| Index: pkg/compiler/lib/src/cps_ir/let_sinking.dart
|
| diff --git a/pkg/compiler/lib/src/cps_ir/let_sinking.dart b/pkg/compiler/lib/src/cps_ir/let_sinking.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..c7f2c214d48c14cf6d16fe68e769c0ca124c8179
|
| --- /dev/null
|
| +++ b/pkg/compiler/lib/src/cps_ir/let_sinking.dart
|
| @@ -0,0 +1,243 @@
|
| +// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +library dart2js.cps_ir.let_sinking;
|
| +
|
| +import 'cps_ir_nodes.dart';
|
| +import 'optimizers.dart';
|
| +
|
| +/// Sinks single-use primitives to the use when this is safe and profitable.
|
| +///
|
| +/// To avoid sinking non-constant primitives into loops, this pass performs a
|
| +/// control-flow analysis to determine the effective nesting of loops.
|
| +///
|
| +/// In the example below, the value 'p' can be sunk to its use site in the
|
| +/// 'else' branch because that branch is not effectively part of a loop,
|
| +/// despite being lexically nested in a recursive continuation.
|
| +///
|
| +/// let prim p = getInterceptor(<something>)
|
| +/// let rec kont x =
|
| +/// if (<loop condition>)
|
| +/// <loop body>
|
| +/// InvokeContinuation kont x'
|
| +/// else
|
| +/// <after loop>
|
| +/// return p.foo()
|
| +///
|
| +class LetSinker extends RecursiveVisitor implements Pass {
|
| + String get passName => 'Let sinking';
|
| +
|
| + LoopHierarchy loopHierarchy;
|
| + List<Continuation> stack = <Continuation>[];
|
| + Set<LetPrim> sunkNodes = new Set<LetPrim>();
|
| +
|
| + void rewrite(FunctionDefinition node) {
|
| + new ParentVisitor().visit(node);
|
| + loopHierarchy = new LoopHierarchy(node);
|
| + visit(node.body);
|
| + }
|
| +
|
| + void visitLetPrim(LetPrim node) {
|
| + // Visit the body, wherein this primitive may be sunk to its use site.
|
| + visit(node.body);
|
| +
|
| + if (node.primitive != null) {
|
| + // The primitive could not be sunk. Sink dependencies to this location.
|
| + visit(node.primitive);
|
| + } else {
|
| + // The primitive was sunk. Destroy the old LetPrim.
|
| + InteriorNode parent = node.parent;
|
| + parent.body = node.body;
|
| + node.body.parent = parent;
|
| + }
|
| + }
|
| +
|
| + void processReference(Reference ref) {
|
| + Definition definition = ref.definition;
|
| + if (definition is Primitive &&
|
| + definition is! Parameter &&
|
| + definition.hasExactlyOneUse &&
|
| + definition.isSafeForReordering) {
|
| + // Check if use is in the same loop.
|
| + LetPrim binding = definition.parent;
|
| + Continuation bindingLoop = loopHierarchy.getLoopHeader(binding);
|
| + Expression use = getEnclosingExpression(ref.parent);
|
| + Continuation useLoop = loopHierarchy.getLoopHeader(use);
|
| + if (bindingLoop == useLoop || definition is Constant) {
|
| + // Sink the definition.
|
| +
|
| + binding.primitive = null; // Mark old binding for deletion.
|
| + LetPrim newBinding = new LetPrim(definition);
|
| + definition.parent = newBinding;
|
| + InteriorNode useParent = use.parent;
|
| + useParent.body = newBinding;
|
| + newBinding.body = use;
|
| + use.parent = newBinding;
|
| + newBinding.parent = useParent;
|
| +
|
| + // Now that the final binding location has been found, sink the
|
| + // dependencies of the definition down here as well.
|
| + visit(definition);
|
| + }
|
| + }
|
| + }
|
| +
|
| + Expression getEnclosingExpression(Node node) {
|
| + while (node is! Expression) {
|
| + node = node.parent;
|
| + }
|
| + return node;
|
| + }
|
| +}
|
| +
|
| +/// Determines the effective nesting of loops.
|
| +///
|
| +/// The effective nesting of loops is different from the lexical nesting, since
|
| +/// recursive continuations can generally contain all the code following
|
| +/// after the loop in addition to the looping code itself.
|
| +///
|
| +/// For example, the 'else' branch below is not effectively part of the loop:
|
| +///
|
| +/// let rec kont x =
|
| +/// if (<loop condition>)
|
| +/// <loop body>
|
| +/// InvokeContinuation kont x'
|
| +/// else
|
| +/// <after loop>
|
| +/// return p.foo()
|
| +///
|
| +/// We use the term "loop" to mean recursive continuation.
|
| +/// The `null` value is used to represent a context not part of any loop.
|
| +class LoopHierarchy {
|
| + /// Nesting depth of the given loop.
|
| + Map<Continuation, int> loopDepth = <Continuation, int>{};
|
| +
|
| + /// The innermost loop (other than itself) that may be invoked recursively
|
| + /// as a result of invoking the given continuation.
|
| + Map<Continuation, Continuation> loopTarget = <Continuation, Continuation>{};
|
| +
|
| + /// Current nesting depth.
|
| + int currentDepth = 0;
|
| +
|
| + /// Computes the loop hierarchy for the given function.
|
| + ///
|
| + /// Parent pointers must be computed for [node].
|
| + LoopHierarchy(FunctionDefinition node) {
|
| + _processBlock(node.body, null);
|
| + }
|
| +
|
| + /// Returns the innermost loop which [node] is effectively part of.
|
| + Continuation getLoopHeader(Expression exp) {
|
| + Node node = exp.parent;
|
| + while (node != null && node is! Continuation) {
|
| + node = node.parent;
|
| + }
|
| + if (node is Continuation) {
|
| + if (node.isRecursive) {
|
| + return node;
|
| + } else {
|
| + return loopTarget[node];
|
| + }
|
| + }
|
| + return null;
|
| + }
|
| +
|
| + /// Marks the innermost loop as a subloop of the other loop.
|
| + ///
|
| + /// Returns the innermost loop.
|
| + ///
|
| + /// Both continuations, [c1] and [c2] may be null (i.e. no loop).
|
| + ///
|
| + /// A loop is said to be a subloop of an enclosing loop if it can invoke
|
| + /// that loop recursively. This information is stored in [loopTarget].
|
| + ///
|
| + /// This method is only invoked with two distinct loops if there is a
|
| + /// point that can reach a recursive invocation of both loops.
|
| + /// This implies that one loop is nested in the other, because they must
|
| + /// both be in scope at that point.
|
| + Continuation _markInnerLoop(Continuation c1, Continuation c2) {
|
| + assert(c1 == null || c1.isRecursive);
|
| + assert(c2 == null || c2.isRecursive);
|
| + if (c1 == null) return c2;
|
| + if (c2 == null) return c1;
|
| + if (c1 == c2) return c1;
|
| + if (loopDepth[c1] > loopDepth[c2]) {
|
| + loopTarget[c1] = _markInnerLoop(loopTarget[c1], c2);
|
| + return c1;
|
| + } else {
|
| + loopTarget[c2] = _markInnerLoop(loopTarget[c2], c1);
|
| + return c2;
|
| + }
|
| + }
|
| +
|
| + /// Analyzes the body of [cont] and returns the innermost loop
|
| + /// that can be invoked recursively from [cont] (other than [cont] itself).
|
| + ///
|
| + /// [catchLoop] is the innermost loop that can be invoked recursively
|
| + /// from the current exception handler.
|
| + Continuation _processContinuation(Continuation cont, Continuation catchLoop) {
|
| + if (cont.isRecursive) {
|
| + ++currentDepth;
|
| + loopDepth[cont] = currentDepth;
|
| + Continuation target = _processBlock(cont.body, catchLoop);
|
| + _markInnerLoop(loopTarget[cont], target);
|
| + --currentDepth;
|
| + } else {
|
| + loopTarget[cont] = _processBlock(cont.body, catchLoop);
|
| + }
|
| + return loopTarget[cont];
|
| + }
|
| +
|
| + bool _isCallContinuation(Continuation cont) {
|
| + return cont.hasExactlyOneUse && cont.firstRef.parent is CallExpression;
|
| + }
|
| +
|
| + /// Analyzes a basic block and returns the innermost loop that
|
| + /// can be invoked recursively from that block.
|
| + Continuation _processBlock(Expression node, Continuation catchLoop) {
|
| + List<Continuation> callContinuations = <Continuation>[];
|
| + for (; node is! TailExpression; node = node.next) {
|
| + if (node is LetCont) {
|
| + for (Continuation cont in node.continuations) {
|
| + if (!_isCallContinuation(cont)) {
|
| + // Process non-call continuations at the binding site, so they
|
| + // their loop target is known at all use sites.
|
| + _processContinuation(cont, catchLoop);
|
| + } else {
|
| + // To avoid deep recursion, do not analyze call continuations
|
| + // recursively. This basic block traversal steps into the
|
| + // call contiunation after visiting its use site. We store the
|
| + // continuations in a list so we can set the loop target once
|
| + // it is known.
|
| + callContinuations.add(cont);
|
| + }
|
| + }
|
| + } else if (node is LetHandler) {
|
| + catchLoop = _processContinuation(node.handler, catchLoop);
|
| + }
|
| + }
|
| + Continuation target;
|
| + if (node is InvokeContinuation) {
|
| + if (node.isRecursive) {
|
| + target = node.continuation.definition;
|
| + } else {
|
| + target = loopTarget[node.continuation.definition];
|
| + }
|
| + } else if (node is Branch) {
|
| + target = _markInnerLoop(
|
| + loopTarget[node.trueContinuation.definition],
|
| + loopTarget[node.falseContinuation.definition]);
|
| + } else {
|
| + assert(node is Unreachable || node is Throw);
|
| + }
|
| + target = _markInnerLoop(target, catchLoop);
|
| + for (Continuation cont in callContinuations) {
|
| + // Store the loop target on each call continuation in the basic block.
|
| + // Because we walk over call continuations as part of the basic block
|
| + // traversal, these do not get their loop target set otherwise.
|
| + loopTarget[cont] = target;
|
| + }
|
| + return target;
|
| + }
|
| +}
|
|
|