Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(314)

Side by Side Diff: doc/definition/static-semantics.tex

Issue 1236443002: Core static semantics (Closed) Base URL: git@github.com:dart-lang/dev_compiler.git@master
Patch Set: Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 \subsection*{Expression typing: $\yieldsOk{\Phi, \Delta, \Gamma}{e}{\opt{\tau}}{ e'}{\tau'}$} \hrulefill
2
3 Expression typing is a relation between typing contexts, a term ($e$), an
4 optional type ($\opt{\tau}$), and a type ($\tau'$). The term $e$ represents the
5 term being checked. The optional type $\opt{\tau}$ is the type against which
6 the term is being checked (if present). The output type $\tau'$ is the most
7 precise type synthesized for the term. It should always be the case that the
8 synthesized (output) type is a subtype of the checked (input) type if the latter
9 is present. The checking/synthesis pattern allows for the propogation of type
10 information both downwards and upwards. It is often the case that downwards
11 propogation is not useful. Consequently, to simplify the presentation the rules
12 which do not use the checking type require that it be empty ($\_$). The first
13 typing rule allows contextual type information to be dropped so that such rules
14 apply in the cast that we have contextual type information, subject to the
15 contextual type being a supertype of the synthesized type:
16
17 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} \quad\quad
18 \subtypeOf{\Phi, \Delta}{\sigma}{\tau}
19 }
20 {\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\sigma}}
21
22 The implicit downcast rule also allows this when the contextual type is a
23 subtype of the synthesized type, corresponding to an implicit downcast.
vsm 2015/07/13 22:36:56 As with the optional typing, I wonder if it's bett
Leaf 2015/07/14 22:39:49 Yes, I have mental note to revisit this. We can h
24
25 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma} \quad\quad
26 \subtypeOf{\Phi, \Delta}{\tau}{\sigma}
27 }
28 {\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{\echeck{e'}{\tau}}{\tau}}
29
30 Variables are typed according to their declarations:
31
32 \axiom{\yieldsOk{\Phi, \Delta, \extends{\Gamma}{x}{\tau}}{x}{\_}{x}{\tau}}
vsm 2015/07/13 22:36:56 There is type promotion - but perhaps that's ortho
Leaf 2015/07/14 22:39:49 Yes, I could formalize this, but it will take a fa
33
34 Numbers, booleans, and null all have a fixed synthesized type.
35
36 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{i}{\_}{i}{\Num}}
37
38 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{\eff}{\_}{\eff}{\Bool}}
39
40 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{\ett}{\_}{\ett}{\Bool}}
41
42 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}{\enull}{\_}{\enull}{\Bottom}}
43
44 A $\ethis$ expression is well-typed if we are inside of a method, and $\sigma$
45 is the type of the enclosing class.
46
47 \infrule{\Gamma = \Gamma'_{\sigma}
48 }
49 {
50 \yieldsOk{\Phi, \Delta, \Gamma}{\ethis}{\_}{\ethis}{\sigma}
51 }
52
53 A fully annotated function is well-typed if its body is well-typed at its
54 declared return type, under the assumption that the variables have their
55 declared types.
56
57 \infrule{\Gamma' = \extends{\Gamma}{\many{x}}{\many{\tau}} \quad
58 \yieldsOk{\Phi, \Delta, \Gamma'}{e}{\sigma}{e'}{\sigma'}
59 }
60 {\yieldsOk{\Phi, \Delta, \Gamma}
61 {\elambda{\many{x:\tau}}{\sigma}{e}}
62 {\_}
63 {\elambda{\many{x:\tau}}{\sigma}{e'}}
64 {\Arrow[-]{\many{\tau}}{\sigma}}
vsm 2015/07/13 22:36:56 Should this be \sigma_'_?
Leaf 2015/07/14 22:39:50 I think it *can* be, but not sure that it *should*
65 }
66
67 A function with a missing argument type is well-typed if it is well-typed with
68 the argument type replaced with $\Dynamic$.
69
70 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
71 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\Dynamic, \ldots, x_n: \opt{\tau_n}}{\opt{\sigma}}{e}}
72 {\opt{\tau}}
73 {e_f}
74 {\tau_f}
75 }
76 {\yieldsOk{\Phi, \Delta, \Gamma}
77 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\ tau_n}}{\opt{\sigma}}{e}}
78 {\opt{\tau}}
79 {e_f}
80 {\tau_f}
81 }
82
83 A function with a missing argument type is well-typed if it is well-typed with
84 the argument type replaced with the corresponding argument type from the context
85 type. Note that this rule overlaps with the previous: the formal presentation
86 leaves this as a non-deterministic choice.
vsm 2015/07/13 22:36:56 Is this a step toward downward inference?
Leaf 2015/07/14 22:39:49 This is downwards inference. It's specified in a
vsm 2015/07/15 18:25:34 So, if my expr is: (e) => e.foo and my contextua
Leaf 2015/07/15 22:27:25 As currently specified, it will type check, and wi
87
88 \infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\
89 \yieldsOk{\Phi, \Delta, \Gamma}
90 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\upsilon_i, \ldots, x_ n:\opt{\tau_n}}{\opt{\sigma}}{e}}
91 {\tau_c}
92 {e_f}
93 {\tau_f}
94 }
95 {\yieldsOk{\Phi, \Delta, \Gamma}
96 {\elambda{x_0:\opt{\tau_0}, \ldots, x_i:\_, \ldots, x_n:\opt{\ tau_n}}{\opt{\sigma}}{e}}
97 {\tau_c}
98 {e_f}
99 {\tau_f}
100 }
101
102 A function with a missing return type is well-typed if it is well-typed with
103 the return type replaced with $\Dynamic$.
104
105 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
106 {\elambda{\many{x:\opt{\tau}}}{\Dynamic}{e}}
107 {\opt{\tau_c}}
108 {e_f}
109 {\tau_f}
110 }
111 {\yieldsOk{\Phi, \Delta, \Gamma}
112 {\elambda{\many{x:\opt{\tau}}}{\_}{e}}
113 {\opt{\tau_c}}
114 {e_f}
115 {\tau_f}
116 }
117
118 A function with a missing return type is well-typed if it is well-typed with
119 the return type replaced with the corresponding return type from the context
120 type. Note that this rule overlaps with the previous: the formal presentation
121 leaves this as a non-deterministic choice.
122
123 \infrule{\tau_c = \Arrow[k]{\upsilon_0, \ldots, \upsilon_n}{\upsilon_r} \\
124 \yieldsOk{\Phi, \Delta, \Gamma}
125 {\elambda{\many{x:\opt{\tau}}}{\upsilon_r}{e}}
126 {\tau_c}
127 {e_f}
128 {\tau_f}
129 }
130 {\yieldsOk{\Phi, \Delta, \Gamma}
131 {\elambda{\many{x:\opt{\tau}}}{\_}{e}}
132 {\tau_c}
133 {e_f}
134 {\tau_f}
135 }
136
137
138 Instance creation creates an instance of the appropriate type.
139
140 % FIXME(leafp): inference
141 % FIXME(leafp): deal with bounds
142 \infrule{(C : \dclass{\TApp{C}{T_0,\ldots,T_n}}{\TApp{C'}{\upsilon_0, \ldots, \u psilon_k}}{\ldots}) \in \Phi \\
143 \mbox{len}(\many{\tau}) = n+1}
144 {\yieldsOk{\Phi, \Delta, \Gamma}
145 {\enew{C}{\many{\tau}}{}}
146 {\_}
147 {\enew{C}{\many{\tau}}{}}
148 {\TApp{C}{\many{\tau}}}
149 }
150
151
152 Members of the set of primitive operations (left unspecified) can only be
153 applied. Applications of primitives are well-typed if the arguments are
154 well-typed at the types given by the signature of the primitive.
vsm 2015/07/13 22:36:56 In Dart, these are really just syntactic sugar for
Leaf 2015/07/14 22:39:49 These really model the underlying primitive operat
155
156 \infrule{\phi\, :\, \Arrow[]{\many{\tau}}{\sigma} \quad
157 \yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\tau'}
158 }
159 {\yieldsOk{\Phi, \Delta, \Gamma}
160 {\eprimapp{\phi}{\many{e}}}
161 {\_}
162 {\eprimapp{\phi}{\many{e'}}}
163 {\sigma}
164 }
165
166 Function applications are well-typed if the applicand is well-typed and has
167 function type, and the arguments are well-typed.
168
169 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
170 {e}
171 {\_}
172 {e'}
173 {\Arrow[k]{\many{\tau_a}}{\tau_r}} \quad\quad
174 \yieldsOk{\Phi, \Delta, \Gamma}
175 {e_a}
176 {\tau_a}
177 {e_a'}
178 {\tau_a'} \quad \mbox{for}\ e_a, \tau_a \in \many{e_a}, \many{ \tau_a}
179 \iftrans{\\ e_c = \begin{cases}
180 \ecall{e'}{\many{e_a'}} & \text{if $k = -$}\\
181 \edcall{e'}{\many{e_a'}} & \text{if $k = +$}
182 \end{cases}}
183 }
184 {\yieldsOk{\Phi, \Delta, \Gamma}
185 {\ecall{e}{\many{e_a}}}
186 {\_}
187 {e_c}
188 {\tau_r}
189 }
190
191 Application of an expression of type $\Dynamic$ is well-typed if the arguments
192 are well-typed at any type.
193
194 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
195 {e}
196 {\_}
197 {e'}
198 {\Dynamic} \quad\quad
199 \yieldsOk{\Phi, \Delta, \Gamma}
200 {e_a}
201 {\_}
202 {e_a'}
203 {\tau_a'} \quad \mbox{for}\ e_a \in \many{e_a}
204 }
205 {\yieldsOk{\Phi, \Delta, \Gamma}
206 {\ecall{e}{\many{e_a}}}
207 {\_}
208 {\edcall{e'}{\many{e_a'}}}
209 {\Dynamic}
210 }
211
212 A dynamic call expression is well-typed so long as the applicand and the
213 arguments are well-typed at any type.
vsm 2015/07/13 22:36:56 What does dcall add if you allow e to be dynamic a
Leaf 2015/07/14 22:39:49 Basically I'm anticipating the dynamic semantics (
Siggi Cherem (dart-lang) 2015/07/14 23:59:21 Makes sense - I think it might be worth splitting
vsm 2015/07/15 18:25:34 It's the same thing (I think), but it might be a l
Leaf 2015/07/15 22:27:25 Yes, this is reasonable. I need additional mechan
Leaf 2015/07/15 22:27:25 Done.
214
215 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
216 {e}
217 {\_}
218 {e'}
219 {\tau} \quad
220 \yieldsOk{\Phi, \Delta, \Gamma}
221 {e_a}
222 {\_}
223 {e_a'}
224 {\tau_a} \quad \mbox{for}\ e_a \in \many{e_a}
225 }
226 {\yieldsOk{\Phi, \Delta, \Gamma}
227 {\edcall{e}{\many{e_a}}}
228 {\_}
229 {\edcall{e'}{\many{e_a'}}}
230 {\Dynamic}
231 }
232
233 A field load is well-typed if the term is well-typed, and the field name is
234 present in the type of the term.
235
236 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
237 {e}
238 {\_}
239 {e'}
240 {\sigma} \quad\quad
241 \fieldLookup{\Phi}{\sigma}{m}{\tau}
242 }
243 {\yieldsOk{\Phi, \Delta, \Gamma}
244 {\eload{e}{m}}
245 {\_}
246 {\eload{e'}{m}}
247 {\tau}
248 }
249
250 A field load from a term of type $\Dynamic$ is well-typed if the term is
251 well-typed.
252
253 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
254 {e}
255 {\_}
256 {e'}
257 {\Dynamic}
258 }
259 {\yieldsOk{\Phi, \Delta, \Gamma}
260 {\eload{e}{m}}
261 {\_}
262 {\edload{e'}{m}}
263 {\Dynamic}
264 }
265
266 A dynamic load is well typed so long as the term is well-typed.
vsm 2015/07/13 22:36:56 Ditto?
267
268 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
269 {e}
270 {\_}
271 {e'}
272 {\Dynamic}
273 }
274 {\yieldsOk{\Phi, \Delta, \Gamma}
275 {\edload{e}{m}}
276 {\_}
277 {\edload{e'}{m}}
278 {\Dynamic}
279 }
280
281 An assignment expression is well-typed so long as the term is well-typed at a
282 type which is compatible with the type of the variable being assigned.
283
284 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
285 {e}
286 {\opt{\tau}}
287 {e'}
288 {\sigma} \quad
289 \yieldsOk{\Phi, \Delta, \Gamma}
290 {x}
291 {\sigma}
292 {x}
293 {\sigma'}
294 }
295 {\yieldsOk{\Phi, \Delta, \Gamma}
296 {\eassign{x}{e}}
297 {\opt{\tau}}
298 {\eassign{x}{e'}}
299 {\sigma}
300 }
vsm 2015/07/13 22:36:56 This reads a little odd to me ... seems to suggest
Leaf 2015/07/14 22:39:49 The way it works here is a bit subtle, but I think
301
302 A field assignment is well-typed if the term being assigned is well-typed, the
303 field name is present in the type of $\ethis$, and the declared type of the
304 field is compatible with the type of the expression being assigned.
305
306 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}
307 {e}
308 {\opt{\tau}}
309 {e'}
310 {\sigma} \quad\quad
311 \Gamma = \Gamma_\tau & \fieldLookup{\Phi}{\tau}{m}{\sigma'} \quad
312 \subtypeOf{\Phi, \Delta}{\sigma}{\sigma'}
313 }
314 {\yieldsOk{\Phi, \Delta, \Gamma}
315 {\eset{\ethis}{m}{e}}
316 {\opt{\tau}}
317 {\eset{\ethis}{m}{e}}
318 {\sigma}
319 }
320
321 A throw expression is well-typed at any type.
322
323 \axiom{\yieldsOk{\Phi, \Delta, \Gamma}
324 {\ethrow}
325 {\_}
326 {\ethrow}
327 {\sigma}
328 }
329
330 A cast expression is well-typed so long as the term being cast is well-typed.
331 The synthesized type is the cast-to type.
332
333 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma}
334 }
335 {\yieldsOk{\Phi, \Delta, \Gamma}
336 {\eas{e}{\tau}}
337 {\_}
338 {\eas{e'}{\tau}}
339 {\tau}
340 }
341
342 An instance check expression is well-typed if the term being checked is
343 well-typed.
344
345 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma}
346 }
347 {\yieldsOk{\Phi, \Delta, \Gamma}
348 {\eis{e}{\tau}}
349 {\_}
350 {\eis{e'}{\tau}}
351 {\Bool}
352 }
vsm 2015/07/13 22:36:56 Should \tau be required to be ground here and abov
Leaf 2015/07/14 22:39:49 Yes.
Leaf 2015/07/14 22:39:49 Done.
353
354 A check expression is well-typed so long as the term being checked is
355 well-typed. The synthesized type is the target type of the check.
356
357
358 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\sigma}
359 }
360 {\yieldsOk{\Phi, \Delta, \Gamma}
361 {\echeck{e}{\tau}}
362 {\_}
363 {\echeck{e'}{\tau}}
364 {\tau}
365 }
366
367 \subsection*{Declaration typing: $\declOk[d]{\Phi, \Delta, \Gamma}{\mathit{vd}}{ \mathit{vd'}}{\Gamma'}$}
368 \hrulefill
369
370 Variable declaration typing checks the well-formedness of the components, and
371 produces an output context $\Gamma'$ which contains the binding introduced by
372 the declaration.
373
374 A simple variable declaration with a declared type is well-typed if the
375 initializer for the declaration is well-typed at the declared type. The output
376 context binds the variable at the declared type.
377
378 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\tau'} \quad
379 }
380 {\declOk[d]{\Phi, \Delta, \Gamma}
381 {\dvar{x:\tau}{e}}
382 {\dvar{x:\tau'}{e'}}
383 {\extends{\Gamma}{x}{\tau}}
384 }
385
386 A simple variable declaration without a declared type is well-typed if the
387 initializer for the declaration is well-typed at any type. The output context
388 binds the variable at the synthesized type (a simple form of type inference).
389
390 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\tau'} \quad
391 }
392 {\declOk[d]{\Phi, \Delta, \Gamma}
393 {\dvar{x:\_}{e}}
394 {\dvar{x:\tau'}{e'}}
395 {\extends{\Gamma}{x}{\tau'}}
396 }
397
398 A function declaration is well-typed if the body of the function is well-typed
399 with the given return type, under the assumption that the function and its
400 parameters have their declared types. The function is assumed to have a
401 contravariant (precise) function type. The output context binds the function
402 variable only.
403
404 \infrule{\tau_f = \Arrow[-]{\many{\tau_a}}{\tau_r} \quad
405 \Gamma' = \extends{\Gamma}{f}{\tau_f} \quad
406 \Gamma'' = \extends{\Gamma'}{\many{x}}{\many{\tau_a}} \\
407 \stmtOk{\Phi, \Delta, \Gamma''}{s}{\tau_r}{s'}{\Gamma_0}
408 }
409 {\declOk[d]{\Phi, \Delta, \Gamma}
410 {\dfun{\tau_r}{f}{\many{x:\tau_a}}{s}}
411 {\dfun{\tau_r}{f}{\many{x:\tau_a}}{s'}}
412 {\Gamma'}
413 }
414
415 \subsection*{Statement typing: $\stmtOk{\Phi, \Delta, \Gamma}{\mathit{s}}{\tau}{ \mathit{s'}}{\Gamma'}$}
416 \hrulefill
417
418 The statement typing relation checks the well-formedness of statements and
419 produces an output context which reflects any additional variable bindings
420 introduced into scope by the statements.
421
422 A variable declaration statement is well-typed if the variable declaration is
423 well-typed per the previous relation, with the corresponding output context.
424
425 \infrule{\declOk[d]{\Phi, \Delta, \Gamma}
426 {\mathit{vd}}
427 {\mathit{vd'}}
428 {\Gamma'}
429 }
430 {\stmtOk{\Phi, \Delta, \Gamma}
431 {\mathit{vd}}
432 {\tau}
433 {\mathit{vd'}}
434 {\Gamma'}
435 }
436
437 An expression statement is well-typed if the expression is well-typed at any
438 type per the expression typing relation.
439
440 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\_}{e'}{\tau}
441 }
442 {\stmtOk{\Phi, \Delta, \Gamma}{e}{\tau}{e'}{\Gamma}
443 }
444
445 A conditional statement is well-typed if the condition is well-typed as a
446 boolean, and the statements making up the two arms are well-typed. The output
447 context is unchanged.
448
449 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\Bool}{e'}{\sigma} \quad
450 \stmtOk{\Phi, \Delta, \Gamma}{s_1}{\tau_r}{s_1'}{\Gamma_1} \quad
451 \stmtOk{\Phi, \Delta, \Gamma}{s_2}{\tau_r}{s_2'}{\Gamma_2}
452 }
453 {\stmtOk{\Phi, \Delta, \Gamma}
454 {\sifthenelse{e}{s_1}{s_2}}
455 {\tau_r}
456 {\sifthenelse{e'}{s_1'}{s_2'}}
457 {\Gamma}
458 }
459
460 A return statement is well-typed if the expression being returned is well-typed
461 at the given return type.
462
463 \infrule{\yieldsOk{\Phi, \Delta, \Gamma}{e}{\tau_r}{e'}{\tau}
464 }
465 {\stmtOk{\Phi, \Delta, \Gamma}{\sreturn{e}}{\tau_r}{\sreturn{e'}}{\Gamma }
466 }
467
468 A sequence statement is well-typed if the first component is well-typed, and the
469 second component is well-typed with the output context of the first component as
470 its input context. The final output context is the output context of the second
471 component.
472
473 \infrule{\stmtOk{\Phi, \Delta, \Gamma}{s_1}{\tau_r}{s_1'}{\Gamma'} \quad
474 \stmtOk{\Phi, \Delta, \Gamma'}{s_2}{\tau_r}{s_2'}{\Gamma''}
475 }
476 {\stmtOk{\Phi, \Delta, \Gamma}{s_1;s_2}{\tau_r}{s_1';s_2'}{\Gamma''}
477 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698