| OLD | NEW |
| 1 #!/usr/bin/env python | 1 #!/usr/bin/env python |
| 2 | 2 |
| 3 import argparse |
| 4 import numpy |
| 3 import sys | 5 import sys |
| 4 from scipy.stats import mannwhitneyu | 6 from scipy.stats import mannwhitneyu |
| 7 from scipy.stats import sem |
| 5 | 8 |
| 6 SIGNIFICANCE_THRESHOLD = 0.0001 | 9 SIGNIFICANCE_THRESHOLD = 0.0001 |
| 7 | 10 |
| 11 parser = argparse.ArgumentParser( |
| 12 formatter_class=argparse.RawDescriptionHelpFormatter, |
| 13 description='Compare performance of two runs from nanobench.') |
| 14 parser.add_argument('--use_means', action='store_true', default=False, |
| 15 help='Use means to calculate performance ratios.') |
| 16 parser.add_argument('baseline', help='Baseline file.') |
| 17 parser.add_argument('experiment', help='Experiment file.') |
| 18 args = parser.parse_args() |
| 19 |
| 8 a,b = {},{} | 20 a,b = {},{} |
| 9 for (path, d) in [(sys.argv[1], a), (sys.argv[2], b)]: | 21 for (path, d) in [(args.baseline, a), (args.experiment, b)]: |
| 10 for line in open(path): | 22 for line in open(path): |
| 11 try: | 23 try: |
| 12 tokens = line.split() | 24 tokens = line.split() |
| 13 if tokens[0] != "Samples:": | 25 if tokens[0] != "Samples:": |
| 14 continue | 26 continue |
| 15 samples = tokens[1:-1] | 27 samples = tokens[1:-1] |
| 16 label = tokens[-1] | 28 label = tokens[-1] |
| 17 d[label] = map(float, samples) | 29 d[label] = map(float, samples) |
| 18 except: | 30 except: |
| 19 pass | 31 pass |
| 20 | 32 |
| 21 common = set(a.keys()).intersection(b.keys()) | 33 common = set(a.keys()).intersection(b.keys()) |
| 22 | 34 |
| 23 ps = [] | 35 ps = [] |
| 24 for key in common: | 36 for key in common: |
| 25 _, p = mannwhitneyu(a[key], b[key]) # Non-parametric t-test. Doesn't ass
ume normal dist. | 37 _, p = mannwhitneyu(a[key], b[key]) # Non-parametric t-test. Doesn't ass
ume normal dist. |
| 26 am, bm = min(a[key]), min(b[key]) | 38 if args.use_means: |
| 27 ps.append((bm/am, p, key, am, bm)) | 39 am, bm = numpy.mean(a[key]), numpy.mean(b[key]) |
| 40 asem, bsem = sem(a[key]), sem(b[key]) |
| 41 else: |
| 42 am, bm = min(a[key]), min(b[key]) |
| 43 asem, bsem = 0, 0 |
| 44 ps.append((bm/am, p, key, am, bm, asem, bsem)) |
| 28 ps.sort(reverse=True) | 45 ps.sort(reverse=True) |
| 29 | 46 |
| 30 def humanize(ns): | 47 def humanize(ns): |
| 31 for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]
: | 48 for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]
: |
| 32 if ns > threshold: | 49 if ns > threshold: |
| 33 return "%.3g%s" % (ns/threshold, suffix) | 50 return "%.3g%s" % (ns/threshold, suffix) |
| 34 | 51 |
| 35 maxlen = max(map(len, common)) | 52 maxlen = max(map(len, common)) |
| 36 | 53 |
| 37 # We print only signficant changes in benchmark timing distribution. | 54 # We print only signficant changes in benchmark timing distribution. |
| 38 bonferroni = SIGNIFICANCE_THRESHOLD / len(ps) # Adjust for the fact we've run m
ultiple tests. | 55 bonferroni = SIGNIFICANCE_THRESHOLD / len(ps) # Adjust for the fact we've run m
ultiple tests. |
| 39 for ratio, p, key, am, bm in ps: | 56 for ratio, p, key, am, bm, asem, bsem in ps: |
| 40 if p < bonferroni: | 57 if p < bonferroni: |
| 41 str_ratio = ('%.2gx' if ratio < 1 else '%.3gx') % ratio | 58 str_ratio = ('%.2gx' if ratio < 1 else '%.3gx') % ratio |
| 42 print '%*s\t%6s -> %6s\t%s' % (maxlen, key, humanize(am), humanize(bm),
str_ratio) | 59 if args.use_means: |
| 60 print '%*s\t%6s(%6s) -> %6s(%6s)\t%s' % (maxlen, key, humanize(am),
humanize(asem), |
| 61 humanize(bm), humanize(bsem
), str_ratio) |
| 62 else: |
| 63 print '%*s\t%6s -> %6s\t%s' % (maxlen, key, humanize(am), humanize(b
m), str_ratio) |
| OLD | NEW |