Chromium Code Reviews| Index: src/processor/exploitability_linux.cc |
| =================================================================== |
| --- src/processor/exploitability_linux.cc (revision 1471) |
| +++ src/processor/exploitability_linux.cc (working copy) |
| @@ -36,6 +36,11 @@ |
| #include "processor/exploitability_linux.h" |
| +#include <assert.h> |
| +#include <elf.h> |
| +#include <stdlib.h> |
| +#include <string.h> |
| + |
| #include "google_breakpad/common/minidump_exception_linux.h" |
| #include "google_breakpad/processor/call_stack.h" |
| #include "google_breakpad/processor/process_state.h" |
| @@ -109,8 +114,13 @@ |
| return EXPLOITABILITY_ERR_PROCESSING; |
| } |
| + if (this->ArchitectureType() == UNSUPPORTED_ARCHITECTURE) { |
| + BPLOG(INFO) << "Unsupported architecture."; |
| + return EXPLOITABILITY_ERR_PROCESSING; |
| + } |
| // Getting the instruction pointer. |
| if (!context->GetInstructionPointer(&instruction_ptr)) { |
| + BPLOG(INFO) << "Failed to retrieve instruction pointer."; |
| return EXPLOITABILITY_ERR_PROCESSING; |
| } |
| @@ -119,35 +129,159 @@ |
| return EXPLOITABILITY_HIGH; |
| } |
| + // There was no strong evidence suggesting exploitability, but the minidump |
| + // does not appear totally benign either. |
| return EXPLOITABILITY_INTERESTING; |
| } |
| +LinuxArchitectureType ExploitabilityLinux::ArchitectureType() { |
| + // GetContextCPU() should have already been successfully called before |
| + // calling this method. Thus there should be a raw exception stream for |
| + // the minidump. |
| + MinidumpException *exception = dump_->GetException(); |
| + const DumpContext *dump_context = |
| + exception ? |
| + exception->GetContext() : NULL; |
| + if (dump_context == NULL) { |
| + BPLOG(INFO) << "No raw dump context."; |
| + return UNSUPPORTED_ARCHITECTURE; |
| + } |
| + |
| + // Check the architecture type. |
| + switch (dump_context->GetContextCPU()) { |
| + case MD_CONTEXT_ARM: |
| + case MD_CONTEXT_X86: |
| + return LINUX_32_BIT; |
| + case MD_CONTEXT_ARM64: |
| + case MD_CONTEXT_AMD64: |
| + return LINUX_64_BIT; |
| + default: |
| + // This should not happen. The four architectures above should be |
| + // the only Linux architectures. |
| + BPLOG(INFO) << "Unsupported architecture."; |
| + return UNSUPPORTED_ARCHITECTURE; |
| + } |
| +} |
| + |
| bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) { |
| - // Here we get memory mapping. Most minidumps will not contain a memory |
| - // mapping, so we will commonly resort to checking modules. |
| + // Get memory mapping. Most minidumps will not contain a memory |
| + // mapping, so processing will commonly resort to checking modules. |
| MinidumpMemoryInfoList *mem_info_list = dump_->GetMemoryInfoList(); |
| const MinidumpMemoryInfo *mem_info = |
| mem_info_list ? |
| mem_info_list->GetMemoryInfoForAddress(instruction_ptr) : NULL; |
| - // Checking if the memory mapping at the instruction pointer is executable. |
| - // If there is no memory mapping, we will use the modules as reference. |
| + // Check if the memory mapping at the instruction pointer is executable. |
| + // If there is no memory mapping, processing will use the modules as reference. |
| if (mem_info != NULL) { |
| return mem_info->IsExecutable(); |
| } |
| - // If the memory mapping retrieval fails, we will check the modules |
| + // If the memory mapping retrieval fails, check the modules |
| // to see if the instruction pointer is inside a module. |
| - // TODO(liuandrew): Check if the instruction pointer lies in an executable |
| - // region within the module. |
| MinidumpModuleList *minidump_module_list = dump_->GetModuleList(); |
| - return !minidump_module_list || |
| - minidump_module_list->GetModuleForAddress(instruction_ptr); |
| + const MinidumpModule *minidump_module = |
| + minidump_module_list ? |
| + minidump_module_list->GetModuleForAddress(instruction_ptr) : NULL; |
| + |
| + // If the instruction pointer isn't in a module, return false. |
| + if (minidump_module == NULL) { |
| + return false; |
| + } |
| + |
| + // Get ELF header data from the instruction pointer's module. |
| + const uint64_t base_address = minidump_module->base_address(); |
| + MinidumpMemoryList *memory_list = dump_->GetMemoryList(); |
| + MinidumpMemoryRegion *memory_region = |
| + memory_list ? |
| + memory_list->GetMemoryRegionForAddress(base_address) : NULL; |
| + |
| + // The minidump does not have the correct memory region. |
| + // This returns true because even though there is no memory data available, |
| + // the evidence so far suggests that the instruction pointer is not at a |
| + // bad location. |
| + if (memory_region == NULL) { |
| + return true; |
| + } |
| + |
| + // Examine ELF headers. Depending on the architecture, the size of the |
| + // ELF headers can differ. |
| + LinuxArchitectureType architecture = this->ArchitectureType(); |
| + if (architecture == LINUX_32_BIT) { |
| + // Check if the ELF header is within the memory region and if the |
| + // instruction pointer lies within the ELF header. |
| + if (memory_region->GetSize() < sizeof(Elf32_Ehdr) || |
| + instruction_ptr < base_address + sizeof(Elf32_Ehdr)) { |
| + return false; |
| + } |
| + // Load 32-bit ELF header. |
| + scoped_ptr<Elf32_Ehdr> header(new Elf32_Ehdr); |
|
ivanpe
2015/07/16 00:45:23
Is this header needed only in the scope of this me
liuandrew
2015/07/16 17:07:02
Done.
You're right; it is only needed within the
|
| + this->LoadElfHeader(header, memory_region, base_address); |
| + // Check if the program header table is within the memory region, and |
| + // validate that the program header entry size is correct. |
| + if (header->e_phentsize != sizeof(Elf32_Phdr) || |
| + memory_region->GetSize() < |
| + header->e_phoff + (header->e_phentsize * header->e_phnum)) { |
| + return false; |
| + } |
| + // Load 32-bit Program Header Table. |
| + scoped_array<Elf32_Phdr> program_headers(new Elf32_Phdr[header->e_phnum]); |
| + this->LoadElfHeaderTable(program_headers, |
| + memory_region, |
| + base_address + header->e_phoff, |
| + header->e_phnum); |
| + // Find correct program header that corresponds to the instruction pointer. |
| + for (int i = 0; i < header->e_phnum; i++) { |
| + const Elf32_Phdr& program_header = program_headers[i]; |
| + // Check if instruction pointer lies within this program header's region. |
| + if (instruction_ptr >= program_header.p_vaddr && |
| + instruction_ptr < program_header.p_vaddr + program_header.p_memsz) { |
| + // Return whether this program header region is executable. |
| + return program_header.p_flags & PF_X; |
| + } |
| + } |
| + } else if (architecture == LINUX_64_BIT) { |
| + // Check if the ELF header is within the memory region and if the |
| + // instruction pointer lies within the ELF header. |
| + if (memory_region->GetSize() < sizeof(Elf64_Ehdr) || |
| + instruction_ptr < base_address + sizeof(Elf64_Ehdr)) { |
| + return false; |
| + } |
| + // Load 64-bit ELF header. |
| + scoped_ptr<Elf64_Ehdr> header(new Elf64_Ehdr); |
|
ivanpe
2015/07/16 00:45:23
Elf64_Ehdr header;
liuandrew
2015/07/16 17:07:02
Done.
|
| + this->LoadElfHeader(header, memory_region, base_address); |
| + // Check if the program header table is within the memory region, and |
| + // validate that the program header entry size is correct. |
| + if (header->e_phentsize != sizeof(Elf64_Phdr) || |
| + memory_region->GetSize() < |
| + header->e_phoff + (header->e_phentsize * header->e_phnum)) { |
| + return false; |
| + } |
| + // Load 64-bit Program Header Table. |
| + scoped_array<Elf64_Phdr> program_headers(new Elf64_Phdr[header->e_phnum]); |
| + this->LoadElfHeaderTable(program_headers, |
| + memory_region, |
| + base_address + header->e_phoff, |
| + header->e_phnum); |
| + // Find correct program header that corresponds to the instruction pointer. |
| + for (int i = 0; i < header->e_phnum; i++) { |
| + const Elf64_Phdr& program_header = program_headers[i]; |
| + // Check if instruction pointer lies within this program header's region. |
| + if (instruction_ptr >= program_header.p_vaddr && |
| + instruction_ptr < program_header.p_vaddr + program_header.p_memsz) { |
| + // Return whether this program header region is executable. |
| + return program_header.p_flags & PF_X; |
| + } |
| + } |
| + } |
| + |
| + // The instruction pointer was not in an area identified by the ELF headers. |
| + return false; |
| } |
| bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream |
| *raw_exception_stream) { |
| - // Here we check the cause of crash. |
| + // Check the cause of crash. |
| // If the exception of the crash is a benign exception, |
| // it is probably not exploitable. |
| switch (raw_exception_stream->exception_record.exception_code) { |