that pattern match, return the code address to which the
358 standard linkage function will send them. (This doesn't deal with
359 dynamic linker lazy symbol resolution stubs.) */
360
361 static CORE_ADDR
362 ppc64_standard_linkage1_target (struct frame_info *frame,
363 CORE_ADDR pc, unsigned int *insn)
364 {
365 struct gdbarch *gdbarch = get_frame_arch (frame);
366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
367
368 /* The address of the PLT entry this linkage function references. */
369 CORE_ADDR plt
370 = ((CORE_ADDR) get_frame_register_unsigned (frame,
371 tdep->ppc_gp0_regnum + 2)
372 + (ppc_insn_d_field (insn[0]) << 16)
373 + ppc_insn_ds_field (insn[2]));
374
375 return ppc64_plt_entry_point (gdbarch, plt);
376 }
377
378 static CORE_ADDR
379 ppc64_standard_linkage2_target (struct frame_info *frame,
380 CORE_ADDR pc, unsigned int *insn)
381 {
382 struct gdbarch *gdbarch = get_frame_arch (frame);
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 /* The address of the PLT entry this linkage function references. */
386 CORE_ADDR plt
387 = ((CORE_ADDR) get_frame_register_unsigned (frame,
388 tdep->ppc_gp0_regnum + 2)
389 + (ppc_insn_d_field (insn[1]) << 16)
390 + ppc_insn_ds_field (insn[3]));
391
392 return ppc64_plt_entry_point (gdbarch, plt);
393 }
394
395 static CORE_ADDR
396 ppc64_standard_linkage3_target (struct frame_info *frame,
397 CORE_ADDR pc, unsigned int *insn)
398 {
399 struct gdbarch *gdbarch = get_frame_arch (frame);
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 /* The address of the PLT entry this linkage function references. */
403 CORE_ADDR plt
404 = ((CORE_ADDR) get_frame_register_unsigned (frame,
405 tdep->ppc_gp0_regnum + 2)
406 + ppc_insn_ds_field (insn[1]));
407
408 return ppc64_plt_entry_point (gdbarch, plt);
409 }
410
411 static CORE_ADDR
412 ppc64_standard_linkage4_target (struct frame_info *frame,
413 CORE_ADDR pc, unsigned int *insn)
414 {
415 struct gdbarch *gdbarch = get_frame_arch (frame);
416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417
418 CORE_ADDR plt
419 = ((CORE_ADDR) get_frame_register_unsigned (frame, tdep->ppc_gp0_regnum + 2)
420 + (ppc_insn_d_field (insn[1]) << 16)
421 + ppc_insn_ds_field (insn[2]));
422
423 return ppc64_plt_entry_point (gdbarch, plt);
424 }
425
426
427 /* Given that we've begun executing a call trampoline at PC, return
428 the entry point of the function the trampoline will go to. */
429
430 CORE_ADDR
431 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
432 {
433 #define MAX(a,b) ((a) > (b) ? (a) : (b))
434 unsigned int insns[MAX (MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1),
435 ARRAY_SIZE (ppc64_standard_linkage2)),
436 MAX (ARRAY_SIZE (ppc64_standard_linkage3),
437 ARRAY_SIZE (ppc64_standard_linkage4))),
438 MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage5),
439 ARRAY_SIZE (ppc64_standard_linkage6)),
440 ARRAY_SIZE (ppc64_standard_linkage7))) - 1];
441 CORE_ADDR target;
442
443 if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage7, insns))
444 pc = ppc64_standard_linkage3_target (frame, pc, insns);
445 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage6, insns))
446 pc = ppc64_standard_linkage4_target (frame, pc, insns);
447 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage5, insns)
448 && (insns[8] != 0 || insns[9] != 0))
449 pc = ppc64_standard_linkage3_target (frame, pc, insns);
450 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage4, insns)
451 && (insns[9] != 0 || insns[10] != 0))
452 pc = ppc64_standard_linkage4_target (frame, pc, insns);
453 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage3, insns)
454 && (insns[8] != 0 || insns[9] != 0))
455 pc = ppc64_standard_linkage3_target (frame, pc, insns);
456 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage2, insns)
457 && (insns[10] != 0 || insns[11] != 0))
458 pc = ppc64_standard_linkage2_target (frame, pc, insns);
459 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage1, insns))
460 pc = ppc64_standard_linkage1_target (frame, pc, insns);
461 else
462 return 0;
463
464 /* The PLT descriptor will either point to the already resolved target
465 address, or else to a glink stub. As the latter carry synthetic @plt
466 symbols, find_solib_trampoline_target should be able to resolve them. */
467 target = find_solib_trampoline_target (frame, pc);
468 return target ? target : pc;
469 }
470
471 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
472 GNU/Linux.
473
474 Usually a function pointer's representation is simply the address
475 of the function. On GNU/Linux on the PowerPC however, a function
476 pointer may be a pointer to a function descriptor.
477
478 For PPC64, a function descriptor is a TOC entry, in a data section,
479 which contains three words: the first word is the address of the
480 function, the second word is the TOC pointer (r2), and the third word
481 is the static chain value.
482
483 Throughout GDB it is currently assumed that a function pointer contains
484 the address of the function, which is not easy to fix. In addition, the
485 conversion of a function address to a function pointer would
486 require allocation of a TOC entry in the inferior's memory space,
487 with all its drawbacks. To be able to call C++ virtual methods in
488 the inferior (which are called via function pointers),
489 find_function_addr uses this function to get the function address
490 from a function pointer.
491
492 If ADDR points at what is clearly a function descriptor, transform
493 it into the address of the corresponding function, if needed. Be
494 conservative, otherwise GDB will do the transformation on any
495 random addresses such as occur when there is no symbol table. */
496
497 CORE_ADDR
498 ppc64_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
499 CORE_ADDR addr,
500 struct target_ops *targ)
501 {
502 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
503 struct target_section *s = target_section_by_addr (targ, addr);
504
505 /* Check if ADDR points to a function descriptor. */
506 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
507 {
508 /* There may be relocations that need to be applied to the .opd
509 section. Unfortunately, this function may be called at a time
510 where these relocations have not yet been performed -- this can
511 happen for example shortly after a library has been loaded with
512 dlopen, but ld.so has not yet applied the relocations.
513
514 To cope with both the case where the relocation has been applied,
515 and the case where it has not yet been applied, we do *not* read
516 the (maybe) relocated value from target memory, but we instead
517 read the non-relocated value from the BFD, and apply the relocation
518 offset manually.
519
520 This makes the assumption that all .opd entries are always relocated
521 by the same offset the section itself was relocated. This should
522 always be the case for GNU/Linux executables and shared libraries.
523 Note that other kind of object files (e.g. those added via
524 add-symbol-files) will currently never end up here anyway, as this
525 function accesses *target* sections only; only the main exec and
526 shared libraries are ever added to the target. */
527
528 gdb_byte buf[8];
529 int res;
530
531 res = bfd_get_section_contents (s->the_bfd_section->owner,
532 s->the_bfd_section,
533 &buf, addr - s->addr, 8);
534 if (res != 0)
535 return extract_unsigned_integer (buf, 8, byte_order)
536 - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
537 }
538
539 return addr;
540 }
541
542 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
543 back to the original ELF symbol it was derived from. Get the size
544 from that symbol. */
545
546 void
547 ppc64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
548 {
549 if ((sym->flags & BSF_SYNTHETIC) != 0 && sym->udata.p != NULL)
550 {
551 elf_symbol_type *elf_sym = (elf_symbol_type *) sym->udata.p;
552 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
553 }
554 }
OLDNEW
« no previous file with comments | « gdb/ppc64-tdep.h ('k') | gdb/ppcbug-rom.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698