Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(376)

Side by Side Diff: runtime/lib/simd128.cc

Issue 12303013: Simd128Float32, Simd128Mask, and Simd128Float32List additions for dart:scalarlist (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Created 7 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 #include "vm/bootstrap_natives.h"
6
7 #include "vm/exceptions.h"
8 #include "vm/native_entry.h"
9 #include "vm/object.h"
10 #include "vm/symbols.h"
11
12 namespace dart {
13
14 DEFINE_NATIVE_ENTRY(Simd128Float32_fromDoubles, 5) {
15 ASSERT(AbstractTypeArguments::CheckedHandle(
16 arguments->NativeArgAt(0)).IsNull());
17 GET_NON_NULL_NATIVE_ARGUMENT(Double, x, arguments->NativeArgAt(1));
18 GET_NON_NULL_NATIVE_ARGUMENT(Double, y, arguments->NativeArgAt(2));
19 GET_NON_NULL_NATIVE_ARGUMENT(Double, z, arguments->NativeArgAt(3));
20 GET_NON_NULL_NATIVE_ARGUMENT(Double, w, arguments->NativeArgAt(4));
21 float _x = x.value();
22 float _y = y.value();
23 float _z = z.value();
24 float _w = w.value();
25 return Simd128Float32::New(_x, _y, _z, _w);
26 }
27
28
29 DEFINE_NATIVE_ENTRY(Simd128Float32_zero, 1) {
30 ASSERT(AbstractTypeArguments::CheckedHandle(
31 arguments->NativeArgAt(0)).IsNull());
32 return Simd128Float32::New(0.0f, 0.0f, 0.0f, 0.0f);
33 }
34
35
36 DEFINE_NATIVE_ENTRY(Simd128Float32_add, 2) {
37 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
38 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other,
39 arguments->NativeArgAt(1));
40 float _x = self.x() + other.x();
41 float _y = self.y() + other.y();
42 float _z = self.z() + other.z();
43 float _w = self.w() + other.w();
44 return Simd128Float32::New(_x, _y, _z, _w);
45 }
46
47
48 DEFINE_NATIVE_ENTRY(Simd128Float32_negate, 1) {
49 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
50 float _x = -self.x();
51 float _y = -self.y();
52 float _z = -self.z();
53 float _w = -self.w();
54 return Simd128Float32::New(_x, _y, _z, _w);
55 }
56
57
58 DEFINE_NATIVE_ENTRY(Simd128Float32_sub, 2) {
59 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
60 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other,
61 arguments->NativeArgAt(1));
62 float _x = self.x() - other.x();
63 float _y = self.y() - other.y();
64 float _z = self.z() - other.z();
65 float _w = self.w() - other.w();
66 return Simd128Float32::New(_x, _y, _z, _w);
67 }
68
69
70 DEFINE_NATIVE_ENTRY(Simd128Float32_mul, 2) {
71 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
72 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other,
73 arguments->NativeArgAt(1));
74 float _x = self.x() * other.x();
75 float _y = self.y() * other.y();
76 float _z = self.z() * other.z();
77 float _w = self.w() * other.w();
78 return Simd128Float32::New(_x, _y, _z, _w);
79 }
80
81
82 DEFINE_NATIVE_ENTRY(Simd128Float32_div, 2) {
83 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
84 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other,
85 arguments->NativeArgAt(1));
86 float _x = self.x() / other.x();
87 float _y = self.y() / other.y();
88 float _z = self.z() / other.z();
89 float _w = self.w() / other.w();
90 return Simd128Float32::New(_x, _y, _z, _w);
91 }
92
93
94 DEFINE_NATIVE_ENTRY(Simd128Float32_cmplt, 2) {
95 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0));
96 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1));
97 uint32_t _x = a.x() < b.x() ? 0xFFFFFFFF : 0x0;
98 uint32_t _y = a.y() < b.y() ? 0xFFFFFFFF : 0x0;
99 uint32_t _z = a.z() < b.z() ? 0xFFFFFFFF : 0x0;
100 uint32_t _w = a.w() < b.w() ? 0xFFFFFFFF : 0x0;
101 return Simd128Mask::New(_x, _y, _z, _w);
102 }
103
104
105 DEFINE_NATIVE_ENTRY(Simd128Float32_cmplte, 2) {
106 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0));
107 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1));
108 uint32_t _x = a.x() <= b.x() ? 0xFFFFFFFF : 0x0;
109 uint32_t _y = a.y() <= b.y() ? 0xFFFFFFFF : 0x0;
110 uint32_t _z = a.z() <= b.z() ? 0xFFFFFFFF : 0x0;
111 uint32_t _w = a.w() <= b.w() ? 0xFFFFFFFF : 0x0;
112 return Simd128Mask::New(_x, _y, _z, _w);
113 }
114
115
116 DEFINE_NATIVE_ENTRY(Simd128Float32_cmpgt, 2) {
117 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0));
118 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1));
119 uint32_t _x = a.x() > b.x() ? 0xFFFFFFFF : 0x0;
120 uint32_t _y = a.y() > b.y() ? 0xFFFFFFFF : 0x0;
121 uint32_t _z = a.z() > b.z() ? 0xFFFFFFFF : 0x0;
122 uint32_t _w = a.w() > b.w() ? 0xFFFFFFFF : 0x0;
123 return Simd128Mask::New(_x, _y, _z, _w);
124 }
125
126
127 DEFINE_NATIVE_ENTRY(Simd128Float32_cmpgte, 2) {
128 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0));
129 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1));
130 uint32_t _x = a.x() >= b.x() ? 0xFFFFFFFF : 0x0;
131 uint32_t _y = a.y() >= b.y() ? 0xFFFFFFFF : 0x0;
132 uint32_t _z = a.z() >= b.z() ? 0xFFFFFFFF : 0x0;
133 uint32_t _w = a.w() >= b.w() ? 0xFFFFFFFF : 0x0;
134 return Simd128Mask::New(_x, _y, _z, _w);
135 }
136
137
138 DEFINE_NATIVE_ENTRY(Simd128Float32_cmpequal, 2) {
139 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, a, arguments->NativeArgAt(0));
140 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, b, arguments->NativeArgAt(1));
141 uint32_t _x = a.x() == b.x() ? 0xFFFFFFFF : 0x0;
142 uint32_t _y = a.y() == b.y() ? 0xFFFFFFFF : 0x0;
143 uint32_t _z = a.z() == b.z() ? 0xFFFFFFFF : 0x0;
144 uint32_t _w = a.w() == b.w() ? 0xFFFFFFFF : 0x0;
145 return Simd128Mask::New(_x, _y, _z, _w);
146 }
147
148
149 DEFINE_NATIVE_ENTRY(Simd128Float32_scale, 2) {
150 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
151 GET_NON_NULL_NATIVE_ARGUMENT(Double, scale, arguments->NativeArgAt(1));
152 float _s = static_cast<float>(scale.value());
153 float _x = self.x() * _s;
154 float _y = self.y() * _s;
155 float _z = self.z() * _s;
156 float _w = self.w() * _s;
157 return Simd128Float32::New(_x, _y, _z, _w);
158 }
159
160
161 DEFINE_NATIVE_ENTRY(Simd128Float32_abs, 1) {
162 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
163 float _x = fabsf(self.x());
164 float _y = fabsf(self.y());
165 float _z = fabsf(self.z());
166 float _w = fabsf(self.w());
167 return Simd128Float32::New(_x, _y, _z, _w);
168 }
169
170
171 DEFINE_NATIVE_ENTRY(Simd128Float32_clamp, 3) {
172 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
173 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, lo, arguments->NativeArgAt(1));
174 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, hi, arguments->NativeArgAt(2));
175 float _x = self.x() > lo.x() ? self.x() : lo.x();
176 float _y = self.y() > lo.y() ? self.y() : lo.y();
177 float _z = self.z() > lo.z() ? self.z() : lo.z();
178 float _w = self.w() > lo.w() ? self.w() : lo.w();
179 _x = _x > hi.x() ? hi.x() : _x;
180 _y = _y > hi.y() ? hi.y() : _y;
181 _z = _z > hi.z() ? hi.z() : _z;
182 _w = _w > hi.w() ? hi.w() : _w;
183 return Simd128Float32::New(_x, _y, _z, _w);
184 }
185
186
187 DEFINE_NATIVE_ENTRY(Simd128Float32_getX, 1) {
188 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
189 double value = static_cast<double>(self.x());
190 return Double::New(value);
191 }
192
193
194 DEFINE_NATIVE_ENTRY(Simd128Float32_getY, 1) {
195 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
196 double value = static_cast<double>(self.y());
197 return Double::New(value);
198 }
199
200
201 DEFINE_NATIVE_ENTRY(Simd128Float32_getZ, 1) {
202 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
203 double value = static_cast<double>(self.z());
204 return Double::New(value);
205 }
206
207
208 DEFINE_NATIVE_ENTRY(Simd128Float32_getW, 1) {
209 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
210 double value = static_cast<double>(self.w());
211 return Double::New(value);
212 }
213
214
215 DEFINE_NATIVE_ENTRY(Simd128Float32_getXXXX, 1) {
216 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
217 float value = self.x();
218 return Simd128Float32::New(value, value, value, value);
219 }
220
221
222 DEFINE_NATIVE_ENTRY(Simd128Float32_getYYYY, 1) {
223 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
224 float value = self.y();
225 return Simd128Float32::New(value, value, value, value);
226 }
227
228
229 DEFINE_NATIVE_ENTRY(Simd128Float32_getZZZZ, 1) {
230 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
231 float value = self.z();
232 return Simd128Float32::New(value, value, value, value);
233 }
234
235
236 DEFINE_NATIVE_ENTRY(Simd128Float32_getWWWW, 1) {
237 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
238 float value = self.w();
239 return Simd128Float32::New(value, value, value, value);
240 }
241
242
243 DEFINE_NATIVE_ENTRY(Simd128Float32_setX, 2) {
244 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
245 GET_NON_NULL_NATIVE_ARGUMENT(Double, x, arguments->NativeArgAt(1));
246 float _x = static_cast<float>(x.value());
247 float _y = self.y();
248 float _z = self.z();
249 float _w = self.w();
250 return Simd128Float32::New(_x, _y, _z, _w);
251 }
252
253
254 DEFINE_NATIVE_ENTRY(Simd128Float32_setY, 2) {
255 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
256 GET_NON_NULL_NATIVE_ARGUMENT(Double, y, arguments->NativeArgAt(1));
257 float _x = self.x();
258 float _y = static_cast<float>(y.value());
259 float _z = self.z();
260 float _w = self.w();
261 return Simd128Float32::New(_x, _y, _z, _w);
262 }
263
264
265 DEFINE_NATIVE_ENTRY(Simd128Float32_setZ, 2) {
266 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
267 GET_NON_NULL_NATIVE_ARGUMENT(Double, z, arguments->NativeArgAt(1));
268 float _x = self.x();
269 float _y = self.y();
270 float _z = static_cast<float>(z.value());
271 float _w = self.w();
272 return Simd128Float32::New(_x, _y, _z, _w);
273 }
274
275
276 DEFINE_NATIVE_ENTRY(Simd128Float32_setW, 2) {
277 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
278 GET_NON_NULL_NATIVE_ARGUMENT(Double, w, arguments->NativeArgAt(1));
279 float _x = self.x();
280 float _y = self.y();
281 float _z = self.z();
282 float _w = static_cast<float>(w.value());
283 return Simd128Float32::New(_x, _y, _z, _w);
284 }
285
286
287 DEFINE_NATIVE_ENTRY(Simd128Float32_min, 2) {
288 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
289 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other,
290 arguments->NativeArgAt(1));
291 float _x = self.x() < other.x() ? self.x() : other.x();
292 float _y = self.y() < other.y() ? self.y() : other.y();
293 float _z = self.z() < other.z() ? self.z() : other.z();
294 float _w = self.w() < other.w() ? self.w() : other.w();
295 return Simd128Float32::New(_x, _y, _z, _w);
296 }
297
298
299 DEFINE_NATIVE_ENTRY(Simd128Float32_max, 2) {
300 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
301 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, other,
302 arguments->NativeArgAt(1));
303 float _x = self.x() > other.x() ? self.x() : other.x();
304 float _y = self.y() > other.y() ? self.y() : other.y();
305 float _z = self.z() > other.z() ? self.z() : other.z();
306 float _w = self.w() > other.w() ? self.w() : other.w();
307 return Simd128Float32::New(_x, _y, _z, _w);
308 }
309
310
311 DEFINE_NATIVE_ENTRY(Simd128Float32_sqrt, 1) {
312 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
313 float _x = sqrtf(self.x());
314 float _y = sqrtf(self.y());
315 float _z = sqrtf(self.z());
316 float _w = sqrtf(self.w());
317 return Simd128Float32::New(_x, _y, _z, _w);
318 }
319
320
321 DEFINE_NATIVE_ENTRY(Simd128Float32_reciprocal, 1) {
322 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
323 float _x = 1.0f / self.x();
324 float _y = 1.0f / self.y();
325 float _z = 1.0f / self.z();
326 float _w = 1.0f / self.w();
327 return Simd128Float32::New(_x, _y, _z, _w);
328 }
329
330
331 DEFINE_NATIVE_ENTRY(Simd128Float32_reciprocalSqrt, 1) {
332 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, self, arguments->NativeArgAt(0));
333 float _x = sqrtf(1.0f / self.x());
334 float _y = sqrtf(1.0f / self.y());
335 float _z = sqrtf(1.0f / self.z());
336 float _w = sqrtf(1.0f / self.w());
337 return Simd128Float32::New(_x, _y, _z, _w);
338 }
339
340
341 DEFINE_NATIVE_ENTRY(Simd128Float32_toSimd128Mask, 1) {
342 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, v, arguments->NativeArgAt(0));
343 float _fx = v.x();
344 float _fy = v.y();
345 float _fz = v.z();
346 float _fw = v.w();
347 uint32_t _x = *reinterpret_cast<uint32_t*>(&_fx);
348 uint32_t _y = *reinterpret_cast<uint32_t*>(&_fy);
349 uint32_t _z = *reinterpret_cast<uint32_t*>(&_fz);
350 uint32_t _w = *reinterpret_cast<uint32_t*>(&_fw);
351 return Simd128Mask::New(_x, _y, _z, _w);
352 }
353
354
355 DEFINE_NATIVE_ENTRY(Simd128Mask_fromInts, 5) {
356 ASSERT(AbstractTypeArguments::CheckedHandle(
357 arguments->NativeArgAt(0)).IsNull());
358 GET_NON_NULL_NATIVE_ARGUMENT(Integer, x, arguments->NativeArgAt(1));
359 GET_NON_NULL_NATIVE_ARGUMENT(Integer, y, arguments->NativeArgAt(2));
360 GET_NON_NULL_NATIVE_ARGUMENT(Integer, z, arguments->NativeArgAt(3));
361 GET_NON_NULL_NATIVE_ARGUMENT(Integer, w, arguments->NativeArgAt(4));
362 uint32_t _x = static_cast<uint32_t>(x.AsInt64Value() & 0xFFFFFFFF);
363 uint32_t _y = static_cast<uint32_t>(y.AsInt64Value() & 0xFFFFFFFF);
364 uint32_t _z = static_cast<uint32_t>(z.AsInt64Value() & 0xFFFFFFFF);
365 uint32_t _w = static_cast<uint32_t>(w.AsInt64Value() & 0xFFFFFFFF);
366 return Simd128Mask::New(_x, _y, _z, _w);
367 }
368
369
370 DEFINE_NATIVE_ENTRY(Simd128Mask_fromBools, 5) {
371 ASSERT(AbstractTypeArguments::CheckedHandle(
372 arguments->NativeArgAt(0)).IsNull());
373 GET_NON_NULL_NATIVE_ARGUMENT(Bool, x, arguments->NativeArgAt(1));
374 GET_NON_NULL_NATIVE_ARGUMENT(Bool, y, arguments->NativeArgAt(2));
375 GET_NON_NULL_NATIVE_ARGUMENT(Bool, z, arguments->NativeArgAt(3));
376 GET_NON_NULL_NATIVE_ARGUMENT(Bool, w, arguments->NativeArgAt(4));
377 uint32_t _x = x.value() ? 0xFFFFFFFF : 0x0;
378 uint32_t _y = y.value() ? 0xFFFFFFFF : 0x0;
379 uint32_t _z = z.value() ? 0xFFFFFFFF : 0x0;
380 uint32_t _w = w.value() ? 0xFFFFFFFF : 0x0;
381 return Simd128Mask::New(_x, _y, _z, _w);
382 }
383
384
385 DEFINE_NATIVE_ENTRY(Simd128Mask_or, 2) {
386 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
387 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, other, arguments->NativeArgAt(1));
388 uint32_t _x = self.x() | other.x();
389 uint32_t _y = self.y() | other.y();
390 uint32_t _z = self.z() | other.z();
391 uint32_t _w = self.w() | other.w();
392 return Simd128Mask::New(_x, _y, _z, _w);
393 }
394
395
396 DEFINE_NATIVE_ENTRY(Simd128Mask_and, 2) {
397 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
398 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, other, arguments->NativeArgAt(1));
399 uint32_t _x = self.x() & other.x();
400 uint32_t _y = self.y() & other.y();
401 uint32_t _z = self.z() & other.z();
402 uint32_t _w = self.w() & other.w();
403 return Simd128Mask::New(_x, _y, _z, _w);
404 }
405
406
407 DEFINE_NATIVE_ENTRY(Simd128Mask_xor, 2) {
408 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
409 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, other, arguments->NativeArgAt(1));
410 uint32_t _x = self.x() ^ other.x();
411 uint32_t _y = self.y() ^ other.y();
412 uint32_t _z = self.z() ^ other.z();
413 uint32_t _w = self.w() ^ other.w();
414 return Simd128Mask::New(_x, _y, _z, _w);
415 }
416
417
418 DEFINE_NATIVE_ENTRY(Simd128Mask_getX, 1) {
419 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
420 uint32_t value = self.x();
421 return Integer::New(value);
422 }
423
424
425 DEFINE_NATIVE_ENTRY(Simd128Mask_getY, 1) {
426 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
427 uint32_t value = self.y();
428 return Integer::New(value);
429 }
430
431
432 DEFINE_NATIVE_ENTRY(Simd128Mask_getZ, 1) {
433 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
434 uint32_t value = self.z();
435 return Integer::New(value);
436 }
437
438
439 DEFINE_NATIVE_ENTRY(Simd128Mask_getW, 1) {
440 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
441 uint32_t value = self.w();
442 return Integer::New(value);
443 }
444
445
446 DEFINE_NATIVE_ENTRY(Simd128Mask_setX, 2) {
447 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
448 GET_NON_NULL_NATIVE_ARGUMENT(Integer, x, arguments->NativeArgAt(1));
449 uint32_t _x = static_cast<uint32_t>(x.AsInt64Value() & 0xFFFFFFFF);
450 uint32_t _y = self.y();
451 uint32_t _z = self.z();
452 uint32_t _w = self.w();
453 return Simd128Mask::New(_x, _y, _z, _w);
454 }
455
456
457 DEFINE_NATIVE_ENTRY(Simd128Mask_setY, 2) {
458 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
459 GET_NON_NULL_NATIVE_ARGUMENT(Integer, y, arguments->NativeArgAt(1));
460 uint32_t _x = self.x();
461 uint32_t _y = static_cast<uint32_t>(y.AsInt64Value() & 0xFFFFFFFF);
462 uint32_t _z = self.z();
463 uint32_t _w = self.w();
464 return Simd128Mask::New(_x, _y, _z, _w);
465 }
466
467
468 DEFINE_NATIVE_ENTRY(Simd128Mask_setZ, 2) {
469 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
470 GET_NON_NULL_NATIVE_ARGUMENT(Integer, z, arguments->NativeArgAt(1));
471 uint32_t _x = self.x();
472 uint32_t _y = self.y();
473 uint32_t _z = static_cast<uint32_t>(z.AsInt64Value() & 0xFFFFFFFF);
474 uint32_t _w = self.w();
475 return Simd128Mask::New(_x, _y, _z, _w);
476 }
477
478
479 DEFINE_NATIVE_ENTRY(Simd128Mask_setW, 2) {
480 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
481 GET_NON_NULL_NATIVE_ARGUMENT(Integer, w, arguments->NativeArgAt(1));
482 uint32_t _x = self.x();
483 uint32_t _y = self.y();
484 uint32_t _z = self.z();
485 uint32_t _w = static_cast<uint32_t>(w.AsInt64Value() & 0xFFFFFFFF);
486 return Simd128Mask::New(_x, _y, _z, _w);
487 }
488
489
490 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagX, 1) {
491 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
492 uint32_t value = self.x();
493 return value != 0 ? Bool::True().raw() : Bool::False().raw();
494 }
495
496
497 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagY, 1) {
498 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
499 uint32_t value = self.y();
500 return value != 0 ? Bool::True().raw() : Bool::False().raw();
501 }
502
503
504 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagZ, 1) {
505 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
506 uint32_t value = self.z();
507 return value != 0 ? Bool::True().raw() : Bool::False().raw();
508 }
509
510
511 DEFINE_NATIVE_ENTRY(Simd128Mask_getFlagW, 1) {
512 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
513 uint32_t value = self.w();
514 return value != 0 ? Bool::True().raw() : Bool::False().raw();
515 }
516
517
518 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagX, 2) {
519 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
520 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagX, arguments->NativeArgAt(1));
521 uint32_t _x = self.x();
522 uint32_t _y = self.y();
523 uint32_t _z = self.z();
524 uint32_t _w = self.w();
525 _x = flagX.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0;
526 return Simd128Mask::New(_x, _y, _z, _w);
527 }
528
529
530 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagY, 2) {
531 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
532 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagY, arguments->NativeArgAt(1));
533 uint32_t _x = self.x();
534 uint32_t _y = self.y();
535 uint32_t _z = self.z();
536 uint32_t _w = self.w();
537 _y = flagY.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0;
538 return Simd128Mask::New(_x, _y, _z, _w);
539 }
540
541
542 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagZ, 2) {
543 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
544 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagZ, arguments->NativeArgAt(1));
545 uint32_t _x = self.x();
546 uint32_t _y = self.y();
547 uint32_t _z = self.z();
548 uint32_t _w = self.w();
549 _z = flagZ.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0;
550 return Simd128Mask::New(_x, _y, _z, _w);
551 }
552
553
554 DEFINE_NATIVE_ENTRY(Simd128Mask_setFlagW, 2) {
555 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
556 GET_NON_NULL_NATIVE_ARGUMENT(Bool, flagW, arguments->NativeArgAt(1));
557 uint32_t _x = self.x();
558 uint32_t _y = self.y();
559 uint32_t _z = self.z();
560 uint32_t _w = self.w();
561 _w = flagW.raw() == Bool::True().raw() ? 0xFFFFFFFF : 0x0;
562 return Simd128Mask::New(_x, _y, _z, _w);
563 }
564
565
566 DEFINE_NATIVE_ENTRY(Simd128Mask_select, 3) {
567 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, self, arguments->NativeArgAt(0));
568 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, tv, arguments->NativeArgAt(1));
569 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Float32, fv, arguments->NativeArgAt(2));
570 uint32_t _maskX = self.x();
571 uint32_t _maskY = self.y();
572 uint32_t _maskZ = self.z();
573 uint32_t _maskW = self.w();
574 // Extract floats and interpret them as masks.
575 float _tx = tv.x();
576 float _ty = tv.y();
577 float _tz = tv.z();
578 float _tw = tv.w();
579 float _fx = fv.x();
580 float _fy = fv.y();
581 float _fz = fv.z();
582 float _fw = fv.w();
583 uint32_t _tvx = *reinterpret_cast<uint32_t*>(&_tx);
584 uint32_t _tvy = *reinterpret_cast<uint32_t*>(&_ty);
585 uint32_t _tvz = *reinterpret_cast<uint32_t*>(&_tz);
586 uint32_t _tvw = *reinterpret_cast<uint32_t*>(&_tw);
587 uint32_t _fvx = *reinterpret_cast<uint32_t*>(&_fx);
588 uint32_t _fvy = *reinterpret_cast<uint32_t*>(&_fy);
589 uint32_t _fvz = *reinterpret_cast<uint32_t*>(&_fz);
590 uint32_t _fvw = *reinterpret_cast<uint32_t*>(&_fw);
591 // Perform select.
592 uint32_t _tempX = (_maskX & _tvx) | (~_maskX & _fvx);
593 uint32_t _tempY = (_maskY & _tvy) | (~_maskY & _fvy);
594 uint32_t _tempZ = (_maskZ & _tvz) | (~_maskZ & _fvz);
595 uint32_t _tempW = (_maskW & _tvw) | (~_maskW & _fvw);
596 // Interpret the result as floats.
597 float _x = *reinterpret_cast<float*>(&_tempX);
598 float _y = *reinterpret_cast<float*>(&_tempY);
599 float _z = *reinterpret_cast<float*>(&_tempZ);
600 float _w = *reinterpret_cast<float*>(&_tempW);
601 return Simd128Float32::New(_x, _y, _z, _w);
602 }
603
604
605 DEFINE_NATIVE_ENTRY(Simd128Mask_toSimd128Float32, 1) {
606 GET_NON_NULL_NATIVE_ARGUMENT(Simd128Mask, v, arguments->NativeArgAt(0));
607 uint32_t _ix = v.x();
608 uint32_t _iy = v.y();
609 uint32_t _iz = v.z();
610 uint32_t _iw = v.w();
611 float _x = *reinterpret_cast<float*>(&_ix);
612 float _y = *reinterpret_cast<float*>(&_iy);
613 float _z = *reinterpret_cast<float*>(&_iz);
614 float _w = *reinterpret_cast<float*>(&_iw);
615 return Simd128Float32::New(_x, _y, _z, _w);
616 }
617
618
619 } // namespace dart
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698