| Index: src/effects/SkPoint3.cpp
|
| diff --git a/src/effects/SkPoint3.cpp b/src/effects/SkPoint3.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..3b5586b067077b4bcf03f37d31ac65e43ef043af
|
| --- /dev/null
|
| +++ b/src/effects/SkPoint3.cpp
|
| @@ -0,0 +1,80 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "SkPoint3.h"
|
| +
|
| +// Returns the square of the Euclidian distance to (x,y,z).
|
| +static inline float get_length_squared(float x, float y, float z) {
|
| + return x * x + y * y + z * z;
|
| +}
|
| +
|
| +// Calculates the square of the Euclidian distance to (x,y,z) and stores it in
|
| +// *lengthSquared. Returns true if the distance is judged to be "nearly zero".
|
| +//
|
| +// This logic is encapsulated in a helper method to make it explicit that we
|
| +// always perform this check in the same manner, to avoid inconsistencies
|
| +// (see http://code.google.com/p/skia/issues/detail?id=560 ).
|
| +static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) {
|
| + *lengthSquared = get_length_squared(x, y, z);
|
| + return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
|
| +}
|
| +
|
| +SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) {
|
| + float magSq = get_length_squared(x, y, z);
|
| + if (SkScalarIsFinite(magSq)) {
|
| + return sk_float_sqrt(magSq);
|
| + } else {
|
| + double xx = x;
|
| + double yy = y;
|
| + double zz = z;
|
| + return (float)sqrt(xx * xx + yy * yy + zz * zz);
|
| + }
|
| +}
|
| +
|
| +/*
|
| + * We have to worry about 2 tricky conditions:
|
| + * 1. underflow of magSq (compared against nearlyzero^2)
|
| + * 2. overflow of magSq (compared w/ isfinite)
|
| + *
|
| + * If we underflow, we return false. If we overflow, we compute again using
|
| + * doubles, which is much slower (3x in a desktop test) but will not overflow.
|
| + */
|
| +bool SkPoint3::normalize() {
|
| + float magSq;
|
| + if (is_length_nearly_zero(fX, fY, fZ, &magSq)) {
|
| + this->set(0, 0, 0);
|
| + return false;
|
| + }
|
| +
|
| + float scale;
|
| + if (SkScalarIsFinite(magSq)) {
|
| + scale = 1.0f / sk_float_sqrt(magSq);
|
| + } else {
|
| + // our magSq step overflowed to infinity, so use doubles instead.
|
| + // much slower, but needed when x, y or z is very large, otherwise we
|
| + // divide by inf. and return (0,0,0) vector.
|
| + double xx = fX;
|
| + double yy = fY;
|
| + double zz = fZ;
|
| +#ifdef SK_CPU_FLUSH_TO_ZERO
|
| + // The iOS ARM processor discards small denormalized numbers to go faster.
|
| + // Casting this to a float would cause the scale to go to zero. Keeping it
|
| + // as a double for the multiply keeps the scale non-zero.
|
| + double dscale = 1.0f / sqrt(xx * xx + yy * yy + zz * zz);
|
| + fX = x * dscale;
|
| + fY = y * dscale;
|
| + fZ = z * dscale;
|
| + return true;
|
| +#else
|
| + scale = (float)(1.0f / sqrt(xx * xx + yy * yy + zz * zz));
|
| +#endif
|
| + }
|
| + fX *= scale;
|
| + fY *= scale;
|
| + fZ *= scale;
|
| + return true;
|
| +}
|
|
|