Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(383)

Side by Side Diff: scripts/slave/recipe_modules/math_utils/api.py

Issue 1241323004: Cross-repo recipe package system. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/tools/build
Patch Set: Roll to latest recipes-py Created 5 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 # Copyright 2015 The Chromium Authors. All rights reserved.
2 # Use of this source code is governed by a BSD-style license that can be
3 # found in the LICENSE file.
4
5 """General statistical or mathematical functions."""
6
7 import math
8
9 from recipe_engine import recipe_api
10
11
12 class MathUtilsApi(recipe_api.RecipeApi):
13
14 @staticmethod
15 def truncated_mean(data_set, truncate_fraction):
16 """Calculates the truncated mean of a set of values.
17
18 Note that this isn't just the mean of the set of values with the highest
19 and lowest values discarded; the non-discarded values are also weighted
20 differently depending how many values are discarded.
21
22 Args:
23 data_set: Non-empty list of values.
24 truncate_fraction: How much of the upper and lower portions of the data
25 set to discard, expressed as a value in [0, 0.5).
26
27 Returns:
28 The truncated mean as a float.
29
30 Raises:
31 TypeError: The data set was empty after discarding values.
32 """
33 if truncate_fraction >= 0.5:
34 raise ValueError('Trying to truncate %d percent of the list.' %
35 (200 * truncate_fraction))
36 if len(data_set) > 2:
37 data_set = sorted(data_set)
38
39 discard_num_float = len(data_set) * truncate_fraction
40 discard_num_int = int(math.floor(discard_num_float))
41 kept_weight = len(data_set) - discard_num_float * 2
42
43 data_set = data_set[discard_num_int:len(data_set)-discard_num_int]
44
45 weight_left = 1.0 - (discard_num_float - discard_num_int)
46
47 if weight_left < 1:
48 # If the % to discard leaves a fractional portion, need to weight those
49 # values.
50 unweighted_vals = data_set[1:len(data_set)-1]
51 weighted_vals = [data_set[0], data_set[len(data_set)-1]]
52 weighted_vals = [w * weight_left for w in weighted_vals]
53 data_set = weighted_vals + unweighted_vals
54 else:
55 kept_weight = len(data_set)
56
57 _truncated_mean = reduce(lambda x, y: float(x) + float(y),
58 data_set) / kept_weight
59 return _truncated_mean
60
61 @staticmethod
62 def mean(values):
63 """Calculates the arithmetic mean of a list of values."""
64 return MathUtilsApi.truncated_mean(values, 0.0)
65
66 @staticmethod
67 def variance(values):
68 """Calculates the sample variance."""
69 if len(values) == 1:
70 return 0.0
71 mean = MathUtilsApi.mean(values)
72 differences_from_mean = [float(x) - mean for x in values]
73 squared_differences = [float(x * x) for x in differences_from_mean]
74 _variance = sum(squared_differences) / (len(values) - 1)
75 return _variance
76
77 @staticmethod
78 def standard_deviation(values):
79 """Calculates the sample standard deviation of the given list of values."""
80 return math.sqrt(MathUtilsApi.variance(values))
81
82 @staticmethod
83 def relative_change(before, after):
84 """Returns the relative change of before and after, relative to before.
85
86 There are several different ways to define relative difference between
87 two numbers; sometimes it is defined as relative to the smaller number,
88 or to the mean of the two numbers. This version returns the difference
89 relative to the first of the two numbers.
90
91 Args:
92 before: A number representing an earlier value.
93 after: Another number, representing a later value.
94
95 Returns:
96 A non-negative floating point number; 0.1 represents a 10% change.
97 """
98 if before == after:
99 return 0.0
100 if before == 0:
101 return float('nan')
102 difference = after - before
103 return math.fabs(difference / before)
104
105 @staticmethod
106 def pooled_standard_error(work_sets):
107 """Calculates the pooled sample standard error for a set of samples.
108
109 Args:
110 work_sets: A collection of collections of numbers.
111
112 Returns:
113 Pooled sample standard error.
114 """
115 numerator = 0.0
116 denominator1 = 0.0
117 denominator2 = 0.0
118
119 for current_set in work_sets:
120 std_dev = MathUtilsApi.standard_deviation(current_set)
121 numerator += (len(current_set) - 1) * std_dev ** 2
122 denominator1 += len(current_set) - 1
123 if len(current_set) > 0:
124 denominator2 += 1.0 / len(current_set)
125
126 if denominator1 == 0:
127 return 0.0
128
129 return math.sqrt(numerator / denominator1) * math.sqrt(denominator2)
130
131 @staticmethod
132 def standard_error(values):
133 """Calculates the standard error of a list of values."""
134 if len(values) <= 1:
135 return 0.0
136 std_dev = MathUtilsApi.standard_deviation(values)
137 return std_dev / math.sqrt(len(values))
138
139 #Copied this from BisectResults
140 @staticmethod
141 def confidence_score(sample1, sample2,
142 accept_single_bad_or_good=False):
143 """Calculates a confidence score.
144
145 This score is a percentage which represents our degree of confidence in the
146 proposition that the good results and bad results are distinct groups, and
147 their differences aren't due to chance alone.
148
149
150 Args:
151 sample1: A flat list of "good" result numbers.
152 sample2: A flat list of "bad" result numbers.
153 accept_single_bad_or_good: If True, computes confidence even if there is
154 just one bad or good revision, otherwise single good or bad revision
155 always returns 0.0 confidence. This flag will probably get away when
156 we will implement expanding the bisect range by one more revision for
157 such case.
158
159 Returns:
160 A number in the range [0, 100].
161 """
162 # If there's only one item in either list, this means only one revision was
163 # classified good or bad; this isn't good enough evidence to make a
164 # decision. If an empty list was passed, that also implies zero confidence.
165 if not accept_single_bad_or_good:
166 if len(sample1) <= 1 or len(sample2) <= 1:
167 return 0.0
168
169 # If there were only empty lists in either of the lists (this is unexpected
170 # and normally shouldn't happen), then we also want to return 0.
171 if not sample1 or not sample2:
172 return 0.0
173
174 # The p-value is approximately the probability of obtaining the given set
175 # of good and bad values just by chance.
176 _, _, p_value = MathUtilsApi.welchs_t_test(sample1, sample2)
177 return 100.0 * (1.0 - p_value)
178
179 @staticmethod
180 def welchs_t_test(sample1, sample2):
181 """Performs Welch's t-test on the two samples.
182
183 Welch's t-test is an adaptation of Student's t-test which is used when the
184 two samples may have unequal variances. It is also an independent two-sample
185 t-test.
186
187 Args:
188 sample1: A collection of numbers.
189 sample2: Another collection of numbers.
190
191 Returns:
192 A 3-tuple (t-statistic, degrees of freedom, p-value).
193 """
194 mean1 = MathUtilsApi.mean(sample1)
195 mean2 = MathUtilsApi.mean(sample2)
196 v1 = MathUtilsApi.variance(sample1)
197 v2 = MathUtilsApi.variance(sample2)
198 n1 = len(sample1)
199 n2 = len(sample2)
200 t = MathUtilsApi._t_value(mean1, mean2, v1, v2, n1, n2)
201 df = MathUtilsApi._degrees_of_freedom(v1, v2, n1, n2)
202 p = MathUtilsApi._lookup_p_value(t, df)
203 return t, df, p
204
205 @staticmethod
206 def _t_value(mean1, mean2, v1, v2, n1, n2):
207 """Calculates a t-statistic value using the formula for Welch's t-test.
208
209 The t value can be thought of as a signal-to-noise ratio; a higher t-value
210 tells you that the groups are more different.
211
212 Args:
213 mean1: Mean of sample 1.
214 mean2: Mean of sample 2.
215 v1: Variance of sample 1.
216 v2: Variance of sample 2.
217 n1: Sample size of sample 1.
218 n2: Sample size of sample 2.
219
220 Returns:
221 A t value, which may be negative or positive.
222 """
223 # If variance of both segments is zero, return some large t-value.
224 if v1 == 0 and v2 == 0:
225 return 1000.0
226 return (mean1 - mean2) / (math.sqrt(v1 / n1 + v2 / n2))
227
228 @staticmethod
229 def _degrees_of_freedom(v1, v2, n1, n2):
230 """Calculates degrees of freedom using the Welch-Satterthwaite formula.
231
232 Degrees of freedom is a measure of sample size. For other types of tests,
233 degrees of freedom is sometimes N - 1, where N is the sample size. However,
234
235 Args:
236 v1: Variance of sample 1.
237 v2: Variance of sample 2.
238 n1: Size of sample 2.
239 n2: Size of sample 2.
240
241 Returns:
242 An estimate of degrees of freedom. Must be at least 1.0.
243 """
244 # When there's no variance in either sample, return 1.
245 if v1 == 0 and v2 == 0:
246 return 1
247 # If the sample size is too small, also return the minimum (1).
248 if n1 <= 1 or n2 <= 2:
249 return 1
250 df = (((v1 / n1 + v2 / n2) ** 2) /
251 ((v1 ** 2) / ((n1 ** 2) * (n1 - 1)) +
252 (v2 ** 2) / ((n2 ** 2) * (n2 - 1))))
253 return max(1, df)
254
255 # Below is a hard-coded table for looking up p-values.
256 #
257 # Normally, p-values are calculated based on the t-distribution formula.
258 # Looking up pre-calculated values is a less accurate but less complicated
259 # alternative.
260 #
261 # Reference: http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
262
263 # A list of p-values for a two-tailed test. The entries correspond to to
264 # entries in the rows of the table below.
265 TWO_TAIL = [1, 0.20, 0.10, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001]
266
267 # A map of degrees of freedom to lists of t-values. The index of the t-value
268 # can be used to look up the corresponding p-value.
269 TABLE = {
270 1: [0, 3.078, 6.314, 12.706, 31.820, 63.657, 127.321, 318.309, 636.619],
271 2: [0, 1.886, 2.920, 4.303, 6.965, 9.925, 14.089, 22.327, 31.599],
272 3: [0, 1.638, 2.353, 3.182, 4.541, 5.841, 7.453, 10.215, 12.924],
273 4: [0, 1.533, 2.132, 2.776, 3.747, 4.604, 5.598, 7.173, 8.610],
274 5: [0, 1.476, 2.015, 2.571, 3.365, 4.032, 4.773, 5.893, 6.869],
275 6: [0, 1.440, 1.943, 2.447, 3.143, 3.707, 4.317, 5.208, 5.959],
276 7: [0, 1.415, 1.895, 2.365, 2.998, 3.499, 4.029, 4.785, 5.408],
277 8: [0, 1.397, 1.860, 2.306, 2.897, 3.355, 3.833, 4.501, 5.041],
278 9: [0, 1.383, 1.833, 2.262, 2.821, 3.250, 3.690, 4.297, 4.781],
279 10: [0, 1.372, 1.812, 2.228, 2.764, 3.169, 3.581, 4.144, 4.587],
280 11: [0, 1.363, 1.796, 2.201, 2.718, 3.106, 3.497, 4.025, 4.437],
281 12: [0, 1.356, 1.782, 2.179, 2.681, 3.055, 3.428, 3.930, 4.318],
282 13: [0, 1.350, 1.771, 2.160, 2.650, 3.012, 3.372, 3.852, 4.221],
283 14: [0, 1.345, 1.761, 2.145, 2.625, 2.977, 3.326, 3.787, 4.140],
284 15: [0, 1.341, 1.753, 2.131, 2.602, 2.947, 3.286, 3.733, 4.073],
285 16: [0, 1.337, 1.746, 2.120, 2.584, 2.921, 3.252, 3.686, 4.015],
286 17: [0, 1.333, 1.740, 2.110, 2.567, 2.898, 3.222, 3.646, 3.965],
287 18: [0, 1.330, 1.734, 2.101, 2.552, 2.878, 3.197, 3.610, 3.922],
288 19: [0, 1.328, 1.729, 2.093, 2.539, 2.861, 3.174, 3.579, 3.883],
289 20: [0, 1.325, 1.725, 2.086, 2.528, 2.845, 3.153, 3.552, 3.850],
290 21: [0, 1.323, 1.721, 2.080, 2.518, 2.831, 3.135, 3.527, 3.819],
291 22: [0, 1.321, 1.717, 2.074, 2.508, 2.819, 3.119, 3.505, 3.792],
292 23: [0, 1.319, 1.714, 2.069, 2.500, 2.807, 3.104, 3.485, 3.768],
293 24: [0, 1.318, 1.711, 2.064, 2.492, 2.797, 3.090, 3.467, 3.745],
294 25: [0, 1.316, 1.708, 2.060, 2.485, 2.787, 3.078, 3.450, 3.725],
295 26: [0, 1.315, 1.706, 2.056, 2.479, 2.779, 3.067, 3.435, 3.707],
296 27: [0, 1.314, 1.703, 2.052, 2.473, 2.771, 3.057, 3.421, 3.690],
297 28: [0, 1.313, 1.701, 2.048, 2.467, 2.763, 3.047, 3.408, 3.674],
298 29: [0, 1.311, 1.699, 2.045, 2.462, 2.756, 3.038, 3.396, 3.659],
299 30: [0, 1.310, 1.697, 2.042, 2.457, 2.750, 3.030, 3.385, 3.646],
300 31: [0, 1.309, 1.695, 2.040, 2.453, 2.744, 3.022, 3.375, 3.633],
301 32: [0, 1.309, 1.694, 2.037, 2.449, 2.738, 3.015, 3.365, 3.622],
302 33: [0, 1.308, 1.692, 2.035, 2.445, 2.733, 3.008, 3.356, 3.611],
303 34: [0, 1.307, 1.691, 2.032, 2.441, 2.728, 3.002, 3.348, 3.601],
304 35: [0, 1.306, 1.690, 2.030, 2.438, 2.724, 2.996, 3.340, 3.591],
305 36: [0, 1.306, 1.688, 2.028, 2.434, 2.719, 2.991, 3.333, 3.582],
306 37: [0, 1.305, 1.687, 2.026, 2.431, 2.715, 2.985, 3.326, 3.574],
307 38: [0, 1.304, 1.686, 2.024, 2.429, 2.712, 2.980, 3.319, 3.566],
308 39: [0, 1.304, 1.685, 2.023, 2.426, 2.708, 2.976, 3.313, 3.558],
309 40: [0, 1.303, 1.684, 2.021, 2.423, 2.704, 2.971, 3.307, 3.551],
310 42: [0, 1.302, 1.682, 2.018, 2.418, 2.698, 2.963, 3.296, 3.538],
311 44: [0, 1.301, 1.680, 2.015, 2.414, 2.692, 2.956, 3.286, 3.526],
312 46: [0, 1.300, 1.679, 2.013, 2.410, 2.687, 2.949, 3.277, 3.515],
313 48: [0, 1.299, 1.677, 2.011, 2.407, 2.682, 2.943, 3.269, 3.505],
314 50: [0, 1.299, 1.676, 2.009, 2.403, 2.678, 2.937, 3.261, 3.496],
315 60: [0, 1.296, 1.671, 2.000, 2.390, 2.660, 2.915, 3.232, 3.460],
316 70: [0, 1.294, 1.667, 1.994, 2.381, 2.648, 2.899, 3.211, 3.435],
317 80: [0, 1.292, 1.664, 1.990, 2.374, 2.639, 2.887, 3.195, 3.416],
318 90: [0, 1.291, 1.662, 1.987, 2.369, 2.632, 2.878, 3.183, 3.402],
319 100: [0, 1.290, 1.660, 1.984, 2.364, 2.626, 2.871, 3.174, 3.391],
320 120: [0, 1.289, 1.658, 1.980, 2.358, 2.617, 2.860, 3.160, 3.373],
321 150: [0, 1.287, 1.655, 1.976, 2.351, 2.609, 2.849, 3.145, 3.357],
322 200: [0, 1.286, 1.652, 1.972, 2.345, 2.601, 2.839, 3.131, 3.340],
323 300: [0, 1.284, 1.650, 1.968, 2.339, 2.592, 2.828, 3.118, 3.323],
324 500: [0, 1.283, 1.648, 1.965, 2.334, 2.586, 2.820, 3.107, 3.310],
325 }
326
327 @staticmethod
328 def _lookup_p_value(t, df):
329 """Looks up a p-value in a t-distribution table.
330
331 Args:
332 t: A t statistic value; the result of a t-test.
333 df: Number of degrees of freedom.
334
335 Returns:
336 A p-value, which represents the likelihood of obtaining a result at least
337 as extreme as the one observed just by chance (the null hypothesis).
338 """
339 assert df >= 1, 'Degrees of freedom must be positive'
340
341 # We ignore the negative sign on the t-value because our null hypothesis
342 # is that the two samples are the same; our alternative hypothesis is that
343 # the second sample is lesser OR greater than the first.
344 t = abs(t)
345
346 def greatest_smaller(nums, target):
347 """Returns the largest number that is <= the target number."""
348 lesser_equal = [n for n in nums if n <= target]
349 assert lesser_equal, 'No number in number list <= target.'
350 return max(lesser_equal)
351
352 df_key = greatest_smaller(MathUtilsApi.TABLE.keys(), df)
353 t_table_row = MathUtilsApi.TABLE[df_key]
354 approximate_t_value = greatest_smaller(t_table_row, t)
355 t_value_index = t_table_row.index(approximate_t_value)
356
357 return MathUtilsApi.TWO_TAIL[t_value_index]
OLDNEW
« no previous file with comments | « scripts/slave/recipe_modules/math_utils/__init__.py ('k') | scripts/slave/recipe_modules/path/__init__.py » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698