OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| 2 // for details. All rights reserved. Use of this source code is governed by a |
| 3 // BSD-style license that can be found in the LICENSE file. |
| 4 |
| 5 #include "vm/bootstrap_natives.h" |
| 6 |
| 7 #include "vm/exceptions.h" |
| 8 #include "vm/native_entry.h" |
| 9 #include "vm/object.h" |
| 10 #include "vm/symbols.h" |
| 11 |
| 12 namespace dart { |
| 13 |
| 14 DEFINE_NATIVE_ENTRY(Simd128Float32_fromDoubles, 5) { |
| 15 ASSERT(AbstractTypeArguments::CheckedHandle( |
| 16 arguments->NativeArgAt(0)).IsNull()); |
| 17 GET_NON_NULL_NATIVE_ARGUMENT(Double, x, arguments->NativeArgAt(1)); |
| 18 GET_NON_NULL_NATIVE_ARGUMENT(Double, y, arguments->NativeArgAt(2)); |
| 19 GET_NON_NULL_NATIVE_ARGUMENT(Double, z, arguments->NativeArgAt(3)); |
| 20 GET_NON_NULL_NATIVE_ARGUMENT(Double, w, arguments->NativeArgAt(4)); |
| 21 float _x = x.value(); |
| 22 float _y = y.value(); |
| 23 float _z = z.value(); |
| 24 float _w = w.value(); |
| 25 return Simd128Float32::New(_x, _y, _z, _w); |
| 26 } |
| 27 |
| 28 |
| 29 DEFINE_NATIVE_ENTRY(Simd128Float32_zero, 1) { |
| 30 ASSERT(AbstractTypeArguments::CheckedHandle( |
| 31 arguments->NativeArgAt(0)).IsNull()); |
| 32 return Simd128Float32::New(0.0f, 0.0f, 0.0f, 0.0f); |
| 33 } |
| 34 |
| 35 |
| 36 DEFINE_NATIVE_ENTRY(Simd128Float32_add, 2) { |
| 37 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 38 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other, |
| 39 arguments->NativeArgAt(1)); |
| 40 float _x = self.x() + other.x(); |
| 41 float _y = self.y() + other.y(); |
| 42 float _z = self.z() + other.z(); |
| 43 float _w = self.w() + other.w(); |
| 44 return Simd128Float32::New(_x, _y, _z, _w); |
| 45 } |
| 46 |
| 47 |
| 48 DEFINE_NATIVE_ENTRY(Simd128Float32_negate, 1) { |
| 49 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 50 float _x = -self.x(); |
| 51 float _y = -self.y(); |
| 52 float _z = -self.z(); |
| 53 float _w = -self.w(); |
| 54 return Simd128Float32::New(_x, _y, _z, _w); |
| 55 } |
| 56 |
| 57 |
| 58 DEFINE_NATIVE_ENTRY(Simd128Float32_sub, 2) { |
| 59 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 60 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other, |
| 61 arguments->NativeArgAt(1)); |
| 62 float _x = self.x() - other.x(); |
| 63 float _y = self.y() - other.y(); |
| 64 float _z = self.z() - other.z(); |
| 65 float _w = self.w() - other.w(); |
| 66 return Simd128Float32::New(_x, _y, _z, _w); |
| 67 } |
| 68 |
| 69 |
| 70 DEFINE_NATIVE_ENTRY(Simd128Float32_mul, 2) { |
| 71 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 72 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other, |
| 73 arguments->NativeArgAt(1)); |
| 74 float _x = self.x() * other.x(); |
| 75 float _y = self.y() * other.y(); |
| 76 float _z = self.z() * other.z(); |
| 77 float _w = self.w() * other.w(); |
| 78 return Simd128Float32::New(_x, _y, _z, _w); |
| 79 } |
| 80 |
| 81 |
| 82 DEFINE_NATIVE_ENTRY(Simd128Float32_div, 2) { |
| 83 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 84 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other, |
| 85 arguments->NativeArgAt(1)); |
| 86 float _x = self.x() / other.x(); |
| 87 float _y = self.y() / other.y(); |
| 88 float _z = self.z() / other.z(); |
| 89 float _w = self.w() / other.w(); |
| 90 return Simd128Float32::New(_x, _y, _z, _w); |
| 91 } |
| 92 |
| 93 |
| 94 DEFINE_NATIVE_ENTRY(Simd128Float32_cmplt, 2) { |
| 95 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0)); |
| 96 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1)); |
| 97 uint32_t _x = a.x() < b.x() ? 0xFFFFFFFF : 0x0; |
| 98 uint32_t _y = a.y() < b.y() ? 0xFFFFFFFF : 0x0; |
| 99 uint32_t _z = a.z() < b.z() ? 0xFFFFFFFF : 0x0; |
| 100 uint32_t _w = a.w() < b.w() ? 0xFFFFFFFF : 0x0; |
| 101 return Simd128Mask::New(_x, _y, _z, _w); |
| 102 } |
| 103 |
| 104 |
| 105 DEFINE_NATIVE_ENTRY(Simd128Float32_cmplte, 2) { |
| 106 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0)); |
| 107 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1)); |
| 108 uint32_t _x = a.x() <= b.x() ? 0xFFFFFFFF : 0x0; |
| 109 uint32_t _y = a.y() <= b.y() ? 0xFFFFFFFF : 0x0; |
| 110 uint32_t _z = a.z() <= b.z() ? 0xFFFFFFFF : 0x0; |
| 111 uint32_t _w = a.w() <= b.w() ? 0xFFFFFFFF : 0x0; |
| 112 return Simd128Mask::New(_x, _y, _z, _w); |
| 113 } |
| 114 |
| 115 |
| 116 DEFINE_NATIVE_ENTRY(Simd128Float32_cmpgt, 2) { |
| 117 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0)); |
| 118 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1)); |
| 119 uint32_t _x = a.x() > b.x() ? 0xFFFFFFFF : 0x0; |
| 120 uint32_t _y = a.y() > b.y() ? 0xFFFFFFFF : 0x0; |
| 121 uint32_t _z = a.z() > b.z() ? 0xFFFFFFFF : 0x0; |
| 122 uint32_t _w = a.w() > b.w() ? 0xFFFFFFFF : 0x0; |
| 123 return Simd128Mask::New(_x, _y, _z, _w); |
| 124 } |
| 125 |
| 126 |
| 127 DEFINE_NATIVE_ENTRY(Simd128Float32_cmpgte, 2) { |
| 128 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0)); |
| 129 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1)); |
| 130 uint32_t _x = a.x() >= b.x() ? 0xFFFFFFFF : 0x0; |
| 131 uint32_t _y = a.y() >= b.y() ? 0xFFFFFFFF : 0x0; |
| 132 uint32_t _z = a.z() >= b.z() ? 0xFFFFFFFF : 0x0; |
| 133 uint32_t _w = a.w() >= b.w() ? 0xFFFFFFFF : 0x0; |
| 134 return Simd128Mask::New(_x, _y, _z, _w); |
| 135 } |
| 136 |
| 137 |
| 138 DEFINE_NATIVE_ENTRY(Simd128Float32_cmpequal, 2) { |
| 139 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0)); |
| 140 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1)); |
| 141 uint32_t _x = a.x() == b.x() ? 0xFFFFFFFF : 0x0; |
| 142 uint32_t _y = a.y() == b.y() ? 0xFFFFFFFF : 0x0; |
| 143 uint32_t _z = a.z() == b.z() ? 0xFFFFFFFF : 0x0; |
| 144 uint32_t _w = a.w() == b.w() ? 0xFFFFFFFF : 0x0; |
| 145 return Simd128Mask::New(_x, _y, _z, _w); |
| 146 } |
| 147 |
| 148 |
| 149 DEFINE_NATIVE_ENTRY(Simd128Float32_cmpnequal, 2) { |
| 150 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0)); |
| 151 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1)); |
| 152 uint32_t _x = a.x() != b.x() ? 0xFFFFFFFF : 0x0; |
| 153 uint32_t _y = a.y() != b.y() ? 0xFFFFFFFF : 0x0; |
| 154 uint32_t _z = a.z() != b.z() ? 0xFFFFFFFF : 0x0; |
| 155 uint32_t _w = a.w() != b.w() ? 0xFFFFFFFF : 0x0; |
| 156 return Simd128Mask::New(_x, _y, _z, _w); |
| 157 } |
| 158 |
| 159 |
| 160 DEFINE_NATIVE_ENTRY(Simd128Float32_scale, 2) { |
| 161 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 162 GET_NON_NULL_NATIVE_ARGUMENT(Double, scale, arguments->NativeArgAt(1)); |
| 163 float _s = static_cast<float>(scale.value()); |
| 164 float _x = self.x() * _s; |
| 165 float _y = self.y() * _s; |
| 166 float _z = self.z() * _s; |
| 167 float _w = self.w() * _s; |
| 168 return Simd128Float32::New(_x, _y, _z, _w); |
| 169 } |
| 170 |
| 171 |
| 172 DEFINE_NATIVE_ENTRY(Simd128Float32_abs, 1) { |
| 173 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 174 float _x = fabsf(self.x()); |
| 175 float _y = fabsf(self.y()); |
| 176 float _z = fabsf(self.z()); |
| 177 float _w = fabsf(self.w()); |
| 178 return Simd128Float32::New(_x, _y, _z, _w); |
| 179 } |
| 180 |
| 181 |
| 182 DEFINE_NATIVE_ENTRY(Simd128Float32_clamp, 3) { |
| 183 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 184 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, lo, arguments->NativeArgAt(1)); |
| 185 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, hi, arguments->NativeArgAt(2)); |
| 186 float _x = self.x() > lo.x() ? self.x() : lo.x(); |
| 187 float _y = self.y() > lo.y() ? self.y() : lo.y(); |
| 188 float _z = self.z() > lo.z() ? self.z() : lo.z(); |
| 189 float _w = self.w() > lo.w() ? self.w() : lo.w(); |
| 190 _x = _x > hi.x() ? hi.x() : _x; |
| 191 _y = _y > hi.y() ? hi.y() : _y; |
| 192 _z = _z > hi.z() ? hi.z() : _z; |
| 193 _w = _w > hi.w() ? hi.w() : _w; |
| 194 return Simd128Float32::New(_x, _y, _z, _w); |
| 195 } |
| 196 |
| 197 |
| 198 DEFINE_NATIVE_ENTRY(Simd128Float32_getX, 1) { |
| 199 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 200 double value = static_cast<double>(self.x()); |
| 201 return Double::New(value); |
| 202 } |
| 203 |
| 204 |
| 205 DEFINE_NATIVE_ENTRY(Simd128Float32_getY, 1) { |
| 206 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 207 double value = static_cast<double>(self.y()); |
| 208 return Double::New(value); |
| 209 } |
| 210 |
| 211 |
| 212 DEFINE_NATIVE_ENTRY(Simd128Float32_getZ, 1) { |
| 213 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 214 double value = static_cast<double>(self.z()); |
| 215 return Double::New(value); |
| 216 } |
| 217 |
| 218 |
| 219 DEFINE_NATIVE_ENTRY(Simd128Float32_getW, 1) { |
| 220 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 221 double value = static_cast<double>(self.w()); |
| 222 return Double::New(value); |
| 223 } |
| 224 |
| 225 |
| 226 DEFINE_NATIVE_ENTRY(Simd128Float32_getXXXX, 1) { |
| 227 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 228 float value = self.x(); |
| 229 return Simd128Float32::New(value, value, value, value); |
| 230 } |
| 231 |
| 232 |
| 233 DEFINE_NATIVE_ENTRY(Simd128Float32_getYYYY, 1) { |
| 234 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 235 float value = self.y(); |
| 236 return Simd128Float32::New(value, value, value, value); |
| 237 } |
| 238 |
| 239 |
| 240 DEFINE_NATIVE_ENTRY(Simd128Float32_getZZZZ, 1) { |
| 241 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 242 float value = self.z(); |
| 243 return Simd128Float32::New(value, value, value, value); |
| 244 } |
| 245 |
| 246 |
| 247 DEFINE_NATIVE_ENTRY(Simd128Float32_getWWWW, 1) { |
| 248 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 249 float value = self.w(); |
| 250 return Simd128Float32::New(value, value, value, value); |
| 251 } |
| 252 |
| 253 |
| 254 DEFINE_NATIVE_ENTRY(Simd128Float32_setX, 2) { |
| 255 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 256 GET_NON_NULL_NATIVE_ARGUMENT(Double, x, arguments->NativeArgAt(1)); |
| 257 float _x = static_cast<float>(x.value()); |
| 258 float _y = self.y(); |
| 259 float _z = self.z(); |
| 260 float _w = self.w(); |
| 261 return Simd128Float32::New(_x, _y, _z, _w); |
| 262 } |
| 263 |
| 264 |
| 265 DEFINE_NATIVE_ENTRY(Simd128Float32_setY, 2) { |
| 266 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 267 GET_NON_NULL_NATIVE_ARGUMENT(Double, y, arguments->NativeArgAt(1)); |
| 268 float _x = self.x(); |
| 269 float _y = static_cast<float>(y.value()); |
| 270 float _z = self.z(); |
| 271 float _w = self.w(); |
| 272 return Simd128Float32::New(_x, _y, _z, _w); |
| 273 } |
| 274 |
| 275 |
| 276 DEFINE_NATIVE_ENTRY(Simd128Float32_setZ, 2) { |
| 277 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 278 GET_NON_NULL_NATIVE_ARGUMENT(Double, z, arguments->NativeArgAt(1)); |
| 279 float _x = self.x(); |
| 280 float _y = self.y(); |
| 281 float _z = static_cast<float>(z.value()); |
| 282 float _w = self.w(); |
| 283 return Simd128Float32::New(_x, _y, _z, _w); |
| 284 } |
| 285 |
| 286 |
| 287 DEFINE_NATIVE_ENTRY(Simd128Float32_setW, 2) { |
| 288 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 289 GET_NON_NULL_NATIVE_ARGUMENT(Double, w, arguments->NativeArgAt(1)); |
| 290 float _x = self.x(); |
| 291 float _y = self.y(); |
| 292 float _z = self.z(); |
| 293 float _w = static_cast<float>(w.value()); |
| 294 return Simd128Float32::New(_x, _y, _z, _w); |
| 295 } |
| 296 |
| 297 |
| 298 DEFINE_NATIVE_ENTRY(Simd128Float32_min, 2) { |
| 299 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 300 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other, |
| 301 arguments->NativeArgAt(1)); |
| 302 float _x = self.x() < other.x() ? self.x() : other.x(); |
| 303 float _y = self.y() < other.y() ? self.y() : other.y(); |
| 304 float _z = self.z() < other.z() ? self.z() : other.z(); |
| 305 float _w = self.w() < other.w() ? self.w() : other.w(); |
| 306 return Simd128Float32::New(_x, _y, _z, _w); |
| 307 } |
| 308 |
| 309 |
| 310 DEFINE_NATIVE_ENTRY(Simd128Float32_max, 2) { |
| 311 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 312 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other, |
| 313 arguments->NativeArgAt(1)); |
| 314 float _x = self.x() > other.x() ? self.x() : other.x(); |
| 315 float _y = self.y() > other.y() ? self.y() : other.y(); |
| 316 float _z = self.z() > other.z() ? self.z() : other.z(); |
| 317 float _w = self.w() > other.w() ? self.w() : other.w(); |
| 318 return Simd128Float32::New(_x, _y, _z, _w); |
| 319 } |
| 320 |
| 321 |
| 322 DEFINE_NATIVE_ENTRY(Simd128Float32_sqrt, 1) { |
| 323 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 324 float _x = sqrtf(self.x()); |
| 325 float _y = sqrtf(self.y()); |
| 326 float _z = sqrtf(self.z()); |
| 327 float _w = sqrtf(self.w()); |
| 328 return Simd128Float32::New(_x, _y, _z, _w); |
| 329 } |
| 330 |
| 331 |
| 332 DEFINE_NATIVE_ENTRY(Simd128Float32_reciprocal, 1) { |
| 333 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 334 float _x = 1.0f / self.x(); |
| 335 float _y = 1.0f / self.y(); |
| 336 float _z = 1.0f / self.z(); |
| 337 float _w = 1.0f / self.w(); |
| 338 return Simd128Float32::New(_x, _y, _z, _w); |
| 339 } |
| 340 |
| 341 |
| 342 DEFINE_NATIVE_ENTRY(Simd128Float32_reciprocalSqrt, 1) { |
| 343 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0)); |
| 344 float _x = sqrtf(1.0f / self.x()); |
| 345 float _y = sqrtf(1.0f / self.y()); |
| 346 float _z = sqrtf(1.0f / self.z()); |
| 347 float _w = sqrtf(1.0f / self.w()); |
| 348 return Simd128Float32::New(_x, _y, _z, _w); |
| 349 } |
| 350 |
| 351 |
| 352 DEFINE_NATIVE_ENTRY(Simd128Float32_toSimd128Mask, 1) { |
| 353 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, v, arguments->NativeArgAt(0)); |
| 354 float _fx = v.x(); |
| 355 float _fy = v.y(); |
| 356 float _fz = v.z(); |
| 357 float _fw = v.w(); |
| 358 uint32_t _x = *reinterpret_cast<uint32_t*>(&_fx); |
| 359 uint32_t _y = *reinterpret_cast<uint32_t*>(&_fy); |
| 360 uint32_t _z = *reinterpret_cast<uint32_t*>(&_fz); |
| 361 uint32_t _w = *reinterpret_cast<uint32_t*>(&_fw); |
| 362 return Simd128Mask::New(_x, _y, _z, _w); |
| 363 } |
| 364 |
| 365 |
| 366 DEFINE_NATIVE_ENTRY(Simd128Mask_fromInts, 5) { |
| 367 ASSERT(AbstractTypeArguments::CheckedHandle( |
| 368 arguments->NativeArgAt(0)).IsNull()); |
| 369 GET_NON_NULL_NATIVE_ARGUMENT(Integer, x, arguments->NativeArgAt(1)); |
| 370 GET_NON_NULL_NATIVE_ARGUMENT(Integer, y, arguments->NativeArgAt(2)); |
| 371 GET_NON_NULL_NATIVE_ARGUMENT(Integer, z, arguments->NativeArgAt(3)); |
| 372 GET_NON_NULL_NATIVE_ARGUMENT(Integer, w, arguments->NativeArgAt(4)); |
| 373 uint32_t _x = static_cast<uint32_t>(x.AsInt64Value() & 0xFFFFFFFF); |
| 374 uint32_t _y = static_cast<uint32_t>(y.AsInt64Value() & 0xFFFFFFFF); |
| 375 uint32_t _z = static_cast<uint32_t>(z.AsInt64Value() & 0xFFFFFFFF); |
| 376 uint32_t _w = static_cast<uint32_t>(w.AsInt64Value() & 0xFFFFFFFF); |
| 377 return Simd128Mask::New(_x, _y, _z, _w); |
| 378 } |
| 379 |
| 380 |
| 381 DEFINE_NATIVE_ENTRY(Simd128Mask_fromBools, 5) { |
| 382 ASSERT(AbstractTypeArguments::CheckedHandle( |
| 383 arguments->NativeArgAt(0)).IsNull()); |
| 384 GET_NON_NULL_NATIVE_ARGUMENT(Bool, x, arguments->NativeArgAt(1)); |
| 385 GET_NON_NULL_NATIVE_ARGUMENT(Bool, y, arguments->NativeArgAt(2)); |
| 386 GET_NON_NULL_NATIVE_ARGUMENT(Bool, z, arguments->NativeArgAt(3)); |
| 387 GET_NON_NULL_NATIVE_ARGUMENT(Bool, w, arguments->NativeArgAt(4)); |
| 388 uint32_t _x = x.value() ? 0xFFFFFFFF : 0x0; |
| 389 uint32_t _y = y.value() ? 0xFFFFFFFF : 0x0; |
| 390 uint32_t _z = z.value() ? 0xFFFFFFFF : 0x0; |
| 391 uint32_t _w = w.value() ? 0xFFFFFFFF : 0x0; |
| 392 return Simd128Mask::New(_x, _y, _z, _w); |
| 393 } |
| 394 |
| 395 |
| 396 DEFINE_NATIVE_ENTRY(Simd128Mask_or, 2) { |
| 397 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 398 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, other, arguments->NativeArgAt(1)); |
| 399 uint32_t _x = self.x() | other.x(); |
| 400 uint32_t _y = self.y() | other.y(); |
| 401 uint32_t _z = self.z() | other.z(); |
| 402 uint32_t _w = self.w() | other.w(); |
| 403 return Simd128Mask::New(_x, _y, _z, _w); |
| 404 } |
| 405 |
| 406 |
| 407 DEFINE_NATIVE_ENTRY(Simd128Mask_and, 2) { |
| 408 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 409 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, other, arguments->NativeArgAt(1)); |
| 410 uint32_t _x = self.x() & other.x(); |
| 411 uint32_t _y = self.y() & other.y(); |
| 412 uint32_t _z = self.z() & other.z(); |
| 413 uint32_t _w = self.w() & other.w(); |
| 414 return Simd128Mask::New(_x, _y, _z, _w); |
| 415 } |
| 416 |
| 417 |
| 418 DEFINE_NATIVE_ENTRY(Simd128Mask_xor, 2) { |
| 419 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 420 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, other, arguments->NativeArgAt(1)); |
| 421 uint32_t _x = self.x() ^ other.x(); |
| 422 uint32_t _y = self.y() ^ other.y(); |
| 423 uint32_t _z = self.z() ^ other.z(); |
| 424 uint32_t _w = self.w() ^ other.w(); |
| 425 return Simd128Mask::New(_x, _y, _z, _w); |
| 426 } |
| 427 |
| 428 |
| 429 DEFINE_NATIVE_ENTRY(Simd128Mask_getX, 1) { |
| 430 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 431 uint32_t value = self.x(); |
| 432 return Integer::New(value); |
| 433 } |
| 434 |
| 435 |
| 436 DEFINE_NATIVE_ENTRY(Simd128Mask_getY, 1) { |
| 437 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 438 uint32_t value = self.y(); |
| 439 return Integer::New(value); |
| 440 } |
| 441 |
| 442 |
| 443 DEFINE_NATIVE_ENTRY(Simd128Mask_getZ, 1) { |
| 444 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 445 uint32_t value = self.z(); |
| 446 return Integer::New(value); |
| 447 } |
| 448 |
| 449 |
| 450 DEFINE_NATIVE_ENTRY(Simd128Mask_getW, 1) { |
| 451 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 452 uint32_t value = self.w(); |
| 453 return Integer::New(value); |
| 454 } |
| 455 |
| 456 |
| 457 DEFINE_NATIVE_ENTRY(Simd128Mask_setX, 2) { |
| 458 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 459 GET_NON_NULL_NATIVE_ARGUMENT(Integer, x, arguments->NativeArgAt(1)); |
| 460 uint32_t _x = static_cast<uint32_t>(x.AsInt64Value() & 0xFFFFFFFF); |
| 461 uint32_t _y = self.y(); |
| 462 uint32_t _z = self.z(); |
| 463 uint32_t _w = self.w(); |
| 464 return Simd128Mask::New(_x, _y, _z, _w); |
| 465 } |
| 466 |
| 467 |
| 468 DEFINE_NATIVE_ENTRY(Simd128Mask_setY, 2) { |
| 469 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 470 GET_NON_NULL_NATIVE_ARGUMENT(Integer, y, arguments->NativeArgAt(1)); |
| 471 uint32_t _x = self.x(); |
| 472 uint32_t _y = static_cast<uint32_t>(y.AsInt64Value() & 0xFFFFFFFF); |
| 473 uint32_t _z = self.z(); |
| 474 uint32_t _w = self.w(); |
| 475 return Simd128Mask::New(_x, _y, _z, _w); |
| 476 } |
| 477 |
| 478 |
| 479 DEFINE_NATIVE_ENTRY(Simd128Mask_setZ, 2) { |
| 480 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 481 GET_NON_NULL_NATIVE_ARGUMENT(Integer, z, arguments->NativeArgAt(1)); |
| 482 uint32_t _x = self.x(); |
| 483 uint32_t _y = self.y(); |
| 484 uint32_t _z = static_cast<uint32_t>(z.AsInt64Value() & 0xFFFFFFFF); |
| 485 uint32_t _w = self.w(); |
| 486 return Simd128Mask::New(_x, _y, _z, _w); |
| 487 } |
| 488 |
| 489 |
| 490 DEFINE_NATIVE_ENTRY(Simd128Mask_setW, 2) { |
| 491 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 492 GET_NON_NULL_NATIVE_ARGUMENT(Integer, w, arguments->NativeArgAt(1)); |
| 493 uint32_t _x = self.x(); |
| 494 uint32_t _y = self.y(); |
| 495 uint32_t _z = self.z(); |
| 496 uint32_t _w = static_cast<uint32_t>(w.AsInt64Value() & 0xFFFFFFFF); |
| 497 return Simd128Mask::New(_x, _y, _z, _w); |
| 498 } |
| 499 |
| 500 |
| 501 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagX, 1) { |
| 502 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 503 uint32_t value = self.x(); |
| 504 return value != 0 ? Bool::True().raw() : Bool::False().raw(); |
| 505 } |
| 506 |
| 507 |
| 508 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagY, 1) { |
| 509 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 510 uint32_t value = self.y(); |
| 511 return value != 0 ? Bool::True().raw() : Bool::False().raw(); |
| 512 } |
| 513 |
| 514 |
| 515 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagZ, 1) { |
| 516 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 517 uint32_t value = self.z(); |
| 518 return value != 0 ? Bool::True().raw() : Bool::False().raw(); |
| 519 } |
| 520 |
| 521 |
| 522 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagW, 1) { |
| 523 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 524 uint32_t value = self.w(); |
| 525 return value != 0 ? Bool::True().raw() : Bool::False().raw(); |
| 526 } |
| 527 |
| 528 |
| 529 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagX, 2) { |
| 530 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 531 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagX, arguments->NativeArgAt(1)); |
| 532 uint32_t _x = self.x(); |
| 533 uint32_t _y = self.y(); |
| 534 uint32_t _z = self.z(); |
| 535 uint32_t _w = self.w(); |
| 536 _x = flagX.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0; |
| 537 return Simd128Mask::New(_x, _y, _z, _w); |
| 538 } |
| 539 |
| 540 |
| 541 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagY, 2) { |
| 542 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 543 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagY, arguments->NativeArgAt(1)); |
| 544 uint32_t _x = self.x(); |
| 545 uint32_t _y = self.y(); |
| 546 uint32_t _z = self.z(); |
| 547 uint32_t _w = self.w(); |
| 548 _y = flagY.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0; |
| 549 return Simd128Mask::New(_x, _y, _z, _w); |
| 550 } |
| 551 |
| 552 |
| 553 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagZ, 2) { |
| 554 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 555 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagZ, arguments->NativeArgAt(1)); |
| 556 uint32_t _x = self.x(); |
| 557 uint32_t _y = self.y(); |
| 558 uint32_t _z = self.z(); |
| 559 uint32_t _w = self.w(); |
| 560 _z = flagZ.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0; |
| 561 return Simd128Mask::New(_x, _y, _z, _w); |
| 562 } |
| 563 |
| 564 |
| 565 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagW, 2) { |
| 566 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 567 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagW, arguments->NativeArgAt(1)); |
| 568 uint32_t _x = self.x(); |
| 569 uint32_t _y = self.y(); |
| 570 uint32_t _z = self.z(); |
| 571 uint32_t _w = self.w(); |
| 572 _w = flagW.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0; |
| 573 return Simd128Mask::New(_x, _y, _z, _w); |
| 574 } |
| 575 |
| 576 |
| 577 DEFINE_NATIVE_ENTRY(Simd128Mask_select, 3) { |
| 578 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0)); |
| 579 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, tv, arguments->NativeArgAt(1)); |
| 580 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, fv, arguments->NativeArgAt(2)); |
| 581 uint32_t _maskX = self.x(); |
| 582 uint32_t _maskY = self.y(); |
| 583 uint32_t _maskZ = self.z(); |
| 584 uint32_t _maskW = self.w(); |
| 585 // Extract floats and interpret them as masks. |
| 586 float _tx = tv.x(); |
| 587 float _ty = tv.y(); |
| 588 float _tz = tv.z(); |
| 589 float _tw = tv.w(); |
| 590 float _fx = fv.x(); |
| 591 float _fy = fv.y(); |
| 592 float _fz = fv.z(); |
| 593 float _fw = fv.w(); |
| 594 uint32_t _tvx = *reinterpret_cast<uint32_t*>(&_tx); |
| 595 uint32_t _tvy = *reinterpret_cast<uint32_t*>(&_ty); |
| 596 uint32_t _tvz = *reinterpret_cast<uint32_t*>(&_tz); |
| 597 uint32_t _tvw = *reinterpret_cast<uint32_t*>(&_tw); |
| 598 uint32_t _fvx = *reinterpret_cast<uint32_t*>(&_fx); |
| 599 uint32_t _fvy = *reinterpret_cast<uint32_t*>(&_fy); |
| 600 uint32_t _fvz = *reinterpret_cast<uint32_t*>(&_fz); |
| 601 uint32_t _fvw = *reinterpret_cast<uint32_t*>(&_fw); |
| 602 // Perform select. |
| 603 uint32_t _tempX = (_maskX & _tvx) | (~_maskX & _fvx); |
| 604 uint32_t _tempY = (_maskY & _tvy) | (~_maskY & _fvy); |
| 605 uint32_t _tempZ = (_maskZ & _tvz) | (~_maskZ & _fvz); |
| 606 uint32_t _tempW = (_maskW & _tvw) | (~_maskW & _fvw); |
| 607 // Interpret the result as floats. |
| 608 float _x = *reinterpret_cast<float*>(&_tempX); |
| 609 float _y = *reinterpret_cast<float*>(&_tempY); |
| 610 float _z = *reinterpret_cast<float*>(&_tempZ); |
| 611 float _w = *reinterpret_cast<float*>(&_tempW); |
| 612 return Simd128Float32::New(_x, _y, _z, _w); |
| 613 } |
| 614 |
| 615 |
| 616 DEFINE_NATIVE_ENTRY(Simd128Mask_toSimd128Float32, 1) { |
| 617 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, v, arguments->NativeArgAt(0)); |
| 618 uint32_t _ix = v.x(); |
| 619 uint32_t _iy = v.y(); |
| 620 uint32_t _iz = v.z(); |
| 621 uint32_t _iw = v.w(); |
| 622 float _x = *reinterpret_cast<float*>(&_ix); |
| 623 float _y = *reinterpret_cast<float*>(&_iy); |
| 624 float _z = *reinterpret_cast<float*>(&_iz); |
| 625 float _w = *reinterpret_cast<float*>(&_iw); |
| 626 return Simd128Float32::New(_x, _y, _z, _w); |
| 627 } |
| 628 |
| 629 |
| 630 } // namespace dart |
OLD | NEW |