Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1176)

Unified Diff: src/gpu/GrRedBlackTree.h

Issue 1226203013: Remove GrRedBlackTree (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: rebase Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/gpu/GrOrderedSet.h ('k') | tests/GrOrderedSetTest.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/gpu/GrRedBlackTree.h
diff --git a/src/gpu/GrRedBlackTree.h b/src/gpu/GrRedBlackTree.h
deleted file mode 100644
index c58ae2790042454a63dc720ae97581c9d969da26..0000000000000000000000000000000000000000
--- a/src/gpu/GrRedBlackTree.h
+++ /dev/null
@@ -1,948 +0,0 @@
-/*
- * Copyright 2011 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef GrRedBlackTree_DEFINED
-#define GrRedBlackTree_DEFINED
-
-#include "GrConfig.h"
-#include "SkTypes.h"
-
-template <typename T>
-class GrLess {
-public:
- bool operator()(const T& a, const T& b) const { return a < b; }
-};
-
-template <typename T>
-class GrLess<T*> {
-public:
- bool operator()(const T* a, const T* b) const { return *a < *b; }
-};
-
-class GrStrLess {
-public:
- bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; }
-};
-
-/**
- * In debug build this will cause full traversals of the tree when the validate
- * is called on insert and remove. Useful for debugging but very slow.
- */
-#define DEEP_VALIDATE 0
-
-/**
- * A sorted tree that uses the red-black tree algorithm. Allows duplicate
- * entries. Data is of type T and is compared using functor C. A single C object
- * will be created and used for all comparisons.
- */
-template <typename T, typename C = GrLess<T> >
-class GrRedBlackTree : SkNoncopyable {
-public:
- /**
- * Creates an empty tree.
- */
- GrRedBlackTree();
- virtual ~GrRedBlackTree();
-
- /**
- * Class used to iterater through the tree. The valid range of the tree
- * is given by [begin(), end()). It is legal to dereference begin() but not
- * end(). The iterator has preincrement and predecrement operators, it is
- * legal to decerement end() if the tree is not empty to get the last
- * element. However, a last() helper is provided.
- */
- class Iter;
-
- /**
- * Add an element to the tree. Duplicates are allowed.
- * @param t the item to add.
- * @return an iterator to the item.
- */
- Iter insert(const T& t);
-
- /**
- * Removes all items in the tree.
- */
- void reset();
-
- /**
- * @return true if there are no items in the tree, false otherwise.
- */
- bool empty() const {return 0 == fCount;}
-
- /**
- * @return the number of items in the tree.
- */
- int count() const {return fCount;}
-
- /**
- * @return an iterator to the first item in sorted order, or end() if empty
- */
- Iter begin();
- /**
- * Gets the last valid iterator. This is always valid, even on an empty.
- * However, it can never be dereferenced. Useful as a loop terminator.
- * @return an iterator that is just beyond the last item in sorted order.
- */
- Iter end();
- /**
- * @return an iterator that to the last item in sorted order, or end() if
- * empty.
- */
- Iter last();
-
- /**
- * Finds an occurrence of an item.
- * @param t the item to find.
- * @return an iterator to a tree element equal to t or end() if none exists.
- */
- Iter find(const T& t);
- /**
- * Finds the first of an item in iterator order.
- * @param t the item to find.
- * @return an iterator to the first element equal to t or end() if
- * none exists.
- */
- Iter findFirst(const T& t);
- /**
- * Finds the last of an item in iterator order.
- * @param t the item to find.
- * @return an iterator to the last element equal to t or end() if
- * none exists.
- */
- Iter findLast(const T& t);
- /**
- * Gets the number of items in the tree equal to t.
- * @param t the item to count.
- * @return number of items equal to t in the tree
- */
- int countOf(const T& t) const;
-
- /**
- * Removes the item indicated by an iterator. The iterator will not be valid
- * afterwards.
- *
- * @param iter iterator of item to remove. Must be valid (not end()).
- */
- void remove(const Iter& iter) { deleteAtNode(iter.fN); }
-
-private:
- enum Color {
- kRed_Color,
- kBlack_Color
- };
-
- enum Child {
- kLeft_Child = 0,
- kRight_Child = 1
- };
-
- struct Node {
- T fItem;
- Color fColor;
-
- Node* fParent;
- Node* fChildren[2];
- };
-
- void rotateRight(Node* n);
- void rotateLeft(Node* n);
-
- static Node* SuccessorNode(Node* x);
- static Node* PredecessorNode(Node* x);
-
- void deleteAtNode(Node* x);
- static void RecursiveDelete(Node* x);
-
- int onCountOf(const Node* n, const T& t) const;
-
-#ifdef SK_DEBUG
- void validate() const;
- int checkNode(Node* n, int* blackHeight) const;
- // checks relationship between a node and its children. allowRedRed means
- // node may be in an intermediate state where a red parent has a red child.
- bool validateChildRelations(const Node* n, bool allowRedRed) const;
- // place to stick break point if validateChildRelations is failing.
- bool validateChildRelationsFailed() const { return false; }
-#else
- void validate() const {}
-#endif
-
- int fCount;
- Node* fRoot;
- Node* fFirst;
- Node* fLast;
-
- const C fComp;
-};
-
-template <typename T, typename C>
-class GrRedBlackTree<T,C>::Iter {
-public:
- Iter() {};
- Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
- Iter& operator =(const Iter& i) {
- fN = i.fN;
- fTree = i.fTree;
- return *this;
- }
- // altering the sort value of the item using this method will cause
- // errors.
- T& operator *() const { return fN->fItem; }
- bool operator ==(const Iter& i) const {
- return fN == i.fN && fTree == i.fTree;
- }
- bool operator !=(const Iter& i) const { return !(*this == i); }
- Iter& operator ++() {
- SkASSERT(*this != fTree->end());
- fN = SuccessorNode(fN);
- return *this;
- }
- Iter& operator --() {
- SkASSERT(*this != fTree->begin());
- if (fN) {
- fN = PredecessorNode(fN);
- } else {
- *this = fTree->last();
- }
- return *this;
- }
-
-private:
- friend class GrRedBlackTree;
- explicit Iter(Node* n, GrRedBlackTree* tree) {
- fN = n;
- fTree = tree;
- }
- Node* fN;
- GrRedBlackTree* fTree;
-};
-
-template <typename T, typename C>
-GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
- fRoot = NULL;
- fFirst = NULL;
- fLast = NULL;
- fCount = 0;
- validate();
-}
-
-template <typename T, typename C>
-GrRedBlackTree<T,C>::~GrRedBlackTree() {
- RecursiveDelete(fRoot);
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
- return Iter(fFirst, this);
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
- return Iter(NULL, this);
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
- return Iter(fLast, this);
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
- Node* n = fRoot;
- while (n) {
- if (fComp(t, n->fItem)) {
- n = n->fChildren[kLeft_Child];
- } else {
- if (!fComp(n->fItem, t)) {
- return Iter(n, this);
- }
- n = n->fChildren[kRight_Child];
- }
- }
- return end();
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
- Node* n = fRoot;
- Node* leftMost = NULL;
- while (n) {
- if (fComp(t, n->fItem)) {
- n = n->fChildren[kLeft_Child];
- } else {
- if (!fComp(n->fItem, t)) {
- // found one. check if another in left subtree.
- leftMost = n;
- n = n->fChildren[kLeft_Child];
- } else {
- n = n->fChildren[kRight_Child];
- }
- }
- }
- return Iter(leftMost, this);
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
- Node* n = fRoot;
- Node* rightMost = NULL;
- while (n) {
- if (fComp(t, n->fItem)) {
- n = n->fChildren[kLeft_Child];
- } else {
- if (!fComp(n->fItem, t)) {
- // found one. check if another in right subtree.
- rightMost = n;
- }
- n = n->fChildren[kRight_Child];
- }
- }
- return Iter(rightMost, this);
-}
-
-template <typename T, typename C>
-int GrRedBlackTree<T,C>::countOf(const T& t) const {
- return onCountOf(fRoot, t);
-}
-
-template <typename T, typename C>
-int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
- // this is count*log(n) :(
- while (n) {
- if (fComp(t, n->fItem)) {
- n = n->fChildren[kLeft_Child];
- } else {
- if (!fComp(n->fItem, t)) {
- int count = 1;
- count += onCountOf(n->fChildren[kLeft_Child], t);
- count += onCountOf(n->fChildren[kRight_Child], t);
- return count;
- }
- n = n->fChildren[kRight_Child];
- }
- }
- return 0;
-
-}
-
-template <typename T, typename C>
-void GrRedBlackTree<T,C>::reset() {
- RecursiveDelete(fRoot);
- fRoot = NULL;
- fFirst = NULL;
- fLast = NULL;
- fCount = 0;
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
- validate();
-
- ++fCount;
-
- Node* x = SkNEW(Node);
- x->fChildren[kLeft_Child] = NULL;
- x->fChildren[kRight_Child] = NULL;
- x->fItem = t;
-
- Node* returnNode = x;
-
- Node* gp = NULL;
- Node* p = NULL;
- Node* n = fRoot;
- Child pc = kLeft_Child; // suppress uninit warning
- Child gpc = kLeft_Child;
-
- bool first = true;
- bool last = true;
- while (n) {
- gpc = pc;
- pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
- first = first && kLeft_Child == pc;
- last = last && kRight_Child == pc;
- gp = p;
- p = n;
- n = p->fChildren[pc];
- }
- if (last) {
- fLast = x;
- }
- if (first) {
- fFirst = x;
- }
-
- if (NULL == p) {
- fRoot = x;
- x->fColor = kBlack_Color;
- x->fParent = NULL;
- SkASSERT(1 == fCount);
- return Iter(returnNode, this);
- }
- p->fChildren[pc] = x;
- x->fColor = kRed_Color;
- x->fParent = p;
-
- do {
- // assumptions at loop start.
- SkASSERT(x);
- SkASSERT(kRed_Color == x->fColor);
- // can't have a grandparent but no parent.
- SkASSERT(!(gp && NULL == p));
- // make sure pc and gpc are correct
- SkASSERT(NULL == p || p->fChildren[pc] == x);
- SkASSERT(NULL == gp || gp->fChildren[gpc] == p);
-
- // if x's parent is black then we didn't violate any of the
- // red/black properties when we added x as red.
- if (kBlack_Color == p->fColor) {
- return Iter(returnNode, this);
- }
- // gp must be valid because if p was the root then it is black
- SkASSERT(gp);
- // gp must be black since it's child, p, is red.
- SkASSERT(kBlack_Color == gp->fColor);
-
-
- // x and its parent are red, violating red-black property.
- Node* u = gp->fChildren[1-gpc];
- // if x's uncle (p's sibling) is also red then we can flip
- // p and u to black and make gp red. But then we have to recurse
- // up to gp since it's parent may also be red.
- if (u && kRed_Color == u->fColor) {
- p->fColor = kBlack_Color;
- u->fColor = kBlack_Color;
- gp->fColor = kRed_Color;
- x = gp;
- p = x->fParent;
- if (NULL == p) {
- // x (prev gp) is the root, color it black and be done.
- SkASSERT(fRoot == x);
- x->fColor = kBlack_Color;
- validate();
- return Iter(returnNode, this);
- }
- gp = p->fParent;
- pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
- kRight_Child;
- if (gp) {
- gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
- kRight_Child;
- }
- continue;
- } break;
- } while (true);
- // Here p is red but u is black and we still have to resolve the fact
- // that x and p are both red.
- SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
- SkASSERT(kRed_Color == x->fColor);
- SkASSERT(kRed_Color == p->fColor);
- SkASSERT(kBlack_Color == gp->fColor);
-
- // make x be on the same side of p as p is of gp. If it isn't already
- // the case then rotate x up to p and swap their labels.
- if (pc != gpc) {
- if (kRight_Child == pc) {
- rotateLeft(p);
- Node* temp = p;
- p = x;
- x = temp;
- pc = kLeft_Child;
- } else {
- rotateRight(p);
- Node* temp = p;
- p = x;
- x = temp;
- pc = kRight_Child;
- }
- }
- // we now rotate gp down, pulling up p to be it's new parent.
- // gp's child, u, that is not affected we know to be black. gp's new
- // child is p's previous child (x's pre-rotation sibling) which must be
- // black since p is red.
- SkASSERT(NULL == p->fChildren[1-pc] ||
- kBlack_Color == p->fChildren[1-pc]->fColor);
- // Since gp's two children are black it can become red if p is made
- // black. This leaves the black-height of both of p's new subtrees
- // preserved and removes the red/red parent child relationship.
- p->fColor = kBlack_Color;
- gp->fColor = kRed_Color;
- if (kLeft_Child == pc) {
- rotateRight(gp);
- } else {
- rotateLeft(gp);
- }
- validate();
- return Iter(returnNode, this);
-}
-
-
-template <typename T, typename C>
-void GrRedBlackTree<T,C>::rotateRight(Node* n) {
- /* d? d?
- * / /
- * n s
- * / \ ---> / \
- * s a? c? n
- * / \ / \
- * c? b? b? a?
- */
- Node* d = n->fParent;
- Node* s = n->fChildren[kLeft_Child];
- SkASSERT(s);
- Node* b = s->fChildren[kRight_Child];
-
- if (d) {
- Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
- kRight_Child;
- d->fChildren[c] = s;
- } else {
- SkASSERT(fRoot == n);
- fRoot = s;
- }
- s->fParent = d;
- s->fChildren[kRight_Child] = n;
- n->fParent = s;
- n->fChildren[kLeft_Child] = b;
- if (b) {
- b->fParent = n;
- }
-
- GR_DEBUGASSERT(validateChildRelations(d, true));
- GR_DEBUGASSERT(validateChildRelations(s, true));
- GR_DEBUGASSERT(validateChildRelations(n, false));
- GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
- GR_DEBUGASSERT(validateChildRelations(b, true));
- GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
-}
-
-template <typename T, typename C>
-void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
-
- Node* d = n->fParent;
- Node* s = n->fChildren[kRight_Child];
- SkASSERT(s);
- Node* b = s->fChildren[kLeft_Child];
-
- if (d) {
- Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
- kLeft_Child;
- d->fChildren[c] = s;
- } else {
- SkASSERT(fRoot == n);
- fRoot = s;
- }
- s->fParent = d;
- s->fChildren[kLeft_Child] = n;
- n->fParent = s;
- n->fChildren[kRight_Child] = b;
- if (b) {
- b->fParent = n;
- }
-
- GR_DEBUGASSERT(validateChildRelations(d, true));
- GR_DEBUGASSERT(validateChildRelations(s, true));
- GR_DEBUGASSERT(validateChildRelations(n, true));
- GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
- GR_DEBUGASSERT(validateChildRelations(b, true));
- GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
- SkASSERT(x);
- if (x->fChildren[kRight_Child]) {
- x = x->fChildren[kRight_Child];
- while (x->fChildren[kLeft_Child]) {
- x = x->fChildren[kLeft_Child];
- }
- return x;
- }
- while (x->fParent && x == x->fParent->fChildren[kRight_Child]) {
- x = x->fParent;
- }
- return x->fParent;
-}
-
-template <typename T, typename C>
-typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
- SkASSERT(x);
- if (x->fChildren[kLeft_Child]) {
- x = x->fChildren[kLeft_Child];
- while (x->fChildren[kRight_Child]) {
- x = x->fChildren[kRight_Child];
- }
- return x;
- }
- while (x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
- x = x->fParent;
- }
- return x->fParent;
-}
-
-template <typename T, typename C>
-void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
- SkASSERT(x);
- validate();
- --fCount;
-
- bool hasLeft = SkToBool(x->fChildren[kLeft_Child]);
- bool hasRight = SkToBool(x->fChildren[kRight_Child]);
- Child c = hasLeft ? kLeft_Child : kRight_Child;
-
- if (hasLeft && hasRight) {
- // first and last can't have two children.
- SkASSERT(fFirst != x);
- SkASSERT(fLast != x);
- // if x is an interior node then we find it's successor
- // and swap them.
- Node* s = x->fChildren[kRight_Child];
- while (s->fChildren[kLeft_Child]) {
- s = s->fChildren[kLeft_Child];
- }
- SkASSERT(s);
- // this might be expensive relative to swapping node ptrs around.
- // depends on T.
- x->fItem = s->fItem;
- x = s;
- c = kRight_Child;
- } else if (NULL == x->fParent) {
- // if x was the root we just replace it with its child and make
- // the new root (if the tree is not empty) black.
- SkASSERT(fRoot == x);
- fRoot = x->fChildren[c];
- if (fRoot) {
- fRoot->fParent = NULL;
- fRoot->fColor = kBlack_Color;
- if (x == fLast) {
- SkASSERT(c == kLeft_Child);
- fLast = fRoot;
- } else if (x == fFirst) {
- SkASSERT(c == kRight_Child);
- fFirst = fRoot;
- }
- } else {
- SkASSERT(fFirst == fLast && x == fFirst);
- fFirst = NULL;
- fLast = NULL;
- SkASSERT(0 == fCount);
- }
- delete x;
- validate();
- return;
- }
-
- Child pc;
- Node* p = x->fParent;
- pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
-
- if (NULL == x->fChildren[c]) {
- if (fLast == x) {
- fLast = p;
- SkASSERT(p == PredecessorNode(x));
- } else if (fFirst == x) {
- fFirst = p;
- SkASSERT(p == SuccessorNode(x));
- }
- // x has two implicit black children.
- Color xcolor = x->fColor;
- p->fChildren[pc] = NULL;
- delete x;
- x = NULL;
- // when x is red it can be with an implicit black leaf without
- // violating any of the red-black tree properties.
- if (kRed_Color == xcolor) {
- validate();
- return;
- }
- // s is p's other child (x's sibling)
- Node* s = p->fChildren[1-pc];
-
- //s cannot be an implicit black node because the original
- // black-height at x was >= 2 and s's black-height must equal the
- // initial black height of x.
- SkASSERT(s);
- SkASSERT(p == s->fParent);
-
- // assigned in loop
- Node* sl;
- Node* sr;
- bool slRed;
- bool srRed;
-
- do {
- // When we start this loop x may already be deleted it is/was
- // p's child on its pc side. x's children are/were black. The
- // first time through the loop they are implict children.
- // On later passes we will be walking up the tree and they will
- // be real nodes.
- // The x side of p has a black-height that is one less than the
- // s side. It must be rebalanced.
- SkASSERT(s);
- SkASSERT(p == s->fParent);
- SkASSERT(NULL == x || x->fParent == p);
-
- //sl and sr are s's children, which may be implicit.
- sl = s->fChildren[kLeft_Child];
- sr = s->fChildren[kRight_Child];
-
- // if the s is red we will rotate s and p, swap their colors so
- // that x's new sibling is black
- if (kRed_Color == s->fColor) {
- // if s is red then it's parent must be black.
- SkASSERT(kBlack_Color == p->fColor);
- // s's children must also be black since s is red. They can't
- // be implicit since s is red and it's black-height is >= 2.
- SkASSERT(sl && kBlack_Color == sl->fColor);
- SkASSERT(sr && kBlack_Color == sr->fColor);
- p->fColor = kRed_Color;
- s->fColor = kBlack_Color;
- if (kLeft_Child == pc) {
- rotateLeft(p);
- s = sl;
- } else {
- rotateRight(p);
- s = sr;
- }
- sl = s->fChildren[kLeft_Child];
- sr = s->fChildren[kRight_Child];
- }
- // x and s are now both black.
- SkASSERT(kBlack_Color == s->fColor);
- SkASSERT(NULL == x || kBlack_Color == x->fColor);
- SkASSERT(p == s->fParent);
- SkASSERT(NULL == x || p == x->fParent);
-
- // when x is deleted its subtree will have reduced black-height.
- slRed = (sl && kRed_Color == sl->fColor);
- srRed = (sr && kRed_Color == sr->fColor);
- if (!slRed && !srRed) {
- // if s can be made red that will balance out x's removal
- // to make both subtrees of p have the same black-height.
- if (kBlack_Color == p->fColor) {
- s->fColor = kRed_Color;
- // now subtree at p has black-height of one less than
- // p's parent's other child's subtree. We move x up to
- // p and go through the loop again. At the top of loop
- // we assumed x and x's children are black, which holds
- // by above ifs.
- // if p is the root there is no other subtree to balance
- // against.
- x = p;
- p = x->fParent;
- if (NULL == p) {
- SkASSERT(fRoot == x);
- validate();
- return;
- } else {
- pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
- kRight_Child;
-
- }
- s = p->fChildren[1-pc];
- SkASSERT(s);
- SkASSERT(p == s->fParent);
- continue;
- } else if (kRed_Color == p->fColor) {
- // we can make p black and s red. This balance out p's
- // two subtrees and keep the same black-height as it was
- // before the delete.
- s->fColor = kRed_Color;
- p->fColor = kBlack_Color;
- validate();
- return;
- }
- }
- break;
- } while (true);
- // if we made it here one or both of sl and sr is red.
- // s and x are black. We make sure that a red child is on
- // the same side of s as s is of p.
- SkASSERT(slRed || srRed);
- if (kLeft_Child == pc && !srRed) {
- s->fColor = kRed_Color;
- sl->fColor = kBlack_Color;
- rotateRight(s);
- sr = s;
- s = sl;
- //sl = s->fChildren[kLeft_Child]; don't need this
- } else if (kRight_Child == pc && !slRed) {
- s->fColor = kRed_Color;
- sr->fColor = kBlack_Color;
- rotateLeft(s);
- sl = s;
- s = sr;
- //sr = s->fChildren[kRight_Child]; don't need this
- }
- // now p is either red or black, x and s are red and s's 1-pc
- // child is red.
- // We rotate p towards x, pulling s up to replace p. We make
- // p be black and s takes p's old color.
- // Whether p was red or black, we've increased its pc subtree
- // rooted at x by 1 (balancing the imbalance at the start) and
- // we've also its subtree rooted at s's black-height by 1. This
- // can be balanced by making s's red child be black.
- s->fColor = p->fColor;
- p->fColor = kBlack_Color;
- if (kLeft_Child == pc) {
- SkASSERT(sr && kRed_Color == sr->fColor);
- sr->fColor = kBlack_Color;
- rotateLeft(p);
- } else {
- SkASSERT(sl && kRed_Color == sl->fColor);
- sl->fColor = kBlack_Color;
- rotateRight(p);
- }
- }
- else {
- // x has exactly one implicit black child. x cannot be red.
- // Proof by contradiction: Assume X is red. Let c0 be x's implicit
- // child and c1 be its non-implicit child. c1 must be black because
- // red nodes always have two black children. Then the two subtrees
- // of x rooted at c0 and c1 will have different black-heights.
- SkASSERT(kBlack_Color == x->fColor);
- // So we know x is black and has one implicit black child, c0. c1
- // must be red, otherwise the subtree at c1 will have a different
- // black-height than the subtree rooted at c0.
- SkASSERT(kRed_Color == x->fChildren[c]->fColor);
- // replace x with c1, making c1 black, preserves all red-black tree
- // props.
- Node* c1 = x->fChildren[c];
- if (x == fFirst) {
- SkASSERT(c == kRight_Child);
- fFirst = c1;
- while (fFirst->fChildren[kLeft_Child]) {
- fFirst = fFirst->fChildren[kLeft_Child];
- }
- SkASSERT(fFirst == SuccessorNode(x));
- } else if (x == fLast) {
- SkASSERT(c == kLeft_Child);
- fLast = c1;
- while (fLast->fChildren[kRight_Child]) {
- fLast = fLast->fChildren[kRight_Child];
- }
- SkASSERT(fLast == PredecessorNode(x));
- }
- c1->fParent = p;
- p->fChildren[pc] = c1;
- c1->fColor = kBlack_Color;
- delete x;
- validate();
- }
- validate();
-}
-
-template <typename T, typename C>
-void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
- if (x) {
- RecursiveDelete(x->fChildren[kLeft_Child]);
- RecursiveDelete(x->fChildren[kRight_Child]);
- delete x;
- }
-}
-
-#ifdef SK_DEBUG
-template <typename T, typename C>
-void GrRedBlackTree<T,C>::validate() const {
- if (fCount) {
- SkASSERT(NULL == fRoot->fParent);
- SkASSERT(fFirst);
- SkASSERT(fLast);
-
- SkASSERT(kBlack_Color == fRoot->fColor);
- if (1 == fCount) {
- SkASSERT(fFirst == fRoot);
- SkASSERT(fLast == fRoot);
- SkASSERT(0 == fRoot->fChildren[kLeft_Child]);
- SkASSERT(0 == fRoot->fChildren[kRight_Child]);
- }
- } else {
- SkASSERT(NULL == fRoot);
- SkASSERT(NULL == fFirst);
- SkASSERT(NULL == fLast);
- }
-#if DEEP_VALIDATE
- int bh;
- int count = checkNode(fRoot, &bh);
- SkASSERT(count == fCount);
-#endif
-}
-
-template <typename T, typename C>
-int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
- if (n) {
- SkASSERT(validateChildRelations(n, false));
- if (kBlack_Color == n->fColor) {
- *bh += 1;
- }
- SkASSERT(!fComp(n->fItem, fFirst->fItem));
- SkASSERT(!fComp(fLast->fItem, n->fItem));
- int leftBh = *bh;
- int rightBh = *bh;
- int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
- int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
- SkASSERT(leftBh == rightBh);
- *bh = leftBh;
- return 1 + cl + cr;
- }
- return 0;
-}
-
-template <typename T, typename C>
-bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
- bool allowRedRed) const {
- if (n) {
- if (n->fChildren[kLeft_Child] ||
- n->fChildren[kRight_Child]) {
- if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
- return validateChildRelationsFailed();
- }
- if (n->fChildren[kLeft_Child] == n->fParent &&
- n->fParent) {
- return validateChildRelationsFailed();
- }
- if (n->fChildren[kRight_Child] == n->fParent &&
- n->fParent) {
- return validateChildRelationsFailed();
- }
- if (n->fChildren[kLeft_Child]) {
- if (!allowRedRed &&
- kRed_Color == n->fChildren[kLeft_Child]->fColor &&
- kRed_Color == n->fColor) {
- return validateChildRelationsFailed();
- }
- if (n->fChildren[kLeft_Child]->fParent != n) {
- return validateChildRelationsFailed();
- }
- if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
- (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
- !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
- return validateChildRelationsFailed();
- }
- }
- if (n->fChildren[kRight_Child]) {
- if (!allowRedRed &&
- kRed_Color == n->fChildren[kRight_Child]->fColor &&
- kRed_Color == n->fColor) {
- return validateChildRelationsFailed();
- }
- if (n->fChildren[kRight_Child]->fParent != n) {
- return validateChildRelationsFailed();
- }
- if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
- (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
- !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
- return validateChildRelationsFailed();
- }
- }
- }
- }
- return true;
-}
-#endif
-
-#endif
« no previous file with comments | « src/gpu/GrOrderedSet.h ('k') | tests/GrOrderedSetTest.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698