OLD | NEW |
---|---|
(Empty) | |
1 \subsection*{Expression typing: $\yieldsOk{\Phi, \Delta, \Gamma}{e}{\opt{\tau}}{ e'}{\tau'}$} \hrulefill | |
2 | |
3 Expression typing is a relation between typing contexts, a term ($e$), an | |
4 optional type ($\opt{\tau}$), and a type ($\tau'$). The term $e$ represents the | |
5 term being checked. The optional type $\opt{\tau}$ is the type against which | |
6 the term is being checked (if present). The output type $\tau'$ is the most | |
7 precise type synthesized for the term. It should always be the case that the | |
8 synthesized (output) type is a subtype of the checked (input) type if the latter | |
9 is present. The checking/synthesis pattern allows for the propogation of type | |
10 information both downwards and upwards. It is often the case that downwards | |
11 propogation is not useful. Consequently, to simplify the presentation the rules | |
12 which do not use the checking type require that it be empty ($\_$). The first | |
13 typing rule allows contextual type information to be dropped so that such rules | |
14 apply in the cast that we have contextual type information, subject to the | |
15 contextual type being a supertype of the synthesized type: | |
16 | |
17 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} \quad\quad | |
18 \subtypeOf{\Phi, \Delta}{\sigma}{\tau} | |
19 } | |
20 {\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\sigma}} | |
21 | |
22 The implicit downcast rule also allows this when the contextual type is a | |
23 subtype of the synthesized type, corresponding to an implicit downcast. | |
vsm
2015/07/13 22:36:56
As with the optional typing, I wonder if it's bett
Leaf
2015/07/14 22:39:49
Yes, I have mental note to revisit this. We can h
| |
24 | |
25 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} \quad\quad | |
26 \subtypeOf{\Phi, \Delta}{\tau}{\sigma} | |
27 } | |
28 {\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{\echeck{e'}{\tau}}{\tau}} | |
29 | |
30 Variables are typed according to their declarations: | |
31 | |
32 \axiom{\yieldsOk{\Phi, \Delta, \extends{\Gamma}{x}{\tau}}{x}{\_}{x}{\tau}} | |
vsm
2015/07/13 22:36:56
There is type promotion - but perhaps that's ortho
Leaf
2015/07/14 22:39:49
Yes, I could formalize this, but it will take a fa
| |
33 | |
34 Numbers, booleans, and null all have a fixed synthesized type. | |
35 | |
36 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{i}{\_}{i}{\Num}} | |
37 | |
38 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{\eff}{\_}{\eff}{\Bool}} | |
39 | |
40 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{\ett}{\_}{\ett}{\Bool}} | |
41 | |
42 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{\enull}{\_}{\enull}{\Bottom}} | |
43 | |
44 A $\ethis$ expression is well-typed if we are inside of a method, and $\sigma$ | |
45 is the type of the enclosing class. | |
46 | |
47 \infrule{\Gamma = \Gamma'_{\sigma} | |
48 } | |
49 { | |
50 \yieldsOk{\Phi, \Delta, \Gamma}{\ethis}{\_}{\ethis}{\sigma} | |
51 } | |
52 | |
53 A fully annotated function is well-typed if its body is well-typed at its | |
54 declared return type, under the assumption that the variables have their | |
55 declared types. | |
56 | |
57 \infrule{\Gamma' = \extends{\Gamma}{\many{x}}{\many{\tau}} \quad | |
58 \yieldsOk{\Phi, \Delta, \Gamma'}{e}{\sigma}{e'}{\sigma'} | |
59 } | |
60 {\yieldsOk{\Phi, \Delta, \Gamma} | |
61 {\elambda{\many{x:\tau}}{\sigma}{e}} | |
62 {\_} | |
63 {\elambda{\many{x:\tau}}{\sigma}{e'}} | |
64 {\Arrow[-]{\many{\tau}}{\sigma}} | |
vsm
2015/07/13 22:36:56
Should this be \sigma_'_?
Leaf
2015/07/14 22:39:50
I think it *can* be, but not sure that it *should*
| |
65 } | |
66 | |
67 A function with a missing argument type is well-typed if it is well-typed with | |
68 the argument type replaced with $\Dynamic$. | |
69 | |
70 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
71 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\Dynamic, \ldots, x_n: \opt{\tau_n}}{\opt{\sigma}}{e}} | |
72 {\opt{\tau}} | |
73 {e_f} | |
74 {\tau_f} | |
75 } | |
76 {\yieldsOk{\Phi, \Delta, \Gamma} | |
77 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\ tau_n}}{\opt{\sigma}}{e}} | |
78 {\opt{\tau}} | |
79 {e_f} | |
80 {\tau_f} | |
81 } | |
82 | |
83 A function with a missing argument type is well-typed if it is well-typed with | |
84 the argument type replaced with the corresponding argument type from the context | |
85 type. Note that this rule overlaps with the previous: the formal presentation | |
86 leaves this as a non-deterministic choice. | |
vsm
2015/07/13 22:36:56
Is this a step toward downward inference?
Leaf
2015/07/14 22:39:49
This is downwards inference. It's specified in a
vsm
2015/07/15 18:25:34
So, if my expr is:
(e) => e.foo
and my contextua
Leaf
2015/07/15 22:27:25
As currently specified, it will type check, and wi
| |
87 | |
88 \infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\ | |
89 \yieldsOk{\Phi, \Delta, \Gamma} | |
90 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\upsilon_i, \ldots, x_ n:\opt{\tau_n}}{\opt{\sigma}}{e}} | |
91 {\tau_c} | |
92 {e_f} | |
93 {\tau_f} | |
94 } | |
95 {\yieldsOk{\Phi, \Delta, \Gamma} | |
96 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\ tau_n}}{\opt{\sigma}}{e}} | |
97 {\tau_c} | |
98 {e_f} | |
99 {\tau_f} | |
100 } | |
101 | |
102 A function with a missing return type is well-typed if it is well-typed with | |
103 the return type replaced with $\Dynamic$. | |
104 | |
105 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
106 {\elambda{\many{x:\opt{\tau}}}{\Dynamic}{e}} | |
107 {\opt{\tau_c}} | |
108 {e_f} | |
109 {\tau_f} | |
110 } | |
111 {\yieldsOk{\Phi, \Delta, \Gamma} | |
112 {\elambda{\many{x:\opt{\tau}}}{\_}{e}} | |
113 {\opt{\tau_c}} | |
114 {e_f} | |
115 {\tau_f} | |
116 } | |
117 | |
118 A function with a missing return type is well-typed if it is well-typed with | |
119 the return type replaced with the corresponding return type from the context | |
120 type. Note that this rule overlaps with the previous: the formal presentation | |
121 leaves this as a non-deterministic choice. | |
122 | |
123 \infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\ | |
124 \yieldsOk{\Phi, \Delta, \Gamma} | |
125 {\elambda{\many{x:\opt{\tau}}}{\upsilon_r}{e}} | |
126 {\tau_c} | |
127 {e_f} | |
128 {\tau_f} | |
129 } | |
130 {\yieldsOk{\Phi, \Delta, \Gamma} | |
131 {\elambda{\many{x:\opt{\tau}}}{\_}{e}} | |
132 {\tau_c} | |
133 {e_f} | |
134 {\tau_f} | |
135 } | |
136 | |
137 | |
138 Instance creation creates an instance of the appropriate type. | |
139 | |
140 % FIXME(leafp): inference | |
141 % FIXME(leafp): deal with bounds | |
142 \infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \u psilon_k}}{\ldots}) \in \Phi \\ | |
143 \mbox{len}(\many{\tau}) = n+1} | |
144 {\yieldsOk{\Phi, \Delta, \Gamma} | |
145 {\enew{C}{\many{\tau}}{}} | |
146 {\_} | |
147 {\enew{C}{\many{\tau}}{}} | |
148 {\TApp{C}{\many{\tau}}} | |
149 } | |
150 | |
151 | |
152 Members of the set of primitive operations (left unspecified) can only be | |
153 applied. Applications of primitives are well-typed if the arguments are | |
154 well-typed at the types given by the signature of the primitive. | |
vsm
2015/07/13 22:36:56
In Dart, these are really just syntactic sugar for
Leaf
2015/07/14 22:39:49
These really model the underlying primitive operat
| |
155 | |
156 \infrule{\phi\, :\, \Arrow[]{\many{\tau}}{\sigma} \quad | |
157 \yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\tau'} | |
158 } | |
159 {\yieldsOk{\Phi, \Delta, \Gamma} | |
160 {\eprimapp{\phi}{\many{e}}} | |
161 {\_} | |
162 {\eprimapp{\phi}{\many{e'}}} | |
163 {\sigma} | |
164 } | |
165 | |
166 Function applications are well-typed if the applicand is well-typed and has | |
167 function type, and the arguments are well-typed. | |
168 | |
169 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
170 {e} | |
171 {\_} | |
172 {e'} | |
173 {\Arrow[k]{\many{\tau_a}}{\tau_r}} \quad\quad | |
174 \yieldsOk{\Phi, \Delta, \Gamma} | |
175 {e_a} | |
176 {\tau_a} | |
177 {e_a'} | |
178 {\tau_a'} \quad \mbox{for}\ e_a, \tau_a \in \many{e_a}, \many{ \tau_a} | |
179 \iftrans{\\ e_c = \begin{cases} | |
180 \ecall{e'}{\many{e_a'}} & \text{if $k = -$}\\ | |
181 \edcall{e'}{\many{e_a'}} & \text{if $k = +$} | |
182 \end{cases}} | |
183 } | |
184 {\yieldsOk{\Phi, \Delta, \Gamma} | |
185 {\ecall{e}{\many{e_a}}} | |
186 {\_} | |
187 {e_c} | |
188 {\tau_r} | |
189 } | |
190 | |
191 Application of an expression of type $\Dynamic$ is well-typed if the arguments | |
192 are well-typed at any type. | |
193 | |
194 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
195 {e} | |
196 {\_} | |
197 {e'} | |
198 {\Dynamic} \quad\quad | |
199 \yieldsOk{\Phi, \Delta, \Gamma} | |
200 {e_a} | |
201 {\_} | |
202 {e_a'} | |
203 {\tau_a'} \quad \mbox{for}\ e_a \in \many{e_a} | |
204 } | |
205 {\yieldsOk{\Phi, \Delta, \Gamma} | |
206 {\ecall{e}{\many{e_a}}} | |
207 {\_} | |
208 {\edcall{e'}{\many{e_a'}}} | |
209 {\Dynamic} | |
210 } | |
211 | |
212 A dynamic call expression is well-typed so long as the applicand and the | |
213 arguments are well-typed at any type. | |
vsm
2015/07/13 22:36:56
What does dcall add if you allow e to be dynamic a
Leaf
2015/07/14 22:39:49
Basically I'm anticipating the dynamic semantics (
Siggi Cherem (dart-lang)
2015/07/14 23:59:21
Makes sense - I think it might be worth splitting
vsm
2015/07/15 18:25:34
It's the same thing (I think), but it might be a l
Leaf
2015/07/15 22:27:25
Yes, this is reasonable. I need additional mechan
Leaf
2015/07/15 22:27:25
Done.
| |
214 | |
215 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
216 {e} | |
217 {\_} | |
218 {e'} | |
219 {\tau} \quad | |
220 \yieldsOk{\Phi, \Delta, \Gamma} | |
221 {e_a} | |
222 {\_} | |
223 {e_a'} | |
224 {\tau_a} \quad \mbox{for}\ e_a \in \many{e_a} | |
225 } | |
226 {\yieldsOk{\Phi, \Delta, \Gamma} | |
227 {\edcall{e}{\many{e_a}}} | |
228 {\_} | |
229 {\edcall{e'}{\many{e_a'}}} | |
230 {\Dynamic} | |
231 } | |
232 | |
233 A field load is well-typed if the term is well-typed, and the field name is | |
234 present in the type of the term. | |
235 | |
236 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
237 {e} | |
238 {\_} | |
239 {e'} | |
240 {\sigma} \quad\quad | |
241 \fieldLookup{\Phi}{\sigma}{m}{\tau} | |
242 } | |
243 {\yieldsOk{\Phi, \Delta, \Gamma} | |
244 {\eload{e}{m}} | |
245 {\_} | |
246 {\eload{e'}{m}} | |
247 {\tau} | |
248 } | |
249 | |
250 A field load from a term of type $\Dynamic$ is well-typed if the term is | |
251 well-typed. | |
252 | |
253 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
254 {e} | |
255 {\_} | |
256 {e'} | |
257 {\Dynamic} | |
258 } | |
259 {\yieldsOk{\Phi, \Delta, \Gamma} | |
260 {\eload{e}{m}} | |
261 {\_} | |
262 {\edload{e'}{m}} | |
263 {\Dynamic} | |
264 } | |
265 | |
266 A dynamic load is well typed so long as the term is well-typed. | |
vsm
2015/07/13 22:36:56
Ditto?
| |
267 | |
268 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
269 {e} | |
270 {\_} | |
271 {e'} | |
272 {\Dynamic} | |
273 } | |
274 {\yieldsOk{\Phi, \Delta, \Gamma} | |
275 {\edload{e}{m}} | |
276 {\_} | |
277 {\edload{e'}{m}} | |
278 {\Dynamic} | |
279 } | |
280 | |
281 An assignment expression is well-typed so long as the term is well-typed at a | |
282 type which is compatible with the type of the variable being assigned. | |
283 | |
284 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
285 {e} | |
286 {\opt{\tau}} | |
287 {e'} | |
288 {\sigma} \quad | |
289 \yieldsOk{\Phi, \Delta, \Gamma} | |
290 {x} | |
291 {\sigma} | |
292 {x} | |
293 {\sigma'} | |
294 } | |
295 {\yieldsOk{\Phi, \Delta, \Gamma} | |
296 {\eassign{x}{e}} | |
297 {\opt{\tau}} | |
298 {\eassign{x}{e'}} | |
299 {\sigma} | |
300 } | |
vsm
2015/07/13 22:36:56
This reads a little odd to me ... seems to suggest
Leaf
2015/07/14 22:39:49
The way it works here is a bit subtle, but I think
| |
301 | |
302 A field assignment is well-typed if the term being assigned is well-typed, the | |
303 field name is present in the type of $\ethis$, and the declared type of the | |
304 field is compatible with the type of the expression being assigned. | |
305 | |
306 \infrule{\yieldsOk{\Phi, \Delta, \Gamma} | |
307 {e} | |
308 {\opt{\tau}} | |
309 {e'} | |
310 {\sigma} \quad\quad | |
311 \Gamma = \Gamma_\tau & \fieldLookup{\Phi}{\tau}{m}{\sigma'} \quad | |
312 \subtypeOf{\Phi, \Delta}{\sigma}{\sigma'} | |
313 } | |
314 {\yieldsOk{\Phi, \Delta, \Gamma} | |
315 {\eset{\ethis}{m}{e}} | |
316 {\opt{\tau}} | |
317 {\eset{\ethis}{m}{e}} | |
318 {\sigma} | |
319 } | |
320 | |
321 A throw expression is well-typed at any type. | |
322 | |
323 \axiom{\yieldsOk{\Phi, \Delta, \Gamma} | |
324 {\ethrow} | |
325 {\_} | |
326 {\ethrow} | |
327 {\sigma} | |
328 } | |
329 | |
330 A cast expression is well-typed so long as the term being cast is well-typed. | |
331 The synthesized type is the cast-to type. | |
332 | |
333 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} | |
334 } | |
335 {\yieldsOk{\Phi, \Delta, \Gamma} | |
336 {\eas{e}{\tau}} | |
337 {\_} | |
338 {\eas{e'}{\tau}} | |
339 {\tau} | |
340 } | |
341 | |
342 An instance check expression is well-typed if the term being checked is | |
343 well-typed. | |
344 | |
345 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} | |
346 } | |
347 {\yieldsOk{\Phi, \Delta, \Gamma} | |
348 {\eis{e}{\tau}} | |
349 {\_} | |
350 {\eis{e'}{\tau}} | |
351 {\Bool} | |
352 } | |
vsm
2015/07/13 22:36:56
Should \tau be required to be ground here and abov
Leaf
2015/07/14 22:39:49
Yes.
Leaf
2015/07/14 22:39:49
Done.
| |
353 | |
354 A check expression is well-typed so long as the term being checked is | |
355 well-typed. The synthesized type is the target type of the check. | |
356 | |
357 | |
358 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} | |
359 } | |
360 {\yieldsOk{\Phi, \Delta, \Gamma} | |
361 {\echeck{e}{\tau}} | |
362 {\_} | |
363 {\echeck{e'}{\tau}} | |
364 {\tau} | |
365 } | |
366 | |
367 \subsection*{Declaration typing: $\declOk[d]{\Phi, \Delta, \Gamma}{\mathit{vd}}{ \mathit{vd'}}{\Gamma'}$} | |
368 \hrulefill | |
369 | |
370 Variable declaration typing checks the well-formedness of the components, and | |
371 produces an output context $\Gamma'$ which contains the binding introduced by | |
372 the declaration. | |
373 | |
374 A simple variable declaration with a declared type is well-typed if the | |
375 initializer for the declaration is well-typed at the declared type. The output | |
376 context binds the variable at the declared type. | |
377 | |
378 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\tau'} \quad | |
379 } | |
380 {\declOk[d]{\Phi, \Delta, \Gamma} | |
381 {\dvar{x:\tau}{e}} | |
382 {\dvar{x:\tau'}{e'}} | |
383 {\extends{\Gamma}{x}{\tau}} | |
384 } | |
385 | |
386 A simple variable declaration without a declared type is well-typed if the | |
387 initializer for the declaration is well-typed at any type. The output context | |
388 binds the variable at the synthesized type (a simple form of type inference). | |
389 | |
390 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\tau'} \quad | |
391 } | |
392 {\declOk[d]{\Phi, \Delta, \Gamma} | |
393 {\dvar{x:\_}{e}} | |
394 {\dvar{x:\tau'}{e'}} | |
395 {\extends{\Gamma}{x}{\tau'}} | |
396 } | |
397 | |
398 A function declaration is well-typed if the body of the function is well-typed | |
399 with the given return type, under the assumption that the function and its | |
400 parameters have their declared types. The function is assumed to have a | |
401 contravariant (precise) function type. The output context binds the function | |
402 variable only. | |
403 | |
404 \infrule{\tau_f = \Arrow[-]{\many{\tau_a}}{\tau_r} \quad | |
405 \Gamma' = \extends{\Gamma}{f}{\tau_f} \quad | |
406 \Gamma'' = \extends{\Gamma'}{\many{x}}{\many{\tau_a}} \\ | |
407 \stmtOk{\Phi, \Delta, \Gamma''}{s}{\tau_r}{s'}{\Gamma_0} | |
408 } | |
409 {\declOk[d]{\Phi, \Delta, \Gamma} | |
410 {\dfun{\tau_r}{f}{\many{x:\tau_a}}{s}} | |
411 {\dfun{\tau_r}{f}{\many{x:\tau_a}}{s'}} | |
412 {\Gamma'} | |
413 } | |
414 | |
415 \subsection*{Statement typing: $\stmtOk{\Phi, \Delta, \Gamma}{\mathit{s}}{\tau}{ \mathit{s'}}{\Gamma'}$} | |
416 \hrulefill | |
417 | |
418 The statement typing relation checks the well-formedness of statements and | |
419 produces an output context which reflects any additional variable bindings | |
420 introduced into scope by the statements. | |
421 | |
422 A variable declaration statement is well-typed if the variable declaration is | |
423 well-typed per the previous relation, with the corresponding output context. | |
424 | |
425 \infrule{\declOk[d]{\Phi, \Delta, \Gamma} | |
426 {\mathit{vd}} | |
427 {\mathit{vd'}} | |
428 {\Gamma'} | |
429 } | |
430 {\stmtOk{\Phi, \Delta, \Gamma} | |
431 {\mathit{vd}} | |
432 {\tau} | |
433 {\mathit{vd'}} | |
434 {\Gamma'} | |
435 } | |
436 | |
437 An expression statement is well-typed if the expression is well-typed at any | |
438 type per the expression typing relation. | |
439 | |
440 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\tau} | |
441 } | |
442 {\stmtOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\Gamma} | |
443 } | |
444 | |
445 A conditional statement is well-typed if the condition is well-typed as a | |
446 boolean, and the statements making up the two arms are well-typed. The output | |
447 context is unchanged. | |
448 | |
449 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\Bool}{e'}{\sigma} \quad | |
450 \stmtOk{\Phi, \Delta, \Gamma}{s_1}{\tau_r}{s_1'}{\Gamma_1} \quad | |
451 \stmtOk{\Phi, \Delta, \Gamma}{s_2}{\tau_r}{s_2'}{\Gamma_2} | |
452 } | |
453 {\stmtOk{\Phi, \Delta, \Gamma} | |
454 {\sifthenelse{e}{s_1}{s_2}} | |
455 {\tau_r} | |
456 {\sifthenelse{e'}{s_1'}{s_2'}} | |
457 {\Gamma} | |
458 } | |
459 | |
460 A return statement is well-typed if the expression being returned is well-typed | |
461 at the given return type. | |
462 | |
463 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau_r}{e'}{\tau} | |
464 } | |
465 {\stmtOk{\Phi, \Delta, \Gamma}{\sreturn{e}}{\tau_r}{\sreturn{e'}}{\Gamma } | |
466 } | |
467 | |
468 A sequence statement is well-typed if the first component is well-typed, and the | |
469 second component is well-typed with the output context of the first component as | |
470 its input context. The final output context is the output context of the second | |
471 component. | |
472 | |
473 \infrule{\stmtOk{\Phi, \Delta, \Gamma}{s_1}{\tau_r}{s_1'}{\Gamma'} \quad | |
474 \stmtOk{\Phi, \Delta, \Gamma'}{s_2}{\tau_r}{s_2'}{\Gamma''} | |
475 } | |
476 {\stmtOk{\Phi, \Delta, \Gamma}{s_1;s_2}{\tau_r}{s_1';s_2'}{\Gamma''} | |
477 } | |
OLD | NEW |