| Index: src/gpu/GrRedBlackTree.h
|
| diff --git a/src/gpu/GrRedBlackTree.h b/src/gpu/GrRedBlackTree.h
|
| deleted file mode 100644
|
| index c58ae2790042454a63dc720ae97581c9d969da26..0000000000000000000000000000000000000000
|
| --- a/src/gpu/GrRedBlackTree.h
|
| +++ /dev/null
|
| @@ -1,948 +0,0 @@
|
| -/*
|
| - * Copyright 2011 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#ifndef GrRedBlackTree_DEFINED
|
| -#define GrRedBlackTree_DEFINED
|
| -
|
| -#include "GrConfig.h"
|
| -#include "SkTypes.h"
|
| -
|
| -template <typename T>
|
| -class GrLess {
|
| -public:
|
| - bool operator()(const T& a, const T& b) const { return a < b; }
|
| -};
|
| -
|
| -template <typename T>
|
| -class GrLess<T*> {
|
| -public:
|
| - bool operator()(const T* a, const T* b) const { return *a < *b; }
|
| -};
|
| -
|
| -class GrStrLess {
|
| -public:
|
| - bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; }
|
| -};
|
| -
|
| -/**
|
| - * In debug build this will cause full traversals of the tree when the validate
|
| - * is called on insert and remove. Useful for debugging but very slow.
|
| - */
|
| -#define DEEP_VALIDATE 0
|
| -
|
| -/**
|
| - * A sorted tree that uses the red-black tree algorithm. Allows duplicate
|
| - * entries. Data is of type T and is compared using functor C. A single C object
|
| - * will be created and used for all comparisons.
|
| - */
|
| -template <typename T, typename C = GrLess<T> >
|
| -class GrRedBlackTree : SkNoncopyable {
|
| -public:
|
| - /**
|
| - * Creates an empty tree.
|
| - */
|
| - GrRedBlackTree();
|
| - virtual ~GrRedBlackTree();
|
| -
|
| - /**
|
| - * Class used to iterater through the tree. The valid range of the tree
|
| - * is given by [begin(), end()). It is legal to dereference begin() but not
|
| - * end(). The iterator has preincrement and predecrement operators, it is
|
| - * legal to decerement end() if the tree is not empty to get the last
|
| - * element. However, a last() helper is provided.
|
| - */
|
| - class Iter;
|
| -
|
| - /**
|
| - * Add an element to the tree. Duplicates are allowed.
|
| - * @param t the item to add.
|
| - * @return an iterator to the item.
|
| - */
|
| - Iter insert(const T& t);
|
| -
|
| - /**
|
| - * Removes all items in the tree.
|
| - */
|
| - void reset();
|
| -
|
| - /**
|
| - * @return true if there are no items in the tree, false otherwise.
|
| - */
|
| - bool empty() const {return 0 == fCount;}
|
| -
|
| - /**
|
| - * @return the number of items in the tree.
|
| - */
|
| - int count() const {return fCount;}
|
| -
|
| - /**
|
| - * @return an iterator to the first item in sorted order, or end() if empty
|
| - */
|
| - Iter begin();
|
| - /**
|
| - * Gets the last valid iterator. This is always valid, even on an empty.
|
| - * However, it can never be dereferenced. Useful as a loop terminator.
|
| - * @return an iterator that is just beyond the last item in sorted order.
|
| - */
|
| - Iter end();
|
| - /**
|
| - * @return an iterator that to the last item in sorted order, or end() if
|
| - * empty.
|
| - */
|
| - Iter last();
|
| -
|
| - /**
|
| - * Finds an occurrence of an item.
|
| - * @param t the item to find.
|
| - * @return an iterator to a tree element equal to t or end() if none exists.
|
| - */
|
| - Iter find(const T& t);
|
| - /**
|
| - * Finds the first of an item in iterator order.
|
| - * @param t the item to find.
|
| - * @return an iterator to the first element equal to t or end() if
|
| - * none exists.
|
| - */
|
| - Iter findFirst(const T& t);
|
| - /**
|
| - * Finds the last of an item in iterator order.
|
| - * @param t the item to find.
|
| - * @return an iterator to the last element equal to t or end() if
|
| - * none exists.
|
| - */
|
| - Iter findLast(const T& t);
|
| - /**
|
| - * Gets the number of items in the tree equal to t.
|
| - * @param t the item to count.
|
| - * @return number of items equal to t in the tree
|
| - */
|
| - int countOf(const T& t) const;
|
| -
|
| - /**
|
| - * Removes the item indicated by an iterator. The iterator will not be valid
|
| - * afterwards.
|
| - *
|
| - * @param iter iterator of item to remove. Must be valid (not end()).
|
| - */
|
| - void remove(const Iter& iter) { deleteAtNode(iter.fN); }
|
| -
|
| -private:
|
| - enum Color {
|
| - kRed_Color,
|
| - kBlack_Color
|
| - };
|
| -
|
| - enum Child {
|
| - kLeft_Child = 0,
|
| - kRight_Child = 1
|
| - };
|
| -
|
| - struct Node {
|
| - T fItem;
|
| - Color fColor;
|
| -
|
| - Node* fParent;
|
| - Node* fChildren[2];
|
| - };
|
| -
|
| - void rotateRight(Node* n);
|
| - void rotateLeft(Node* n);
|
| -
|
| - static Node* SuccessorNode(Node* x);
|
| - static Node* PredecessorNode(Node* x);
|
| -
|
| - void deleteAtNode(Node* x);
|
| - static void RecursiveDelete(Node* x);
|
| -
|
| - int onCountOf(const Node* n, const T& t) const;
|
| -
|
| -#ifdef SK_DEBUG
|
| - void validate() const;
|
| - int checkNode(Node* n, int* blackHeight) const;
|
| - // checks relationship between a node and its children. allowRedRed means
|
| - // node may be in an intermediate state where a red parent has a red child.
|
| - bool validateChildRelations(const Node* n, bool allowRedRed) const;
|
| - // place to stick break point if validateChildRelations is failing.
|
| - bool validateChildRelationsFailed() const { return false; }
|
| -#else
|
| - void validate() const {}
|
| -#endif
|
| -
|
| - int fCount;
|
| - Node* fRoot;
|
| - Node* fFirst;
|
| - Node* fLast;
|
| -
|
| - const C fComp;
|
| -};
|
| -
|
| -template <typename T, typename C>
|
| -class GrRedBlackTree<T,C>::Iter {
|
| -public:
|
| - Iter() {};
|
| - Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
|
| - Iter& operator =(const Iter& i) {
|
| - fN = i.fN;
|
| - fTree = i.fTree;
|
| - return *this;
|
| - }
|
| - // altering the sort value of the item using this method will cause
|
| - // errors.
|
| - T& operator *() const { return fN->fItem; }
|
| - bool operator ==(const Iter& i) const {
|
| - return fN == i.fN && fTree == i.fTree;
|
| - }
|
| - bool operator !=(const Iter& i) const { return !(*this == i); }
|
| - Iter& operator ++() {
|
| - SkASSERT(*this != fTree->end());
|
| - fN = SuccessorNode(fN);
|
| - return *this;
|
| - }
|
| - Iter& operator --() {
|
| - SkASSERT(*this != fTree->begin());
|
| - if (fN) {
|
| - fN = PredecessorNode(fN);
|
| - } else {
|
| - *this = fTree->last();
|
| - }
|
| - return *this;
|
| - }
|
| -
|
| -private:
|
| - friend class GrRedBlackTree;
|
| - explicit Iter(Node* n, GrRedBlackTree* tree) {
|
| - fN = n;
|
| - fTree = tree;
|
| - }
|
| - Node* fN;
|
| - GrRedBlackTree* fTree;
|
| -};
|
| -
|
| -template <typename T, typename C>
|
| -GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
|
| - fRoot = NULL;
|
| - fFirst = NULL;
|
| - fLast = NULL;
|
| - fCount = 0;
|
| - validate();
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -GrRedBlackTree<T,C>::~GrRedBlackTree() {
|
| - RecursiveDelete(fRoot);
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
|
| - return Iter(fFirst, this);
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
|
| - return Iter(NULL, this);
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
|
| - return Iter(fLast, this);
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
|
| - Node* n = fRoot;
|
| - while (n) {
|
| - if (fComp(t, n->fItem)) {
|
| - n = n->fChildren[kLeft_Child];
|
| - } else {
|
| - if (!fComp(n->fItem, t)) {
|
| - return Iter(n, this);
|
| - }
|
| - n = n->fChildren[kRight_Child];
|
| - }
|
| - }
|
| - return end();
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
|
| - Node* n = fRoot;
|
| - Node* leftMost = NULL;
|
| - while (n) {
|
| - if (fComp(t, n->fItem)) {
|
| - n = n->fChildren[kLeft_Child];
|
| - } else {
|
| - if (!fComp(n->fItem, t)) {
|
| - // found one. check if another in left subtree.
|
| - leftMost = n;
|
| - n = n->fChildren[kLeft_Child];
|
| - } else {
|
| - n = n->fChildren[kRight_Child];
|
| - }
|
| - }
|
| - }
|
| - return Iter(leftMost, this);
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
|
| - Node* n = fRoot;
|
| - Node* rightMost = NULL;
|
| - while (n) {
|
| - if (fComp(t, n->fItem)) {
|
| - n = n->fChildren[kLeft_Child];
|
| - } else {
|
| - if (!fComp(n->fItem, t)) {
|
| - // found one. check if another in right subtree.
|
| - rightMost = n;
|
| - }
|
| - n = n->fChildren[kRight_Child];
|
| - }
|
| - }
|
| - return Iter(rightMost, this);
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -int GrRedBlackTree<T,C>::countOf(const T& t) const {
|
| - return onCountOf(fRoot, t);
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
|
| - // this is count*log(n) :(
|
| - while (n) {
|
| - if (fComp(t, n->fItem)) {
|
| - n = n->fChildren[kLeft_Child];
|
| - } else {
|
| - if (!fComp(n->fItem, t)) {
|
| - int count = 1;
|
| - count += onCountOf(n->fChildren[kLeft_Child], t);
|
| - count += onCountOf(n->fChildren[kRight_Child], t);
|
| - return count;
|
| - }
|
| - n = n->fChildren[kRight_Child];
|
| - }
|
| - }
|
| - return 0;
|
| -
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -void GrRedBlackTree<T,C>::reset() {
|
| - RecursiveDelete(fRoot);
|
| - fRoot = NULL;
|
| - fFirst = NULL;
|
| - fLast = NULL;
|
| - fCount = 0;
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
|
| - validate();
|
| -
|
| - ++fCount;
|
| -
|
| - Node* x = SkNEW(Node);
|
| - x->fChildren[kLeft_Child] = NULL;
|
| - x->fChildren[kRight_Child] = NULL;
|
| - x->fItem = t;
|
| -
|
| - Node* returnNode = x;
|
| -
|
| - Node* gp = NULL;
|
| - Node* p = NULL;
|
| - Node* n = fRoot;
|
| - Child pc = kLeft_Child; // suppress uninit warning
|
| - Child gpc = kLeft_Child;
|
| -
|
| - bool first = true;
|
| - bool last = true;
|
| - while (n) {
|
| - gpc = pc;
|
| - pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
|
| - first = first && kLeft_Child == pc;
|
| - last = last && kRight_Child == pc;
|
| - gp = p;
|
| - p = n;
|
| - n = p->fChildren[pc];
|
| - }
|
| - if (last) {
|
| - fLast = x;
|
| - }
|
| - if (first) {
|
| - fFirst = x;
|
| - }
|
| -
|
| - if (NULL == p) {
|
| - fRoot = x;
|
| - x->fColor = kBlack_Color;
|
| - x->fParent = NULL;
|
| - SkASSERT(1 == fCount);
|
| - return Iter(returnNode, this);
|
| - }
|
| - p->fChildren[pc] = x;
|
| - x->fColor = kRed_Color;
|
| - x->fParent = p;
|
| -
|
| - do {
|
| - // assumptions at loop start.
|
| - SkASSERT(x);
|
| - SkASSERT(kRed_Color == x->fColor);
|
| - // can't have a grandparent but no parent.
|
| - SkASSERT(!(gp && NULL == p));
|
| - // make sure pc and gpc are correct
|
| - SkASSERT(NULL == p || p->fChildren[pc] == x);
|
| - SkASSERT(NULL == gp || gp->fChildren[gpc] == p);
|
| -
|
| - // if x's parent is black then we didn't violate any of the
|
| - // red/black properties when we added x as red.
|
| - if (kBlack_Color == p->fColor) {
|
| - return Iter(returnNode, this);
|
| - }
|
| - // gp must be valid because if p was the root then it is black
|
| - SkASSERT(gp);
|
| - // gp must be black since it's child, p, is red.
|
| - SkASSERT(kBlack_Color == gp->fColor);
|
| -
|
| -
|
| - // x and its parent are red, violating red-black property.
|
| - Node* u = gp->fChildren[1-gpc];
|
| - // if x's uncle (p's sibling) is also red then we can flip
|
| - // p and u to black and make gp red. But then we have to recurse
|
| - // up to gp since it's parent may also be red.
|
| - if (u && kRed_Color == u->fColor) {
|
| - p->fColor = kBlack_Color;
|
| - u->fColor = kBlack_Color;
|
| - gp->fColor = kRed_Color;
|
| - x = gp;
|
| - p = x->fParent;
|
| - if (NULL == p) {
|
| - // x (prev gp) is the root, color it black and be done.
|
| - SkASSERT(fRoot == x);
|
| - x->fColor = kBlack_Color;
|
| - validate();
|
| - return Iter(returnNode, this);
|
| - }
|
| - gp = p->fParent;
|
| - pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
|
| - kRight_Child;
|
| - if (gp) {
|
| - gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
|
| - kRight_Child;
|
| - }
|
| - continue;
|
| - } break;
|
| - } while (true);
|
| - // Here p is red but u is black and we still have to resolve the fact
|
| - // that x and p are both red.
|
| - SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
|
| - SkASSERT(kRed_Color == x->fColor);
|
| - SkASSERT(kRed_Color == p->fColor);
|
| - SkASSERT(kBlack_Color == gp->fColor);
|
| -
|
| - // make x be on the same side of p as p is of gp. If it isn't already
|
| - // the case then rotate x up to p and swap their labels.
|
| - if (pc != gpc) {
|
| - if (kRight_Child == pc) {
|
| - rotateLeft(p);
|
| - Node* temp = p;
|
| - p = x;
|
| - x = temp;
|
| - pc = kLeft_Child;
|
| - } else {
|
| - rotateRight(p);
|
| - Node* temp = p;
|
| - p = x;
|
| - x = temp;
|
| - pc = kRight_Child;
|
| - }
|
| - }
|
| - // we now rotate gp down, pulling up p to be it's new parent.
|
| - // gp's child, u, that is not affected we know to be black. gp's new
|
| - // child is p's previous child (x's pre-rotation sibling) which must be
|
| - // black since p is red.
|
| - SkASSERT(NULL == p->fChildren[1-pc] ||
|
| - kBlack_Color == p->fChildren[1-pc]->fColor);
|
| - // Since gp's two children are black it can become red if p is made
|
| - // black. This leaves the black-height of both of p's new subtrees
|
| - // preserved and removes the red/red parent child relationship.
|
| - p->fColor = kBlack_Color;
|
| - gp->fColor = kRed_Color;
|
| - if (kLeft_Child == pc) {
|
| - rotateRight(gp);
|
| - } else {
|
| - rotateLeft(gp);
|
| - }
|
| - validate();
|
| - return Iter(returnNode, this);
|
| -}
|
| -
|
| -
|
| -template <typename T, typename C>
|
| -void GrRedBlackTree<T,C>::rotateRight(Node* n) {
|
| - /* d? d?
|
| - * / /
|
| - * n s
|
| - * / \ ---> / \
|
| - * s a? c? n
|
| - * / \ / \
|
| - * c? b? b? a?
|
| - */
|
| - Node* d = n->fParent;
|
| - Node* s = n->fChildren[kLeft_Child];
|
| - SkASSERT(s);
|
| - Node* b = s->fChildren[kRight_Child];
|
| -
|
| - if (d) {
|
| - Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
|
| - kRight_Child;
|
| - d->fChildren[c] = s;
|
| - } else {
|
| - SkASSERT(fRoot == n);
|
| - fRoot = s;
|
| - }
|
| - s->fParent = d;
|
| - s->fChildren[kRight_Child] = n;
|
| - n->fParent = s;
|
| - n->fChildren[kLeft_Child] = b;
|
| - if (b) {
|
| - b->fParent = n;
|
| - }
|
| -
|
| - GR_DEBUGASSERT(validateChildRelations(d, true));
|
| - GR_DEBUGASSERT(validateChildRelations(s, true));
|
| - GR_DEBUGASSERT(validateChildRelations(n, false));
|
| - GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
|
| - GR_DEBUGASSERT(validateChildRelations(b, true));
|
| - GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
|
| -
|
| - Node* d = n->fParent;
|
| - Node* s = n->fChildren[kRight_Child];
|
| - SkASSERT(s);
|
| - Node* b = s->fChildren[kLeft_Child];
|
| -
|
| - if (d) {
|
| - Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
|
| - kLeft_Child;
|
| - d->fChildren[c] = s;
|
| - } else {
|
| - SkASSERT(fRoot == n);
|
| - fRoot = s;
|
| - }
|
| - s->fParent = d;
|
| - s->fChildren[kLeft_Child] = n;
|
| - n->fParent = s;
|
| - n->fChildren[kRight_Child] = b;
|
| - if (b) {
|
| - b->fParent = n;
|
| - }
|
| -
|
| - GR_DEBUGASSERT(validateChildRelations(d, true));
|
| - GR_DEBUGASSERT(validateChildRelations(s, true));
|
| - GR_DEBUGASSERT(validateChildRelations(n, true));
|
| - GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
|
| - GR_DEBUGASSERT(validateChildRelations(b, true));
|
| - GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
|
| - SkASSERT(x);
|
| - if (x->fChildren[kRight_Child]) {
|
| - x = x->fChildren[kRight_Child];
|
| - while (x->fChildren[kLeft_Child]) {
|
| - x = x->fChildren[kLeft_Child];
|
| - }
|
| - return x;
|
| - }
|
| - while (x->fParent && x == x->fParent->fChildren[kRight_Child]) {
|
| - x = x->fParent;
|
| - }
|
| - return x->fParent;
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
|
| - SkASSERT(x);
|
| - if (x->fChildren[kLeft_Child]) {
|
| - x = x->fChildren[kLeft_Child];
|
| - while (x->fChildren[kRight_Child]) {
|
| - x = x->fChildren[kRight_Child];
|
| - }
|
| - return x;
|
| - }
|
| - while (x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
|
| - x = x->fParent;
|
| - }
|
| - return x->fParent;
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
|
| - SkASSERT(x);
|
| - validate();
|
| - --fCount;
|
| -
|
| - bool hasLeft = SkToBool(x->fChildren[kLeft_Child]);
|
| - bool hasRight = SkToBool(x->fChildren[kRight_Child]);
|
| - Child c = hasLeft ? kLeft_Child : kRight_Child;
|
| -
|
| - if (hasLeft && hasRight) {
|
| - // first and last can't have two children.
|
| - SkASSERT(fFirst != x);
|
| - SkASSERT(fLast != x);
|
| - // if x is an interior node then we find it's successor
|
| - // and swap them.
|
| - Node* s = x->fChildren[kRight_Child];
|
| - while (s->fChildren[kLeft_Child]) {
|
| - s = s->fChildren[kLeft_Child];
|
| - }
|
| - SkASSERT(s);
|
| - // this might be expensive relative to swapping node ptrs around.
|
| - // depends on T.
|
| - x->fItem = s->fItem;
|
| - x = s;
|
| - c = kRight_Child;
|
| - } else if (NULL == x->fParent) {
|
| - // if x was the root we just replace it with its child and make
|
| - // the new root (if the tree is not empty) black.
|
| - SkASSERT(fRoot == x);
|
| - fRoot = x->fChildren[c];
|
| - if (fRoot) {
|
| - fRoot->fParent = NULL;
|
| - fRoot->fColor = kBlack_Color;
|
| - if (x == fLast) {
|
| - SkASSERT(c == kLeft_Child);
|
| - fLast = fRoot;
|
| - } else if (x == fFirst) {
|
| - SkASSERT(c == kRight_Child);
|
| - fFirst = fRoot;
|
| - }
|
| - } else {
|
| - SkASSERT(fFirst == fLast && x == fFirst);
|
| - fFirst = NULL;
|
| - fLast = NULL;
|
| - SkASSERT(0 == fCount);
|
| - }
|
| - delete x;
|
| - validate();
|
| - return;
|
| - }
|
| -
|
| - Child pc;
|
| - Node* p = x->fParent;
|
| - pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
|
| -
|
| - if (NULL == x->fChildren[c]) {
|
| - if (fLast == x) {
|
| - fLast = p;
|
| - SkASSERT(p == PredecessorNode(x));
|
| - } else if (fFirst == x) {
|
| - fFirst = p;
|
| - SkASSERT(p == SuccessorNode(x));
|
| - }
|
| - // x has two implicit black children.
|
| - Color xcolor = x->fColor;
|
| - p->fChildren[pc] = NULL;
|
| - delete x;
|
| - x = NULL;
|
| - // when x is red it can be with an implicit black leaf without
|
| - // violating any of the red-black tree properties.
|
| - if (kRed_Color == xcolor) {
|
| - validate();
|
| - return;
|
| - }
|
| - // s is p's other child (x's sibling)
|
| - Node* s = p->fChildren[1-pc];
|
| -
|
| - //s cannot be an implicit black node because the original
|
| - // black-height at x was >= 2 and s's black-height must equal the
|
| - // initial black height of x.
|
| - SkASSERT(s);
|
| - SkASSERT(p == s->fParent);
|
| -
|
| - // assigned in loop
|
| - Node* sl;
|
| - Node* sr;
|
| - bool slRed;
|
| - bool srRed;
|
| -
|
| - do {
|
| - // When we start this loop x may already be deleted it is/was
|
| - // p's child on its pc side. x's children are/were black. The
|
| - // first time through the loop they are implict children.
|
| - // On later passes we will be walking up the tree and they will
|
| - // be real nodes.
|
| - // The x side of p has a black-height that is one less than the
|
| - // s side. It must be rebalanced.
|
| - SkASSERT(s);
|
| - SkASSERT(p == s->fParent);
|
| - SkASSERT(NULL == x || x->fParent == p);
|
| -
|
| - //sl and sr are s's children, which may be implicit.
|
| - sl = s->fChildren[kLeft_Child];
|
| - sr = s->fChildren[kRight_Child];
|
| -
|
| - // if the s is red we will rotate s and p, swap their colors so
|
| - // that x's new sibling is black
|
| - if (kRed_Color == s->fColor) {
|
| - // if s is red then it's parent must be black.
|
| - SkASSERT(kBlack_Color == p->fColor);
|
| - // s's children must also be black since s is red. They can't
|
| - // be implicit since s is red and it's black-height is >= 2.
|
| - SkASSERT(sl && kBlack_Color == sl->fColor);
|
| - SkASSERT(sr && kBlack_Color == sr->fColor);
|
| - p->fColor = kRed_Color;
|
| - s->fColor = kBlack_Color;
|
| - if (kLeft_Child == pc) {
|
| - rotateLeft(p);
|
| - s = sl;
|
| - } else {
|
| - rotateRight(p);
|
| - s = sr;
|
| - }
|
| - sl = s->fChildren[kLeft_Child];
|
| - sr = s->fChildren[kRight_Child];
|
| - }
|
| - // x and s are now both black.
|
| - SkASSERT(kBlack_Color == s->fColor);
|
| - SkASSERT(NULL == x || kBlack_Color == x->fColor);
|
| - SkASSERT(p == s->fParent);
|
| - SkASSERT(NULL == x || p == x->fParent);
|
| -
|
| - // when x is deleted its subtree will have reduced black-height.
|
| - slRed = (sl && kRed_Color == sl->fColor);
|
| - srRed = (sr && kRed_Color == sr->fColor);
|
| - if (!slRed && !srRed) {
|
| - // if s can be made red that will balance out x's removal
|
| - // to make both subtrees of p have the same black-height.
|
| - if (kBlack_Color == p->fColor) {
|
| - s->fColor = kRed_Color;
|
| - // now subtree at p has black-height of one less than
|
| - // p's parent's other child's subtree. We move x up to
|
| - // p and go through the loop again. At the top of loop
|
| - // we assumed x and x's children are black, which holds
|
| - // by above ifs.
|
| - // if p is the root there is no other subtree to balance
|
| - // against.
|
| - x = p;
|
| - p = x->fParent;
|
| - if (NULL == p) {
|
| - SkASSERT(fRoot == x);
|
| - validate();
|
| - return;
|
| - } else {
|
| - pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
|
| - kRight_Child;
|
| -
|
| - }
|
| - s = p->fChildren[1-pc];
|
| - SkASSERT(s);
|
| - SkASSERT(p == s->fParent);
|
| - continue;
|
| - } else if (kRed_Color == p->fColor) {
|
| - // we can make p black and s red. This balance out p's
|
| - // two subtrees and keep the same black-height as it was
|
| - // before the delete.
|
| - s->fColor = kRed_Color;
|
| - p->fColor = kBlack_Color;
|
| - validate();
|
| - return;
|
| - }
|
| - }
|
| - break;
|
| - } while (true);
|
| - // if we made it here one or both of sl and sr is red.
|
| - // s and x are black. We make sure that a red child is on
|
| - // the same side of s as s is of p.
|
| - SkASSERT(slRed || srRed);
|
| - if (kLeft_Child == pc && !srRed) {
|
| - s->fColor = kRed_Color;
|
| - sl->fColor = kBlack_Color;
|
| - rotateRight(s);
|
| - sr = s;
|
| - s = sl;
|
| - //sl = s->fChildren[kLeft_Child]; don't need this
|
| - } else if (kRight_Child == pc && !slRed) {
|
| - s->fColor = kRed_Color;
|
| - sr->fColor = kBlack_Color;
|
| - rotateLeft(s);
|
| - sl = s;
|
| - s = sr;
|
| - //sr = s->fChildren[kRight_Child]; don't need this
|
| - }
|
| - // now p is either red or black, x and s are red and s's 1-pc
|
| - // child is red.
|
| - // We rotate p towards x, pulling s up to replace p. We make
|
| - // p be black and s takes p's old color.
|
| - // Whether p was red or black, we've increased its pc subtree
|
| - // rooted at x by 1 (balancing the imbalance at the start) and
|
| - // we've also its subtree rooted at s's black-height by 1. This
|
| - // can be balanced by making s's red child be black.
|
| - s->fColor = p->fColor;
|
| - p->fColor = kBlack_Color;
|
| - if (kLeft_Child == pc) {
|
| - SkASSERT(sr && kRed_Color == sr->fColor);
|
| - sr->fColor = kBlack_Color;
|
| - rotateLeft(p);
|
| - } else {
|
| - SkASSERT(sl && kRed_Color == sl->fColor);
|
| - sl->fColor = kBlack_Color;
|
| - rotateRight(p);
|
| - }
|
| - }
|
| - else {
|
| - // x has exactly one implicit black child. x cannot be red.
|
| - // Proof by contradiction: Assume X is red. Let c0 be x's implicit
|
| - // child and c1 be its non-implicit child. c1 must be black because
|
| - // red nodes always have two black children. Then the two subtrees
|
| - // of x rooted at c0 and c1 will have different black-heights.
|
| - SkASSERT(kBlack_Color == x->fColor);
|
| - // So we know x is black and has one implicit black child, c0. c1
|
| - // must be red, otherwise the subtree at c1 will have a different
|
| - // black-height than the subtree rooted at c0.
|
| - SkASSERT(kRed_Color == x->fChildren[c]->fColor);
|
| - // replace x with c1, making c1 black, preserves all red-black tree
|
| - // props.
|
| - Node* c1 = x->fChildren[c];
|
| - if (x == fFirst) {
|
| - SkASSERT(c == kRight_Child);
|
| - fFirst = c1;
|
| - while (fFirst->fChildren[kLeft_Child]) {
|
| - fFirst = fFirst->fChildren[kLeft_Child];
|
| - }
|
| - SkASSERT(fFirst == SuccessorNode(x));
|
| - } else if (x == fLast) {
|
| - SkASSERT(c == kLeft_Child);
|
| - fLast = c1;
|
| - while (fLast->fChildren[kRight_Child]) {
|
| - fLast = fLast->fChildren[kRight_Child];
|
| - }
|
| - SkASSERT(fLast == PredecessorNode(x));
|
| - }
|
| - c1->fParent = p;
|
| - p->fChildren[pc] = c1;
|
| - c1->fColor = kBlack_Color;
|
| - delete x;
|
| - validate();
|
| - }
|
| - validate();
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
|
| - if (x) {
|
| - RecursiveDelete(x->fChildren[kLeft_Child]);
|
| - RecursiveDelete(x->fChildren[kRight_Child]);
|
| - delete x;
|
| - }
|
| -}
|
| -
|
| -#ifdef SK_DEBUG
|
| -template <typename T, typename C>
|
| -void GrRedBlackTree<T,C>::validate() const {
|
| - if (fCount) {
|
| - SkASSERT(NULL == fRoot->fParent);
|
| - SkASSERT(fFirst);
|
| - SkASSERT(fLast);
|
| -
|
| - SkASSERT(kBlack_Color == fRoot->fColor);
|
| - if (1 == fCount) {
|
| - SkASSERT(fFirst == fRoot);
|
| - SkASSERT(fLast == fRoot);
|
| - SkASSERT(0 == fRoot->fChildren[kLeft_Child]);
|
| - SkASSERT(0 == fRoot->fChildren[kRight_Child]);
|
| - }
|
| - } else {
|
| - SkASSERT(NULL == fRoot);
|
| - SkASSERT(NULL == fFirst);
|
| - SkASSERT(NULL == fLast);
|
| - }
|
| -#if DEEP_VALIDATE
|
| - int bh;
|
| - int count = checkNode(fRoot, &bh);
|
| - SkASSERT(count == fCount);
|
| -#endif
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
|
| - if (n) {
|
| - SkASSERT(validateChildRelations(n, false));
|
| - if (kBlack_Color == n->fColor) {
|
| - *bh += 1;
|
| - }
|
| - SkASSERT(!fComp(n->fItem, fFirst->fItem));
|
| - SkASSERT(!fComp(fLast->fItem, n->fItem));
|
| - int leftBh = *bh;
|
| - int rightBh = *bh;
|
| - int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
|
| - int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
|
| - SkASSERT(leftBh == rightBh);
|
| - *bh = leftBh;
|
| - return 1 + cl + cr;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -template <typename T, typename C>
|
| -bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
|
| - bool allowRedRed) const {
|
| - if (n) {
|
| - if (n->fChildren[kLeft_Child] ||
|
| - n->fChildren[kRight_Child]) {
|
| - if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - if (n->fChildren[kLeft_Child] == n->fParent &&
|
| - n->fParent) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - if (n->fChildren[kRight_Child] == n->fParent &&
|
| - n->fParent) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - if (n->fChildren[kLeft_Child]) {
|
| - if (!allowRedRed &&
|
| - kRed_Color == n->fChildren[kLeft_Child]->fColor &&
|
| - kRed_Color == n->fColor) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - if (n->fChildren[kLeft_Child]->fParent != n) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
|
| - (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
|
| - !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - }
|
| - if (n->fChildren[kRight_Child]) {
|
| - if (!allowRedRed &&
|
| - kRed_Color == n->fChildren[kRight_Child]->fColor &&
|
| - kRed_Color == n->fColor) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - if (n->fChildren[kRight_Child]->fParent != n) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
|
| - (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
|
| - !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
|
| - return validateChildRelationsFailed();
|
| - }
|
| - }
|
| - }
|
| - }
|
| - return true;
|
| -}
|
| -#endif
|
| -
|
| -#endif
|
|
|