Index: src/gpu/GrRedBlackTree.h |
diff --git a/src/gpu/GrRedBlackTree.h b/src/gpu/GrRedBlackTree.h |
deleted file mode 100644 |
index c58ae2790042454a63dc720ae97581c9d969da26..0000000000000000000000000000000000000000 |
--- a/src/gpu/GrRedBlackTree.h |
+++ /dev/null |
@@ -1,948 +0,0 @@ |
-/* |
- * Copyright 2011 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#ifndef GrRedBlackTree_DEFINED |
-#define GrRedBlackTree_DEFINED |
- |
-#include "GrConfig.h" |
-#include "SkTypes.h" |
- |
-template <typename T> |
-class GrLess { |
-public: |
- bool operator()(const T& a, const T& b) const { return a < b; } |
-}; |
- |
-template <typename T> |
-class GrLess<T*> { |
-public: |
- bool operator()(const T* a, const T* b) const { return *a < *b; } |
-}; |
- |
-class GrStrLess { |
-public: |
- bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; } |
-}; |
- |
-/** |
- * In debug build this will cause full traversals of the tree when the validate |
- * is called on insert and remove. Useful for debugging but very slow. |
- */ |
-#define DEEP_VALIDATE 0 |
- |
-/** |
- * A sorted tree that uses the red-black tree algorithm. Allows duplicate |
- * entries. Data is of type T and is compared using functor C. A single C object |
- * will be created and used for all comparisons. |
- */ |
-template <typename T, typename C = GrLess<T> > |
-class GrRedBlackTree : SkNoncopyable { |
-public: |
- /** |
- * Creates an empty tree. |
- */ |
- GrRedBlackTree(); |
- virtual ~GrRedBlackTree(); |
- |
- /** |
- * Class used to iterater through the tree. The valid range of the tree |
- * is given by [begin(), end()). It is legal to dereference begin() but not |
- * end(). The iterator has preincrement and predecrement operators, it is |
- * legal to decerement end() if the tree is not empty to get the last |
- * element. However, a last() helper is provided. |
- */ |
- class Iter; |
- |
- /** |
- * Add an element to the tree. Duplicates are allowed. |
- * @param t the item to add. |
- * @return an iterator to the item. |
- */ |
- Iter insert(const T& t); |
- |
- /** |
- * Removes all items in the tree. |
- */ |
- void reset(); |
- |
- /** |
- * @return true if there are no items in the tree, false otherwise. |
- */ |
- bool empty() const {return 0 == fCount;} |
- |
- /** |
- * @return the number of items in the tree. |
- */ |
- int count() const {return fCount;} |
- |
- /** |
- * @return an iterator to the first item in sorted order, or end() if empty |
- */ |
- Iter begin(); |
- /** |
- * Gets the last valid iterator. This is always valid, even on an empty. |
- * However, it can never be dereferenced. Useful as a loop terminator. |
- * @return an iterator that is just beyond the last item in sorted order. |
- */ |
- Iter end(); |
- /** |
- * @return an iterator that to the last item in sorted order, or end() if |
- * empty. |
- */ |
- Iter last(); |
- |
- /** |
- * Finds an occurrence of an item. |
- * @param t the item to find. |
- * @return an iterator to a tree element equal to t or end() if none exists. |
- */ |
- Iter find(const T& t); |
- /** |
- * Finds the first of an item in iterator order. |
- * @param t the item to find. |
- * @return an iterator to the first element equal to t or end() if |
- * none exists. |
- */ |
- Iter findFirst(const T& t); |
- /** |
- * Finds the last of an item in iterator order. |
- * @param t the item to find. |
- * @return an iterator to the last element equal to t or end() if |
- * none exists. |
- */ |
- Iter findLast(const T& t); |
- /** |
- * Gets the number of items in the tree equal to t. |
- * @param t the item to count. |
- * @return number of items equal to t in the tree |
- */ |
- int countOf(const T& t) const; |
- |
- /** |
- * Removes the item indicated by an iterator. The iterator will not be valid |
- * afterwards. |
- * |
- * @param iter iterator of item to remove. Must be valid (not end()). |
- */ |
- void remove(const Iter& iter) { deleteAtNode(iter.fN); } |
- |
-private: |
- enum Color { |
- kRed_Color, |
- kBlack_Color |
- }; |
- |
- enum Child { |
- kLeft_Child = 0, |
- kRight_Child = 1 |
- }; |
- |
- struct Node { |
- T fItem; |
- Color fColor; |
- |
- Node* fParent; |
- Node* fChildren[2]; |
- }; |
- |
- void rotateRight(Node* n); |
- void rotateLeft(Node* n); |
- |
- static Node* SuccessorNode(Node* x); |
- static Node* PredecessorNode(Node* x); |
- |
- void deleteAtNode(Node* x); |
- static void RecursiveDelete(Node* x); |
- |
- int onCountOf(const Node* n, const T& t) const; |
- |
-#ifdef SK_DEBUG |
- void validate() const; |
- int checkNode(Node* n, int* blackHeight) const; |
- // checks relationship between a node and its children. allowRedRed means |
- // node may be in an intermediate state where a red parent has a red child. |
- bool validateChildRelations(const Node* n, bool allowRedRed) const; |
- // place to stick break point if validateChildRelations is failing. |
- bool validateChildRelationsFailed() const { return false; } |
-#else |
- void validate() const {} |
-#endif |
- |
- int fCount; |
- Node* fRoot; |
- Node* fFirst; |
- Node* fLast; |
- |
- const C fComp; |
-}; |
- |
-template <typename T, typename C> |
-class GrRedBlackTree<T,C>::Iter { |
-public: |
- Iter() {}; |
- Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;} |
- Iter& operator =(const Iter& i) { |
- fN = i.fN; |
- fTree = i.fTree; |
- return *this; |
- } |
- // altering the sort value of the item using this method will cause |
- // errors. |
- T& operator *() const { return fN->fItem; } |
- bool operator ==(const Iter& i) const { |
- return fN == i.fN && fTree == i.fTree; |
- } |
- bool operator !=(const Iter& i) const { return !(*this == i); } |
- Iter& operator ++() { |
- SkASSERT(*this != fTree->end()); |
- fN = SuccessorNode(fN); |
- return *this; |
- } |
- Iter& operator --() { |
- SkASSERT(*this != fTree->begin()); |
- if (fN) { |
- fN = PredecessorNode(fN); |
- } else { |
- *this = fTree->last(); |
- } |
- return *this; |
- } |
- |
-private: |
- friend class GrRedBlackTree; |
- explicit Iter(Node* n, GrRedBlackTree* tree) { |
- fN = n; |
- fTree = tree; |
- } |
- Node* fN; |
- GrRedBlackTree* fTree; |
-}; |
- |
-template <typename T, typename C> |
-GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() { |
- fRoot = NULL; |
- fFirst = NULL; |
- fLast = NULL; |
- fCount = 0; |
- validate(); |
-} |
- |
-template <typename T, typename C> |
-GrRedBlackTree<T,C>::~GrRedBlackTree() { |
- RecursiveDelete(fRoot); |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() { |
- return Iter(fFirst, this); |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() { |
- return Iter(NULL, this); |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() { |
- return Iter(fLast, this); |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) { |
- Node* n = fRoot; |
- while (n) { |
- if (fComp(t, n->fItem)) { |
- n = n->fChildren[kLeft_Child]; |
- } else { |
- if (!fComp(n->fItem, t)) { |
- return Iter(n, this); |
- } |
- n = n->fChildren[kRight_Child]; |
- } |
- } |
- return end(); |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) { |
- Node* n = fRoot; |
- Node* leftMost = NULL; |
- while (n) { |
- if (fComp(t, n->fItem)) { |
- n = n->fChildren[kLeft_Child]; |
- } else { |
- if (!fComp(n->fItem, t)) { |
- // found one. check if another in left subtree. |
- leftMost = n; |
- n = n->fChildren[kLeft_Child]; |
- } else { |
- n = n->fChildren[kRight_Child]; |
- } |
- } |
- } |
- return Iter(leftMost, this); |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) { |
- Node* n = fRoot; |
- Node* rightMost = NULL; |
- while (n) { |
- if (fComp(t, n->fItem)) { |
- n = n->fChildren[kLeft_Child]; |
- } else { |
- if (!fComp(n->fItem, t)) { |
- // found one. check if another in right subtree. |
- rightMost = n; |
- } |
- n = n->fChildren[kRight_Child]; |
- } |
- } |
- return Iter(rightMost, this); |
-} |
- |
-template <typename T, typename C> |
-int GrRedBlackTree<T,C>::countOf(const T& t) const { |
- return onCountOf(fRoot, t); |
-} |
- |
-template <typename T, typename C> |
-int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const { |
- // this is count*log(n) :( |
- while (n) { |
- if (fComp(t, n->fItem)) { |
- n = n->fChildren[kLeft_Child]; |
- } else { |
- if (!fComp(n->fItem, t)) { |
- int count = 1; |
- count += onCountOf(n->fChildren[kLeft_Child], t); |
- count += onCountOf(n->fChildren[kRight_Child], t); |
- return count; |
- } |
- n = n->fChildren[kRight_Child]; |
- } |
- } |
- return 0; |
- |
-} |
- |
-template <typename T, typename C> |
-void GrRedBlackTree<T,C>::reset() { |
- RecursiveDelete(fRoot); |
- fRoot = NULL; |
- fFirst = NULL; |
- fLast = NULL; |
- fCount = 0; |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) { |
- validate(); |
- |
- ++fCount; |
- |
- Node* x = SkNEW(Node); |
- x->fChildren[kLeft_Child] = NULL; |
- x->fChildren[kRight_Child] = NULL; |
- x->fItem = t; |
- |
- Node* returnNode = x; |
- |
- Node* gp = NULL; |
- Node* p = NULL; |
- Node* n = fRoot; |
- Child pc = kLeft_Child; // suppress uninit warning |
- Child gpc = kLeft_Child; |
- |
- bool first = true; |
- bool last = true; |
- while (n) { |
- gpc = pc; |
- pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child; |
- first = first && kLeft_Child == pc; |
- last = last && kRight_Child == pc; |
- gp = p; |
- p = n; |
- n = p->fChildren[pc]; |
- } |
- if (last) { |
- fLast = x; |
- } |
- if (first) { |
- fFirst = x; |
- } |
- |
- if (NULL == p) { |
- fRoot = x; |
- x->fColor = kBlack_Color; |
- x->fParent = NULL; |
- SkASSERT(1 == fCount); |
- return Iter(returnNode, this); |
- } |
- p->fChildren[pc] = x; |
- x->fColor = kRed_Color; |
- x->fParent = p; |
- |
- do { |
- // assumptions at loop start. |
- SkASSERT(x); |
- SkASSERT(kRed_Color == x->fColor); |
- // can't have a grandparent but no parent. |
- SkASSERT(!(gp && NULL == p)); |
- // make sure pc and gpc are correct |
- SkASSERT(NULL == p || p->fChildren[pc] == x); |
- SkASSERT(NULL == gp || gp->fChildren[gpc] == p); |
- |
- // if x's parent is black then we didn't violate any of the |
- // red/black properties when we added x as red. |
- if (kBlack_Color == p->fColor) { |
- return Iter(returnNode, this); |
- } |
- // gp must be valid because if p was the root then it is black |
- SkASSERT(gp); |
- // gp must be black since it's child, p, is red. |
- SkASSERT(kBlack_Color == gp->fColor); |
- |
- |
- // x and its parent are red, violating red-black property. |
- Node* u = gp->fChildren[1-gpc]; |
- // if x's uncle (p's sibling) is also red then we can flip |
- // p and u to black and make gp red. But then we have to recurse |
- // up to gp since it's parent may also be red. |
- if (u && kRed_Color == u->fColor) { |
- p->fColor = kBlack_Color; |
- u->fColor = kBlack_Color; |
- gp->fColor = kRed_Color; |
- x = gp; |
- p = x->fParent; |
- if (NULL == p) { |
- // x (prev gp) is the root, color it black and be done. |
- SkASSERT(fRoot == x); |
- x->fColor = kBlack_Color; |
- validate(); |
- return Iter(returnNode, this); |
- } |
- gp = p->fParent; |
- pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child : |
- kRight_Child; |
- if (gp) { |
- gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child : |
- kRight_Child; |
- } |
- continue; |
- } break; |
- } while (true); |
- // Here p is red but u is black and we still have to resolve the fact |
- // that x and p are both red. |
- SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor); |
- SkASSERT(kRed_Color == x->fColor); |
- SkASSERT(kRed_Color == p->fColor); |
- SkASSERT(kBlack_Color == gp->fColor); |
- |
- // make x be on the same side of p as p is of gp. If it isn't already |
- // the case then rotate x up to p and swap their labels. |
- if (pc != gpc) { |
- if (kRight_Child == pc) { |
- rotateLeft(p); |
- Node* temp = p; |
- p = x; |
- x = temp; |
- pc = kLeft_Child; |
- } else { |
- rotateRight(p); |
- Node* temp = p; |
- p = x; |
- x = temp; |
- pc = kRight_Child; |
- } |
- } |
- // we now rotate gp down, pulling up p to be it's new parent. |
- // gp's child, u, that is not affected we know to be black. gp's new |
- // child is p's previous child (x's pre-rotation sibling) which must be |
- // black since p is red. |
- SkASSERT(NULL == p->fChildren[1-pc] || |
- kBlack_Color == p->fChildren[1-pc]->fColor); |
- // Since gp's two children are black it can become red if p is made |
- // black. This leaves the black-height of both of p's new subtrees |
- // preserved and removes the red/red parent child relationship. |
- p->fColor = kBlack_Color; |
- gp->fColor = kRed_Color; |
- if (kLeft_Child == pc) { |
- rotateRight(gp); |
- } else { |
- rotateLeft(gp); |
- } |
- validate(); |
- return Iter(returnNode, this); |
-} |
- |
- |
-template <typename T, typename C> |
-void GrRedBlackTree<T,C>::rotateRight(Node* n) { |
- /* d? d? |
- * / / |
- * n s |
- * / \ ---> / \ |
- * s a? c? n |
- * / \ / \ |
- * c? b? b? a? |
- */ |
- Node* d = n->fParent; |
- Node* s = n->fChildren[kLeft_Child]; |
- SkASSERT(s); |
- Node* b = s->fChildren[kRight_Child]; |
- |
- if (d) { |
- Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child : |
- kRight_Child; |
- d->fChildren[c] = s; |
- } else { |
- SkASSERT(fRoot == n); |
- fRoot = s; |
- } |
- s->fParent = d; |
- s->fChildren[kRight_Child] = n; |
- n->fParent = s; |
- n->fChildren[kLeft_Child] = b; |
- if (b) { |
- b->fParent = n; |
- } |
- |
- GR_DEBUGASSERT(validateChildRelations(d, true)); |
- GR_DEBUGASSERT(validateChildRelations(s, true)); |
- GR_DEBUGASSERT(validateChildRelations(n, false)); |
- GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true)); |
- GR_DEBUGASSERT(validateChildRelations(b, true)); |
- GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true)); |
-} |
- |
-template <typename T, typename C> |
-void GrRedBlackTree<T,C>::rotateLeft(Node* n) { |
- |
- Node* d = n->fParent; |
- Node* s = n->fChildren[kRight_Child]; |
- SkASSERT(s); |
- Node* b = s->fChildren[kLeft_Child]; |
- |
- if (d) { |
- Child c = d->fChildren[kRight_Child] == n ? kRight_Child : |
- kLeft_Child; |
- d->fChildren[c] = s; |
- } else { |
- SkASSERT(fRoot == n); |
- fRoot = s; |
- } |
- s->fParent = d; |
- s->fChildren[kLeft_Child] = n; |
- n->fParent = s; |
- n->fChildren[kRight_Child] = b; |
- if (b) { |
- b->fParent = n; |
- } |
- |
- GR_DEBUGASSERT(validateChildRelations(d, true)); |
- GR_DEBUGASSERT(validateChildRelations(s, true)); |
- GR_DEBUGASSERT(validateChildRelations(n, true)); |
- GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true)); |
- GR_DEBUGASSERT(validateChildRelations(b, true)); |
- GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true)); |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) { |
- SkASSERT(x); |
- if (x->fChildren[kRight_Child]) { |
- x = x->fChildren[kRight_Child]; |
- while (x->fChildren[kLeft_Child]) { |
- x = x->fChildren[kLeft_Child]; |
- } |
- return x; |
- } |
- while (x->fParent && x == x->fParent->fChildren[kRight_Child]) { |
- x = x->fParent; |
- } |
- return x->fParent; |
-} |
- |
-template <typename T, typename C> |
-typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) { |
- SkASSERT(x); |
- if (x->fChildren[kLeft_Child]) { |
- x = x->fChildren[kLeft_Child]; |
- while (x->fChildren[kRight_Child]) { |
- x = x->fChildren[kRight_Child]; |
- } |
- return x; |
- } |
- while (x->fParent && x == x->fParent->fChildren[kLeft_Child]) { |
- x = x->fParent; |
- } |
- return x->fParent; |
-} |
- |
-template <typename T, typename C> |
-void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
- SkASSERT(x); |
- validate(); |
- --fCount; |
- |
- bool hasLeft = SkToBool(x->fChildren[kLeft_Child]); |
- bool hasRight = SkToBool(x->fChildren[kRight_Child]); |
- Child c = hasLeft ? kLeft_Child : kRight_Child; |
- |
- if (hasLeft && hasRight) { |
- // first and last can't have two children. |
- SkASSERT(fFirst != x); |
- SkASSERT(fLast != x); |
- // if x is an interior node then we find it's successor |
- // and swap them. |
- Node* s = x->fChildren[kRight_Child]; |
- while (s->fChildren[kLeft_Child]) { |
- s = s->fChildren[kLeft_Child]; |
- } |
- SkASSERT(s); |
- // this might be expensive relative to swapping node ptrs around. |
- // depends on T. |
- x->fItem = s->fItem; |
- x = s; |
- c = kRight_Child; |
- } else if (NULL == x->fParent) { |
- // if x was the root we just replace it with its child and make |
- // the new root (if the tree is not empty) black. |
- SkASSERT(fRoot == x); |
- fRoot = x->fChildren[c]; |
- if (fRoot) { |
- fRoot->fParent = NULL; |
- fRoot->fColor = kBlack_Color; |
- if (x == fLast) { |
- SkASSERT(c == kLeft_Child); |
- fLast = fRoot; |
- } else if (x == fFirst) { |
- SkASSERT(c == kRight_Child); |
- fFirst = fRoot; |
- } |
- } else { |
- SkASSERT(fFirst == fLast && x == fFirst); |
- fFirst = NULL; |
- fLast = NULL; |
- SkASSERT(0 == fCount); |
- } |
- delete x; |
- validate(); |
- return; |
- } |
- |
- Child pc; |
- Node* p = x->fParent; |
- pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child; |
- |
- if (NULL == x->fChildren[c]) { |
- if (fLast == x) { |
- fLast = p; |
- SkASSERT(p == PredecessorNode(x)); |
- } else if (fFirst == x) { |
- fFirst = p; |
- SkASSERT(p == SuccessorNode(x)); |
- } |
- // x has two implicit black children. |
- Color xcolor = x->fColor; |
- p->fChildren[pc] = NULL; |
- delete x; |
- x = NULL; |
- // when x is red it can be with an implicit black leaf without |
- // violating any of the red-black tree properties. |
- if (kRed_Color == xcolor) { |
- validate(); |
- return; |
- } |
- // s is p's other child (x's sibling) |
- Node* s = p->fChildren[1-pc]; |
- |
- //s cannot be an implicit black node because the original |
- // black-height at x was >= 2 and s's black-height must equal the |
- // initial black height of x. |
- SkASSERT(s); |
- SkASSERT(p == s->fParent); |
- |
- // assigned in loop |
- Node* sl; |
- Node* sr; |
- bool slRed; |
- bool srRed; |
- |
- do { |
- // When we start this loop x may already be deleted it is/was |
- // p's child on its pc side. x's children are/were black. The |
- // first time through the loop they are implict children. |
- // On later passes we will be walking up the tree and they will |
- // be real nodes. |
- // The x side of p has a black-height that is one less than the |
- // s side. It must be rebalanced. |
- SkASSERT(s); |
- SkASSERT(p == s->fParent); |
- SkASSERT(NULL == x || x->fParent == p); |
- |
- //sl and sr are s's children, which may be implicit. |
- sl = s->fChildren[kLeft_Child]; |
- sr = s->fChildren[kRight_Child]; |
- |
- // if the s is red we will rotate s and p, swap their colors so |
- // that x's new sibling is black |
- if (kRed_Color == s->fColor) { |
- // if s is red then it's parent must be black. |
- SkASSERT(kBlack_Color == p->fColor); |
- // s's children must also be black since s is red. They can't |
- // be implicit since s is red and it's black-height is >= 2. |
- SkASSERT(sl && kBlack_Color == sl->fColor); |
- SkASSERT(sr && kBlack_Color == sr->fColor); |
- p->fColor = kRed_Color; |
- s->fColor = kBlack_Color; |
- if (kLeft_Child == pc) { |
- rotateLeft(p); |
- s = sl; |
- } else { |
- rotateRight(p); |
- s = sr; |
- } |
- sl = s->fChildren[kLeft_Child]; |
- sr = s->fChildren[kRight_Child]; |
- } |
- // x and s are now both black. |
- SkASSERT(kBlack_Color == s->fColor); |
- SkASSERT(NULL == x || kBlack_Color == x->fColor); |
- SkASSERT(p == s->fParent); |
- SkASSERT(NULL == x || p == x->fParent); |
- |
- // when x is deleted its subtree will have reduced black-height. |
- slRed = (sl && kRed_Color == sl->fColor); |
- srRed = (sr && kRed_Color == sr->fColor); |
- if (!slRed && !srRed) { |
- // if s can be made red that will balance out x's removal |
- // to make both subtrees of p have the same black-height. |
- if (kBlack_Color == p->fColor) { |
- s->fColor = kRed_Color; |
- // now subtree at p has black-height of one less than |
- // p's parent's other child's subtree. We move x up to |
- // p and go through the loop again. At the top of loop |
- // we assumed x and x's children are black, which holds |
- // by above ifs. |
- // if p is the root there is no other subtree to balance |
- // against. |
- x = p; |
- p = x->fParent; |
- if (NULL == p) { |
- SkASSERT(fRoot == x); |
- validate(); |
- return; |
- } else { |
- pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : |
- kRight_Child; |
- |
- } |
- s = p->fChildren[1-pc]; |
- SkASSERT(s); |
- SkASSERT(p == s->fParent); |
- continue; |
- } else if (kRed_Color == p->fColor) { |
- // we can make p black and s red. This balance out p's |
- // two subtrees and keep the same black-height as it was |
- // before the delete. |
- s->fColor = kRed_Color; |
- p->fColor = kBlack_Color; |
- validate(); |
- return; |
- } |
- } |
- break; |
- } while (true); |
- // if we made it here one or both of sl and sr is red. |
- // s and x are black. We make sure that a red child is on |
- // the same side of s as s is of p. |
- SkASSERT(slRed || srRed); |
- if (kLeft_Child == pc && !srRed) { |
- s->fColor = kRed_Color; |
- sl->fColor = kBlack_Color; |
- rotateRight(s); |
- sr = s; |
- s = sl; |
- //sl = s->fChildren[kLeft_Child]; don't need this |
- } else if (kRight_Child == pc && !slRed) { |
- s->fColor = kRed_Color; |
- sr->fColor = kBlack_Color; |
- rotateLeft(s); |
- sl = s; |
- s = sr; |
- //sr = s->fChildren[kRight_Child]; don't need this |
- } |
- // now p is either red or black, x and s are red and s's 1-pc |
- // child is red. |
- // We rotate p towards x, pulling s up to replace p. We make |
- // p be black and s takes p's old color. |
- // Whether p was red or black, we've increased its pc subtree |
- // rooted at x by 1 (balancing the imbalance at the start) and |
- // we've also its subtree rooted at s's black-height by 1. This |
- // can be balanced by making s's red child be black. |
- s->fColor = p->fColor; |
- p->fColor = kBlack_Color; |
- if (kLeft_Child == pc) { |
- SkASSERT(sr && kRed_Color == sr->fColor); |
- sr->fColor = kBlack_Color; |
- rotateLeft(p); |
- } else { |
- SkASSERT(sl && kRed_Color == sl->fColor); |
- sl->fColor = kBlack_Color; |
- rotateRight(p); |
- } |
- } |
- else { |
- // x has exactly one implicit black child. x cannot be red. |
- // Proof by contradiction: Assume X is red. Let c0 be x's implicit |
- // child and c1 be its non-implicit child. c1 must be black because |
- // red nodes always have two black children. Then the two subtrees |
- // of x rooted at c0 and c1 will have different black-heights. |
- SkASSERT(kBlack_Color == x->fColor); |
- // So we know x is black and has one implicit black child, c0. c1 |
- // must be red, otherwise the subtree at c1 will have a different |
- // black-height than the subtree rooted at c0. |
- SkASSERT(kRed_Color == x->fChildren[c]->fColor); |
- // replace x with c1, making c1 black, preserves all red-black tree |
- // props. |
- Node* c1 = x->fChildren[c]; |
- if (x == fFirst) { |
- SkASSERT(c == kRight_Child); |
- fFirst = c1; |
- while (fFirst->fChildren[kLeft_Child]) { |
- fFirst = fFirst->fChildren[kLeft_Child]; |
- } |
- SkASSERT(fFirst == SuccessorNode(x)); |
- } else if (x == fLast) { |
- SkASSERT(c == kLeft_Child); |
- fLast = c1; |
- while (fLast->fChildren[kRight_Child]) { |
- fLast = fLast->fChildren[kRight_Child]; |
- } |
- SkASSERT(fLast == PredecessorNode(x)); |
- } |
- c1->fParent = p; |
- p->fChildren[pc] = c1; |
- c1->fColor = kBlack_Color; |
- delete x; |
- validate(); |
- } |
- validate(); |
-} |
- |
-template <typename T, typename C> |
-void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) { |
- if (x) { |
- RecursiveDelete(x->fChildren[kLeft_Child]); |
- RecursiveDelete(x->fChildren[kRight_Child]); |
- delete x; |
- } |
-} |
- |
-#ifdef SK_DEBUG |
-template <typename T, typename C> |
-void GrRedBlackTree<T,C>::validate() const { |
- if (fCount) { |
- SkASSERT(NULL == fRoot->fParent); |
- SkASSERT(fFirst); |
- SkASSERT(fLast); |
- |
- SkASSERT(kBlack_Color == fRoot->fColor); |
- if (1 == fCount) { |
- SkASSERT(fFirst == fRoot); |
- SkASSERT(fLast == fRoot); |
- SkASSERT(0 == fRoot->fChildren[kLeft_Child]); |
- SkASSERT(0 == fRoot->fChildren[kRight_Child]); |
- } |
- } else { |
- SkASSERT(NULL == fRoot); |
- SkASSERT(NULL == fFirst); |
- SkASSERT(NULL == fLast); |
- } |
-#if DEEP_VALIDATE |
- int bh; |
- int count = checkNode(fRoot, &bh); |
- SkASSERT(count == fCount); |
-#endif |
-} |
- |
-template <typename T, typename C> |
-int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const { |
- if (n) { |
- SkASSERT(validateChildRelations(n, false)); |
- if (kBlack_Color == n->fColor) { |
- *bh += 1; |
- } |
- SkASSERT(!fComp(n->fItem, fFirst->fItem)); |
- SkASSERT(!fComp(fLast->fItem, n->fItem)); |
- int leftBh = *bh; |
- int rightBh = *bh; |
- int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); |
- int cr = checkNode(n->fChildren[kRight_Child], &rightBh); |
- SkASSERT(leftBh == rightBh); |
- *bh = leftBh; |
- return 1 + cl + cr; |
- } |
- return 0; |
-} |
- |
-template <typename T, typename C> |
-bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n, |
- bool allowRedRed) const { |
- if (n) { |
- if (n->fChildren[kLeft_Child] || |
- n->fChildren[kRight_Child]) { |
- if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) { |
- return validateChildRelationsFailed(); |
- } |
- if (n->fChildren[kLeft_Child] == n->fParent && |
- n->fParent) { |
- return validateChildRelationsFailed(); |
- } |
- if (n->fChildren[kRight_Child] == n->fParent && |
- n->fParent) { |
- return validateChildRelationsFailed(); |
- } |
- if (n->fChildren[kLeft_Child]) { |
- if (!allowRedRed && |
- kRed_Color == n->fChildren[kLeft_Child]->fColor && |
- kRed_Color == n->fColor) { |
- return validateChildRelationsFailed(); |
- } |
- if (n->fChildren[kLeft_Child]->fParent != n) { |
- return validateChildRelationsFailed(); |
- } |
- if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) || |
- (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) && |
- !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) { |
- return validateChildRelationsFailed(); |
- } |
- } |
- if (n->fChildren[kRight_Child]) { |
- if (!allowRedRed && |
- kRed_Color == n->fChildren[kRight_Child]->fColor && |
- kRed_Color == n->fColor) { |
- return validateChildRelationsFailed(); |
- } |
- if (n->fChildren[kRight_Child]->fParent != n) { |
- return validateChildRelationsFailed(); |
- } |
- if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) || |
- (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) && |
- !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) { |
- return validateChildRelationsFailed(); |
- } |
- } |
- } |
- } |
- return true; |
-} |
-#endif |
- |
-#endif |