| Index: tools/cc-frame-viewer/third_party/gl-matrix/src/gl-matrix/vec4.js
|
| diff --git a/tools/cc-frame-viewer/third_party/gl-matrix/src/gl-matrix/vec4.js b/tools/cc-frame-viewer/third_party/gl-matrix/src/gl-matrix/vec4.js
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f4635ccb9e4574fec2724d4a78df6195e96fdc35
|
| --- /dev/null
|
| +++ b/tools/cc-frame-viewer/third_party/gl-matrix/src/gl-matrix/vec4.js
|
| @@ -0,0 +1,486 @@
|
| +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
|
| +
|
| +Redistribution and use in source and binary forms, with or without modification,
|
| +are permitted provided that the following conditions are met:
|
| +
|
| + * Redistributions of source code must retain the above copyright notice, this
|
| + list of conditions and the following disclaimer.
|
| + * Redistributions in binary form must reproduce the above copyright notice,
|
| + this list of conditions and the following disclaimer in the documentation
|
| + and/or other materials provided with the distribution.
|
| +
|
| +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
| +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
| +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
| +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
| +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
| +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
| +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
| +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
| +
|
| +/**
|
| + * @class 4 Dimensional Vector
|
| + * @name vec4
|
| + */
|
| +var vec4 = {};
|
| +
|
| +/**
|
| + * Creates a new, empty vec4
|
| + *
|
| + * @returns {vec4} a new 4D vector
|
| + */
|
| +vec4.create = function() {
|
| + var out = new GLMAT_ARRAY_TYPE(4);
|
| + out[0] = 0;
|
| + out[1] = 0;
|
| + out[2] = 0;
|
| + out[3] = 0;
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Creates a new vec4 initialized with values from an existing vector
|
| + *
|
| + * @param {vec4} a vector to clone
|
| + * @returns {vec4} a new 4D vector
|
| + */
|
| +vec4.clone = function(a) {
|
| + var out = new GLMAT_ARRAY_TYPE(4);
|
| + out[0] = a[0];
|
| + out[1] = a[1];
|
| + out[2] = a[2];
|
| + out[3] = a[3];
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Creates a new vec4 initialized with the given values
|
| + *
|
| + * @param {Number} x X component
|
| + * @param {Number} y Y component
|
| + * @param {Number} z Z component
|
| + * @param {Number} w W component
|
| + * @returns {vec4} a new 4D vector
|
| + */
|
| +vec4.fromValues = function(x, y, z, w) {
|
| + var out = new GLMAT_ARRAY_TYPE(4);
|
| + out[0] = x;
|
| + out[1] = y;
|
| + out[2] = z;
|
| + out[3] = w;
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Copy the values from one vec4 to another
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the source vector
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.copy = function(out, a) {
|
| + out[0] = a[0];
|
| + out[1] = a[1];
|
| + out[2] = a[2];
|
| + out[3] = a[3];
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Set the components of a vec4 to the given values
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {Number} x X component
|
| + * @param {Number} y Y component
|
| + * @param {Number} z Z component
|
| + * @param {Number} w W component
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.set = function(out, x, y, z, w) {
|
| + out[0] = x;
|
| + out[1] = y;
|
| + out[2] = z;
|
| + out[3] = w;
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Adds two vec4's
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.add = function(out, a, b) {
|
| + out[0] = a[0] + b[0];
|
| + out[1] = a[1] + b[1];
|
| + out[2] = a[2] + b[2];
|
| + out[3] = a[3] + b[3];
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Subtracts two vec4's
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.subtract = function(out, a, b) {
|
| + out[0] = a[0] - b[0];
|
| + out[1] = a[1] - b[1];
|
| + out[2] = a[2] - b[2];
|
| + out[3] = a[3] - b[3];
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Alias for {@link vec4.subtract}
|
| + * @function
|
| + */
|
| +vec4.sub = vec4.subtract;
|
| +
|
| +/**
|
| + * Multiplies two vec4's
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.multiply = function(out, a, b) {
|
| + out[0] = a[0] * b[0];
|
| + out[1] = a[1] * b[1];
|
| + out[2] = a[2] * b[2];
|
| + out[3] = a[3] * b[3];
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Alias for {@link vec4.multiply}
|
| + * @function
|
| + */
|
| +vec4.mul = vec4.multiply;
|
| +
|
| +/**
|
| + * Divides two vec4's
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.divide = function(out, a, b) {
|
| + out[0] = a[0] / b[0];
|
| + out[1] = a[1] / b[1];
|
| + out[2] = a[2] / b[2];
|
| + out[3] = a[3] / b[3];
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Alias for {@link vec4.divide}
|
| + * @function
|
| + */
|
| +vec4.div = vec4.divide;
|
| +
|
| +/**
|
| + * Returns the minimum of two vec4's
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.min = function(out, a, b) {
|
| + out[0] = Math.min(a[0], b[0]);
|
| + out[1] = Math.min(a[1], b[1]);
|
| + out[2] = Math.min(a[2], b[2]);
|
| + out[3] = Math.min(a[3], b[3]);
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Returns the maximum of two vec4's
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.max = function(out, a, b) {
|
| + out[0] = Math.max(a[0], b[0]);
|
| + out[1] = Math.max(a[1], b[1]);
|
| + out[2] = Math.max(a[2], b[2]);
|
| + out[3] = Math.max(a[3], b[3]);
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Scales a vec4 by a scalar number
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the vector to scale
|
| + * @param {Number} b amount to scale the vector by
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.scale = function(out, a, b) {
|
| + out[0] = a[0] * b;
|
| + out[1] = a[1] * b;
|
| + out[2] = a[2] * b;
|
| + out[3] = a[3] * b;
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Calculates the euclidian distance between two vec4's
|
| + *
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {Number} distance between a and b
|
| + */
|
| +vec4.distance = function(a, b) {
|
| + var x = b[0] - a[0],
|
| + y = b[1] - a[1],
|
| + z = b[2] - a[2],
|
| + w = b[3] - a[3];
|
| + return Math.sqrt(x*x + y*y + z*z + w*w);
|
| +};
|
| +
|
| +/**
|
| + * Alias for {@link vec4.distance}
|
| + * @function
|
| + */
|
| +vec4.dist = vec4.distance;
|
| +
|
| +/**
|
| + * Calculates the squared euclidian distance between two vec4's
|
| + *
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {Number} squared distance between a and b
|
| + */
|
| +vec4.squaredDistance = function(a, b) {
|
| + var x = b[0] - a[0],
|
| + y = b[1] - a[1],
|
| + z = b[2] - a[2],
|
| + w = b[3] - a[3];
|
| + return x*x + y*y + z*z + w*w;
|
| +};
|
| +
|
| +/**
|
| + * Alias for {@link vec4.squaredDistance}
|
| + * @function
|
| + */
|
| +vec4.sqrDist = vec4.squaredDistance;
|
| +
|
| +/**
|
| + * Calculates the length of a vec4
|
| + *
|
| + * @param {vec4} a vector to calculate length of
|
| + * @returns {Number} length of a
|
| + */
|
| +vec4.length = function (a) {
|
| + var x = a[0],
|
| + y = a[1],
|
| + z = a[2],
|
| + w = a[3];
|
| + return Math.sqrt(x*x + y*y + z*z + w*w);
|
| +};
|
| +
|
| +/**
|
| + * Alias for {@link vec4.length}
|
| + * @function
|
| + */
|
| +vec4.len = vec4.length;
|
| +
|
| +/**
|
| + * Calculates the squared length of a vec4
|
| + *
|
| + * @param {vec4} a vector to calculate squared length of
|
| + * @returns {Number} squared length of a
|
| + */
|
| +vec4.squaredLength = function (a) {
|
| + var x = a[0],
|
| + y = a[1],
|
| + z = a[2],
|
| + w = a[3];
|
| + return x*x + y*y + z*z + w*w;
|
| +};
|
| +
|
| +/**
|
| + * Alias for {@link vec4.squaredLength}
|
| + * @function
|
| + */
|
| +vec4.sqrLen = vec4.squaredLength;
|
| +
|
| +/**
|
| + * Negates the components of a vec4
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a vector to negate
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.negate = function(out, a) {
|
| + out[0] = -a[0];
|
| + out[1] = -a[1];
|
| + out[2] = -a[2];
|
| + out[3] = -a[3];
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Normalize a vec4
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a vector to normalize
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.normalize = function(out, a) {
|
| + var x = a[0],
|
| + y = a[1],
|
| + z = a[2],
|
| + w = a[3];
|
| + var len = x*x + y*y + z*z + w*w;
|
| + if (len > 0) {
|
| + len = 1 / Math.sqrt(len);
|
| + out[0] = a[0] * len;
|
| + out[1] = a[1] * len;
|
| + out[2] = a[2] * len;
|
| + out[3] = a[3] * len;
|
| + }
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Calculates the dot product of two vec4's
|
| + *
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @returns {Number} dot product of a and b
|
| + */
|
| +vec4.dot = function (a, b) {
|
| + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
| +};
|
| +
|
| +/**
|
| + * Performs a linear interpolation between two vec4's
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the first operand
|
| + * @param {vec4} b the second operand
|
| + * @param {Number} t interpolation amount between the two inputs
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.lerp = function (out, a, b, t) {
|
| + var ax = a[0],
|
| + ay = a[1],
|
| + az = a[2],
|
| + aw = a[3];
|
| + out[0] = ax + t * (b[0] - ax);
|
| + out[1] = ay + t * (b[1] - ay);
|
| + out[2] = az + t * (b[2] - az);
|
| + out[3] = aw + t * (b[3] - aw);
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Transforms the vec4 with a mat4.
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the vector to transform
|
| + * @param {mat4} m matrix to transform with
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.transformMat4 = function(out, a, m) {
|
| + var x = a[0], y = a[1], z = a[2], w = a[3];
|
| + out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
|
| + out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
|
| + out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
|
| + out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Transforms the vec4 with a quat
|
| + *
|
| + * @param {vec4} out the receiving vector
|
| + * @param {vec4} a the vector to transform
|
| + * @param {quat} q quaternion to transform with
|
| + * @returns {vec4} out
|
| + */
|
| +vec4.transformQuat = function(out, a, q) {
|
| + var x = a[0], y = a[1], z = a[2],
|
| + qx = q[0], qy = q[1], qz = q[2], qw = q[3],
|
| +
|
| + // calculate quat * vec
|
| + ix = qw * x + qy * z - qz * y,
|
| + iy = qw * y + qz * x - qx * z,
|
| + iz = qw * z + qx * y - qy * x,
|
| + iw = -qx * x - qy * y - qz * z;
|
| +
|
| + // calculate result * inverse quat
|
| + out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
| + out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
| + out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
| + return out;
|
| +};
|
| +
|
| +/**
|
| + * Perform some operation over an array of vec4s.
|
| + *
|
| + * @param {Array} a the array of vectors to iterate over
|
| + * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
|
| + * @param {Number} offset Number of elements to skip at the beginning of the array
|
| + * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
|
| + * @param {Function} fn Function to call for each vector in the array
|
| + * @param {Object} [arg] additional argument to pass to fn
|
| + * @returns {Array} a
|
| + * @function
|
| + */
|
| +vec4.forEach = (function() {
|
| + var vec = vec4.create();
|
| +
|
| + return function(a, stride, offset, count, fn, arg) {
|
| + var i, l;
|
| + if(!stride) {
|
| + stride = 4;
|
| + }
|
| +
|
| + if(!offset) {
|
| + offset = 0;
|
| + }
|
| +
|
| + if(count) {
|
| + l = Math.min((count * stride) + offset, a.length);
|
| + } else {
|
| + l = a.length;
|
| + }
|
| +
|
| + for(i = offset; i < l; i += stride) {
|
| + vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3];
|
| + fn(vec, vec, arg);
|
| + a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3];
|
| + }
|
| +
|
| + return a;
|
| + };
|
| +})();
|
| +
|
| +/**
|
| + * Returns a string representation of a vector
|
| + *
|
| + * @param {vec4} vec vector to represent as a string
|
| + * @returns {String} string representation of the vector
|
| + */
|
| +vec4.str = function (a) {
|
| + return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
| +};
|
| +
|
| +if(typeof(exports) !== 'undefined') {
|
| + exports.vec4 = vec4;
|
| +}
|
|
|