| Index: bench/GLVec4ScalarBench.cpp
|
| diff --git a/bench/GLVec4ScalarBench.cpp b/bench/GLVec4ScalarBench.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e8c40f429d3740efdd87feac834bbc69c05a697b
|
| --- /dev/null
|
| +++ b/bench/GLVec4ScalarBench.cpp
|
| @@ -0,0 +1,303 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "SkMatrix.h"
|
| +#include "SkPoint.h"
|
| +#include "SkString.h"
|
| +
|
| +#if SK_SUPPORT_GPU
|
| +#include "GLBench.h"
|
| +#include "gl/GrGLGLSL.h"
|
| +#include "gl/GrGLInterface.h"
|
| +#include "gl/GrGLShaderVar.h"
|
| +#include "gl/GrGLUtil.h"
|
| +#include "glsl/GrGLSLCaps.h"
|
| +
|
| +#include <stdio.h>
|
| +
|
| +/**
|
| + * This is a GL benchmark for comparing the performance of using vec4 or float for coverage in GLSL.
|
| + * The generated shader code from this bench will draw several overlapping circles, one in each
|
| + * stage, to simulate coverage calculations. The number of circles (i.e. the number of stages) can
|
| + * be set as a parameter.
|
| + */
|
| +
|
| +class GLVec4ScalarBench : public GLBench {
|
| +public:
|
| + /*
|
| + * Use float or vec4 as GLSL data type for the output coverage
|
| + */
|
| + enum CoverageSetup {
|
| + kUseScalar_CoverageSetup,
|
| + kUseVec4_CoverageSetup,
|
| + };
|
| +
|
| + /*
|
| + * numStages determines the number of shader stages before the XP,
|
| + * which consequently determines how many circles are drawn
|
| + */
|
| + GLVec4ScalarBench(CoverageSetup coverageSetup, uint32_t numStages)
|
| + : fCoverageSetup(coverageSetup)
|
| + , fNumStages(numStages)
|
| + , fVboId(0)
|
| + , fProgram(0) {
|
| + fName = NumStagesSetupToStr(coverageSetup, numStages);
|
| + }
|
| +
|
| +protected:
|
| + const char* onGetName() override {
|
| + return fName.c_str();
|
| + }
|
| +
|
| + void setup(const GrGLContext*) override;
|
| + void glDraw(const int loops, const GrGLContext*) override;
|
| + void teardown(const GrGLInterface*) override;
|
| +
|
| +private:
|
| + void setupSingleVbo(const GrGLInterface*, const SkMatrix*);
|
| + GrGLuint setupShader(const GrGLContext*);
|
| +
|
| +
|
| + static SkString NumStagesSetupToStr(CoverageSetup coverageSetup, uint32_t numStages) {
|
| + SkString name("GLVec4ScalarBench");
|
| + switch (coverageSetup) {
|
| + default:
|
| + case kUseScalar_CoverageSetup:
|
| + name.appendf("_scalar_%u_stage", numStages);
|
| + break;
|
| + case kUseVec4_CoverageSetup:
|
| + name.appendf("_vec4_%u_stage", numStages);
|
| + break;
|
| + }
|
| + return name;
|
| + }
|
| +
|
| + static const GrGLuint kScreenWidth = 800;
|
| + static const GrGLuint kScreenHeight = 600;
|
| + static const uint32_t kNumTriPerDraw = 512;
|
| + static const uint32_t kVerticesPerTri = 3;
|
| +
|
| + SkString fName;
|
| + CoverageSetup fCoverageSetup;
|
| + uint32_t fNumStages;
|
| + GrGLuint fVboId;
|
| + GrGLuint fProgram;
|
| + GrGLuint fFboTextureId;
|
| +};
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +GrGLuint GLVec4ScalarBench::setupShader(const GrGLContext* ctx) {
|
| + const char* version = GrGLGetGLSLVersionDecl(*ctx);
|
| +
|
| + // this shader draws fNumStages overlapping circles of increasing opacity (coverage) and
|
| + // decreasing size, with the center of each subsequent circle closer to the bottom-right
|
| + // corner of the screen than the previous circle.
|
| +
|
| + // set up vertex shader; this is a trivial vertex shader that passes through position and color
|
| + GrGLShaderVar aPosition("a_position", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
|
| + GrGLShaderVar oPosition("o_position", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier);
|
| + GrGLShaderVar aColor("a_color", kVec3f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
|
| + GrGLShaderVar oColor("o_color", kVec3f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier);
|
| +
|
| + SkString vshaderTxt(version);
|
| + aPosition.appendDecl(*ctx, &vshaderTxt);
|
| + vshaderTxt.append(";\n");
|
| + aColor.appendDecl(*ctx, &vshaderTxt);
|
| + vshaderTxt.append(";\n");
|
| + oPosition.appendDecl(*ctx, &vshaderTxt);
|
| + vshaderTxt.append(";\n");
|
| + oColor.appendDecl(*ctx, &vshaderTxt);
|
| + vshaderTxt.append(";\n");
|
| +
|
| + vshaderTxt.append(
|
| + "void main()\n"
|
| + "{\n"
|
| + " gl_Position = vec4(a_position, 0.0, 1.0);\n"
|
| + " o_position = a_position;\n"
|
| + " o_color = a_color;\n"
|
| + "}\n");
|
| +
|
| + const GrGLInterface* gl = ctx->interface();
|
| +
|
| + // set up fragment shader; this fragment shader will have fNumStages coverage stages plus an
|
| + // XP stage at the end. Each coverage stage computes the pixel's distance from some hard-
|
| + // coded center and compare that to some hard-coded circle radius to compute a coverage.
|
| + // Then, this coverage is mixed with the coverage from the previous stage and passed to the
|
| + // next stage.
|
| + GrGLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier);
|
| + SkString fshaderTxt(version);
|
| + GrGLAppendGLSLDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, gl->fStandard,
|
| + &fshaderTxt);
|
| + oPosition.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
|
| + oPosition.appendDecl(*ctx, &fshaderTxt);
|
| + fshaderTxt.append(";\n");
|
| + oColor.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
|
| + oColor.appendDecl(*ctx, &fshaderTxt);
|
| + fshaderTxt.append(";\n");
|
| +
|
| + const char* fsOutName;
|
| + if (ctx->caps()->glslCaps()->mustDeclareFragmentShaderOutput()) {
|
| + oFragColor.appendDecl(*ctx, &fshaderTxt);
|
| + fshaderTxt.append(";\n");
|
| + fsOutName = oFragColor.c_str();
|
| + } else {
|
| + fsOutName = "gl_FragColor";
|
| + }
|
| +
|
| +
|
| + fshaderTxt.appendf(
|
| + "void main()\n"
|
| + "{\n"
|
| + " vec4 outputColor;\n"
|
| + " %s outputCoverage;\n"
|
| + " outputColor = vec4(%s, 1.0);\n"
|
| + " outputCoverage = %s;\n",
|
| + fCoverageSetup == kUseVec4_CoverageSetup ? "vec4" : "float",
|
| + oColor.getName().c_str(),
|
| + fCoverageSetup == kUseVec4_CoverageSetup ? "vec4(1.0)" : "1.0"
|
| + );
|
| +
|
| + float radius = 1.0f;
|
| + for (uint32_t i = 0; i < fNumStages; i++) {
|
| + float centerX = 1.0f - radius;
|
| + float centerY = 1.0f - radius;
|
| + fshaderTxt.appendf(
|
| + " {\n"
|
| + " float d = length(%s - vec2(%f, %f));\n"
|
| + " float edgeAlpha = clamp(100.0 * (%f - d), 0.0, 1.0);\n"
|
| + " outputCoverage = 0.5 * outputCoverage + 0.5 * %s;\n"
|
| + " }\n",
|
| + oPosition.getName().c_str(), centerX, centerY,
|
| + radius,
|
| + fCoverageSetup == kUseVec4_CoverageSetup ? "vec4(edgeAlpha)" : "edgeAlpha"
|
| + );
|
| + radius *= 0.8f;
|
| + }
|
| + fshaderTxt.appendf(
|
| + " {\n"
|
| + " %s = outputColor * outputCoverage;\n"
|
| + " }\n"
|
| + "}\n",
|
| + fsOutName);
|
| +
|
| + return CreateProgram(gl, vshaderTxt.c_str(), fshaderTxt.c_str());
|
| +}
|
| +
|
| +template<typename Func>
|
| +static void setup_matrices(int numQuads, Func f) {
|
| + // We draw a really small triangle so we are not fill rate limited
|
| + for (int i = 0 ; i < numQuads; i++) {
|
| + SkMatrix m = SkMatrix::I();
|
| + m.setScale(0.01f, 0.01f);
|
| + f(m);
|
| + }
|
| +}
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +struct Vertex {
|
| + SkPoint fPositions;
|
| + GrGLfloat fColors[3];
|
| +};
|
| +
|
| +void GLVec4ScalarBench::setupSingleVbo(const GrGLInterface* gl, const SkMatrix* viewMatrices) {
|
| + // triangles drawn will alternate between the top-right half of the screen and the bottom-left
|
| + // half of the screen
|
| + Vertex vertices[kVerticesPerTri * kNumTriPerDraw];
|
| + for (uint32_t i = 0; i < kNumTriPerDraw; i++) {
|
| + Vertex* v = &vertices[i * kVerticesPerTri];
|
| + if (i % 2 == 0) {
|
| + v[0].fPositions.set(-1.0f, -1.0f);
|
| + v[1].fPositions.set( 1.0f, -1.0f);
|
| + v[2].fPositions.set( 1.0f, 1.0f);
|
| + } else {
|
| + v[0].fPositions.set(-1.0f, -1.0f);
|
| + v[1].fPositions.set( 1.0f, 1.0f);
|
| + v[2].fPositions.set( -1.0f, 1.0f);
|
| + }
|
| + SkPoint* position = reinterpret_cast<SkPoint*>(v);
|
| + viewMatrices[i].mapPointsWithStride(position, sizeof(Vertex), kVerticesPerTri);
|
| +
|
| + GrGLfloat color[3] = {1.0f, 0.0f, 1.0f};
|
| + for (uint32_t j = 0; j < kVerticesPerTri; j++) {
|
| + v->fColors[0] = color[0];
|
| + v->fColors[1] = color[1];
|
| + v->fColors[2] = color[2];
|
| + v++;
|
| + }
|
| + }
|
| +
|
| + GR_GL_CALL(gl, GenBuffers(1, &fVboId));
|
| + GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, fVboId));
|
| + GR_GL_CALL(gl, EnableVertexAttribArray(0));
|
| + GR_GL_CALL(gl, EnableVertexAttribArray(1));
|
| + GR_GL_CALL(gl, VertexAttribPointer(0, 2, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
|
| + (GrGLvoid*)0));
|
| + GR_GL_CALL(gl, VertexAttribPointer(1, 3, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
|
| + (GrGLvoid*)(sizeof(SkPoint))));
|
| + GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(vertices), vertices, GR_GL_STATIC_DRAW));
|
| +}
|
| +
|
| +void GLVec4ScalarBench::setup(const GrGLContext* ctx) {
|
| + const GrGLInterface* gl = ctx->interface();
|
| + if (!gl) {
|
| + SkFAIL("GL interface is NULL in setup()!\n");
|
| + }
|
| + fFboTextureId = SetupFramebuffer(gl, kScreenWidth, kScreenHeight);
|
| +
|
| + fProgram = this->setupShader(ctx);
|
| +
|
| + int index = 0;
|
| + SkMatrix viewMatrices[kNumTriPerDraw];
|
| + setup_matrices(kNumTriPerDraw, [&index, &viewMatrices](const SkMatrix& m) {
|
| + viewMatrices[index++] = m;
|
| + });
|
| + this->setupSingleVbo(gl, viewMatrices);
|
| +
|
| + GR_GL_CALL(gl, UseProgram(fProgram));
|
| +}
|
| +
|
| +void GLVec4ScalarBench::glDraw(const int loops, const GrGLContext* ctx) {
|
| + const GrGLInterface* gl = ctx->interface();
|
| +
|
| + for (int i = 0; i < loops; i++) {
|
| + GR_GL_CALL(gl, DrawArrays(GR_GL_TRIANGLES, 0, kVerticesPerTri * kNumTriPerDraw));
|
| + }
|
| +
|
| +// using -w when running nanobench will not produce correct images;
|
| +// changing this to #if 1 will write the correct images to the Skia folder.
|
| +#if 0
|
| + SkString filename("out");
|
| + filename.appendf("_%s.png", this->getName());
|
| + DumpImage(gl, kScreenWidth, kScreenHeight, filename.c_str());
|
| +#endif
|
| +}
|
| +
|
| +void GLVec4ScalarBench::teardown(const GrGLInterface* gl) {
|
| + GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, 0));
|
| + GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
|
| + GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
|
| + GR_GL_CALL(gl, DeleteTextures(1, &fFboTextureId));
|
| + GR_GL_CALL(gl, DeleteProgram(fProgram));
|
| + GR_GL_CALL(gl, DeleteBuffers(1, &fVboId));
|
| +}
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////
|
| +
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 1) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 1) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 2) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 2) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 4) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 4) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 6) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 6) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 8) )
|
| +DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 8) )
|
| +
|
| +#endif
|
|
|