Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(75)

Side by Side Diff: content/common/gpu/media/exynos_video_decode_accelerator.cc

Issue 122233002: vda: Rename Exynos VDA to V4L2 VDA (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 6 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <dlfcn.h>
6 #include <errno.h>
7 #include <fcntl.h>
8 #include <libdrm/drm_fourcc.h>
9 #include <linux/videodev2.h>
10 #include <poll.h>
11 #include <sys/eventfd.h>
12 #include <sys/ioctl.h>
13 #include <sys/mman.h>
14
15 #include "base/bind.h"
16 #include "base/debug/trace_event.h"
17 #include "base/memory/shared_memory.h"
18 #include "base/message_loop/message_loop.h"
19 #include "base/message_loop/message_loop_proxy.h"
20 #include "base/posix/eintr_wrapper.h"
21 #include "content/common/gpu/media/exynos_video_decode_accelerator.h"
22 #include "content/common/gpu/media/h264_parser.h"
23 #include "ui/gl/scoped_binders.h"
24
25 namespace content {
26
27 #define NOTIFY_ERROR(x) \
28 do { \
29 SetDecoderState(kError); \
30 DLOG(ERROR) << "calling NotifyError(): " << x; \
31 NotifyError(x); \
32 } while (0)
33
34 #define IOCTL_OR_ERROR_RETURN(fd, type, arg) \
35 do { \
36 if (HANDLE_EINTR(ioctl(fd, type, arg) != 0)) { \
37 DPLOG(ERROR) << __func__ << "(): ioctl() failed: " << #type; \
38 NOTIFY_ERROR(PLATFORM_FAILURE); \
39 return; \
40 } \
41 } while (0)
42
43 #define IOCTL_OR_ERROR_RETURN_FALSE(fd, type, arg) \
44 do { \
45 if (HANDLE_EINTR(ioctl(fd, type, arg) != 0)) { \
46 DPLOG(ERROR) << __func__ << "(): ioctl() failed: " << #type; \
47 NOTIFY_ERROR(PLATFORM_FAILURE); \
48 return false; \
49 } \
50 } while (0)
51
52 namespace {
53
54 // TODO(posciak): remove once we update linux-headers.
55 #ifndef V4L2_EVENT_RESOLUTION_CHANGE
56 #define V4L2_EVENT_RESOLUTION_CHANGE 5
57 #endif
58
59 const char kExynosMfcDevice[] = "/dev/mfc-dec";
60
61 } // anonymous namespace
62
63 struct ExynosVideoDecodeAccelerator::BitstreamBufferRef {
64 BitstreamBufferRef(
65 base::WeakPtr<Client>& client,
66 scoped_refptr<base::MessageLoopProxy>& client_message_loop_proxy,
67 base::SharedMemory* shm,
68 size_t size,
69 int32 input_id);
70 ~BitstreamBufferRef();
71 const base::WeakPtr<Client> client;
72 const scoped_refptr<base::MessageLoopProxy> client_message_loop_proxy;
73 const scoped_ptr<base::SharedMemory> shm;
74 const size_t size;
75 off_t bytes_used;
76 const int32 input_id;
77 };
78
79 struct ExynosVideoDecodeAccelerator::PictureBufferArrayRef {
80 PictureBufferArrayRef(EGLDisplay egl_display);
81 ~PictureBufferArrayRef();
82
83 struct PictureBufferRef {
84 PictureBufferRef(EGLImageKHR egl_image, int32 picture_id)
85 : egl_image(egl_image), picture_id(picture_id) {}
86 EGLImageKHR egl_image;
87 int32 picture_id;
88 };
89
90 EGLDisplay const egl_display;
91 std::vector<PictureBufferRef> picture_buffers;
92 };
93
94 struct ExynosVideoDecodeAccelerator::EGLSyncKHRRef {
95 EGLSyncKHRRef(EGLDisplay egl_display, EGLSyncKHR egl_sync);
96 ~EGLSyncKHRRef();
97 EGLDisplay const egl_display;
98 EGLSyncKHR egl_sync;
99 };
100
101 struct ExynosVideoDecodeAccelerator::PictureRecord {
102 PictureRecord(bool cleared, const media::Picture& picture);
103 ~PictureRecord();
104 bool cleared; // Whether the texture is cleared and safe to render from.
105 media::Picture picture; // The decoded picture.
106 };
107
108 ExynosVideoDecodeAccelerator::BitstreamBufferRef::BitstreamBufferRef(
109 base::WeakPtr<Client>& client,
110 scoped_refptr<base::MessageLoopProxy>& client_message_loop_proxy,
111 base::SharedMemory* shm, size_t size, int32 input_id)
112 : client(client),
113 client_message_loop_proxy(client_message_loop_proxy),
114 shm(shm),
115 size(size),
116 bytes_used(0),
117 input_id(input_id) {
118 }
119
120 ExynosVideoDecodeAccelerator::BitstreamBufferRef::~BitstreamBufferRef() {
121 if (input_id >= 0) {
122 client_message_loop_proxy->PostTask(FROM_HERE, base::Bind(
123 &Client::NotifyEndOfBitstreamBuffer, client, input_id));
124 }
125 }
126
127 ExynosVideoDecodeAccelerator::PictureBufferArrayRef::PictureBufferArrayRef(
128 EGLDisplay egl_display)
129 : egl_display(egl_display) {}
130
131 ExynosVideoDecodeAccelerator::PictureBufferArrayRef::~PictureBufferArrayRef() {
132 for (size_t i = 0; i < picture_buffers.size(); ++i) {
133 EGLImageKHR egl_image = picture_buffers[i].egl_image;
134 if (egl_image != EGL_NO_IMAGE_KHR)
135 eglDestroyImageKHR(egl_display, egl_image);
136 }
137 }
138
139 ExynosVideoDecodeAccelerator::EGLSyncKHRRef::EGLSyncKHRRef(
140 EGLDisplay egl_display, EGLSyncKHR egl_sync)
141 : egl_display(egl_display),
142 egl_sync(egl_sync) {
143 }
144
145 ExynosVideoDecodeAccelerator::EGLSyncKHRRef::~EGLSyncKHRRef() {
146 if (egl_sync != EGL_NO_SYNC_KHR)
147 eglDestroySyncKHR(egl_display, egl_sync);
148 }
149
150 ExynosVideoDecodeAccelerator::MfcInputRecord::MfcInputRecord()
151 : at_device(false),
152 address(NULL),
153 length(0),
154 bytes_used(0),
155 input_id(-1) {
156 }
157
158 ExynosVideoDecodeAccelerator::MfcInputRecord::~MfcInputRecord() {
159 }
160
161 ExynosVideoDecodeAccelerator::MfcOutputRecord::MfcOutputRecord()
162 : at_device(false),
163 at_client(false),
164 egl_image(EGL_NO_IMAGE_KHR),
165 egl_sync(EGL_NO_SYNC_KHR),
166 picture_id(-1),
167 cleared(false) {
168 for (size_t i = 0; i < arraysize(fds); ++i)
169 fds[i] = -1;
170 }
171
172 ExynosVideoDecodeAccelerator::MfcOutputRecord::~MfcOutputRecord() {}
173
174 ExynosVideoDecodeAccelerator::PictureRecord::PictureRecord(
175 bool cleared,
176 const media::Picture& picture)
177 : cleared(cleared), picture(picture) {}
178
179 ExynosVideoDecodeAccelerator::PictureRecord::~PictureRecord() {}
180
181 ExynosVideoDecodeAccelerator::ExynosVideoDecodeAccelerator(
182 EGLDisplay egl_display,
183 Client* client,
184 const base::WeakPtr<Client>& io_client,
185 const base::Callback<bool(void)>& make_context_current,
186 const scoped_refptr<base::MessageLoopProxy>& io_message_loop_proxy)
187 : child_message_loop_proxy_(base::MessageLoopProxy::current()),
188 io_message_loop_proxy_(io_message_loop_proxy),
189 weak_this_(base::AsWeakPtr(this)),
190 client_ptr_factory_(client),
191 client_(client_ptr_factory_.GetWeakPtr()),
192 io_client_(io_client),
193 decoder_thread_("ExynosDecoderThread"),
194 decoder_state_(kUninitialized),
195 decoder_delay_bitstream_buffer_id_(-1),
196 decoder_current_input_buffer_(-1),
197 decoder_decode_buffer_tasks_scheduled_(0),
198 decoder_frames_at_client_(0),
199 decoder_flushing_(false),
200 resolution_change_pending_(false),
201 resolution_change_reset_pending_(false),
202 decoder_partial_frame_pending_(false),
203 mfc_fd_(-1),
204 mfc_input_streamon_(false),
205 mfc_input_buffer_queued_count_(0),
206 mfc_output_streamon_(false),
207 mfc_output_buffer_queued_count_(0),
208 mfc_output_buffer_pixelformat_(0),
209 mfc_output_dpb_size_(0),
210 picture_clearing_count_(0),
211 device_poll_thread_("ExynosDevicePollThread"),
212 device_poll_interrupt_fd_(-1),
213 make_context_current_(make_context_current),
214 egl_display_(egl_display),
215 video_profile_(media::VIDEO_CODEC_PROFILE_UNKNOWN) {}
216
217 ExynosVideoDecodeAccelerator::~ExynosVideoDecodeAccelerator() {
218 DCHECK(!decoder_thread_.IsRunning());
219 DCHECK(!device_poll_thread_.IsRunning());
220
221 if (device_poll_interrupt_fd_ != -1) {
222 close(device_poll_interrupt_fd_);
223 device_poll_interrupt_fd_ = -1;
224 }
225 if (mfc_fd_ != -1) {
226 DestroyMfcInputBuffers();
227 DestroyMfcOutputBuffers();
228 close(mfc_fd_);
229 mfc_fd_ = -1;
230 }
231
232 // These maps have members that should be manually destroyed, e.g. file
233 // descriptors, mmap() segments, etc.
234 DCHECK(mfc_input_buffer_map_.empty());
235 DCHECK(mfc_output_buffer_map_.empty());
236 }
237
238 bool ExynosVideoDecodeAccelerator::Initialize(
239 media::VideoCodecProfile profile) {
240 DVLOG(3) << "Initialize()";
241 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
242 DCHECK_EQ(decoder_state_, kUninitialized);
243
244 switch (profile) {
245 case media::H264PROFILE_BASELINE:
246 DVLOG(2) << "Initialize(): profile H264PROFILE_BASELINE";
247 break;
248 case media::H264PROFILE_MAIN:
249 DVLOG(2) << "Initialize(): profile H264PROFILE_MAIN";
250 break;
251 case media::H264PROFILE_HIGH:
252 DVLOG(2) << "Initialize(): profile H264PROFILE_HIGH";
253 break;
254 case media::VP8PROFILE_MAIN:
255 DVLOG(2) << "Initialize(): profile VP8PROFILE_MAIN";
256 break;
257 default:
258 DLOG(ERROR) << "Initialize(): unsupported profile=" << profile;
259 return false;
260 };
261 video_profile_ = profile;
262
263 if (egl_display_ == EGL_NO_DISPLAY) {
264 DLOG(ERROR) << "Initialize(): could not get EGLDisplay";
265 NOTIFY_ERROR(PLATFORM_FAILURE);
266 return false;
267 }
268
269 // We need the context to be initialized to query extensions.
270 if (!make_context_current_.Run()) {
271 DLOG(ERROR) << "Initialize(): could not make context current";
272 NOTIFY_ERROR(PLATFORM_FAILURE);
273 return false;
274 }
275
276 if (!gfx::g_driver_egl.ext.b_EGL_KHR_fence_sync) {
277 DLOG(ERROR) << "Initialize(): context does not have EGL_KHR_fence_sync";
278 NOTIFY_ERROR(PLATFORM_FAILURE);
279 return false;
280 }
281
282 // Open the video devices.
283 DVLOG(2) << "Initialize(): opening MFC device: " << kExynosMfcDevice;
284 mfc_fd_ = HANDLE_EINTR(open(kExynosMfcDevice,
285 O_RDWR | O_NONBLOCK | O_CLOEXEC));
286 if (mfc_fd_ == -1) {
287 DPLOG(ERROR) << "Initialize(): could not open MFC device: "
288 << kExynosMfcDevice;
289 NOTIFY_ERROR(PLATFORM_FAILURE);
290 return false;
291 }
292
293 // Create the interrupt fd.
294 DCHECK_EQ(device_poll_interrupt_fd_, -1);
295 device_poll_interrupt_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
296 if (device_poll_interrupt_fd_ == -1) {
297 DPLOG(ERROR) << "Initialize(): eventfd() failed";
298 NOTIFY_ERROR(PLATFORM_FAILURE);
299 return false;
300 }
301
302 // Capabilities check.
303 struct v4l2_capability caps;
304 const __u32 kCapsRequired =
305 V4L2_CAP_VIDEO_CAPTURE_MPLANE |
306 V4L2_CAP_VIDEO_OUTPUT_MPLANE |
307 V4L2_CAP_STREAMING;
308 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_QUERYCAP, &caps);
309 if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
310 DLOG(ERROR) << "Initialize(): ioctl() failed: VIDIOC_QUERYCAP"
311 ", caps check failed: 0x" << std::hex << caps.capabilities;
312 NOTIFY_ERROR(PLATFORM_FAILURE);
313 return false;
314 }
315
316 if (!CreateMfcInputBuffers())
317 return false;
318
319 // MFC output format has to be setup before streaming starts.
320 struct v4l2_format format;
321 memset(&format, 0, sizeof(format));
322 format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
323 format.fmt.pix_mp.pixelformat = V4L2_PIX_FMT_NV12M;
324 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_S_FMT, &format);
325
326 // Subscribe to the resolution change event.
327 struct v4l2_event_subscription sub;
328 memset(&sub, 0, sizeof(sub));
329 sub.type = V4L2_EVENT_RESOLUTION_CHANGE;
330 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_SUBSCRIBE_EVENT, &sub);
331
332 // Initialize format-specific bits.
333 if (video_profile_ >= media::H264PROFILE_MIN &&
334 video_profile_ <= media::H264PROFILE_MAX) {
335 decoder_h264_parser_.reset(new content::H264Parser());
336 }
337
338 if (!decoder_thread_.Start()) {
339 DLOG(ERROR) << "Initialize(): decoder thread failed to start";
340 NOTIFY_ERROR(PLATFORM_FAILURE);
341 return false;
342 }
343
344 SetDecoderState(kInitialized);
345
346 child_message_loop_proxy_->PostTask(FROM_HERE, base::Bind(
347 &Client::NotifyInitializeDone, client_));
348 return true;
349 }
350
351 void ExynosVideoDecodeAccelerator::Decode(
352 const media::BitstreamBuffer& bitstream_buffer) {
353 DVLOG(1) << "Decode(): input_id=" << bitstream_buffer.id()
354 << ", size=" << bitstream_buffer.size();
355 DCHECK(io_message_loop_proxy_->BelongsToCurrentThread());
356
357 // DecodeTask() will take care of running a DecodeBufferTask().
358 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
359 &ExynosVideoDecodeAccelerator::DecodeTask, base::Unretained(this),
360 bitstream_buffer));
361 }
362
363 void ExynosVideoDecodeAccelerator::AssignPictureBuffers(
364 const std::vector<media::PictureBuffer>& buffers) {
365 DVLOG(3) << "AssignPictureBuffers(): buffer_count=" << buffers.size();
366 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
367
368 if (buffers.size() != mfc_output_buffer_map_.size()) {
369 DLOG(ERROR) << "AssignPictureBuffers(): Failed to provide requested picture"
370 " buffers. (Got " << buffers.size()
371 << ", requested " << mfc_output_buffer_map_.size() << ")";
372 NOTIFY_ERROR(INVALID_ARGUMENT);
373 return;
374 }
375
376 if (!make_context_current_.Run()) {
377 DLOG(ERROR) << "AssignPictureBuffers(): could not make context current";
378 NOTIFY_ERROR(PLATFORM_FAILURE);
379 return;
380 }
381
382 scoped_ptr<PictureBufferArrayRef> picture_buffers_ref(
383 new PictureBufferArrayRef(egl_display_));
384 gfx::ScopedTextureBinder bind_restore(GL_TEXTURE_EXTERNAL_OES, 0);
385 EGLint attrs[] = {
386 EGL_WIDTH, 0, EGL_HEIGHT, 0,
387 EGL_LINUX_DRM_FOURCC_EXT, 0, EGL_DMA_BUF_PLANE0_FD_EXT, 0,
388 EGL_DMA_BUF_PLANE0_OFFSET_EXT, 0, EGL_DMA_BUF_PLANE0_PITCH_EXT, 0,
389 EGL_DMA_BUF_PLANE1_FD_EXT, 0, EGL_DMA_BUF_PLANE1_OFFSET_EXT, 0,
390 EGL_DMA_BUF_PLANE1_PITCH_EXT, 0, EGL_NONE, };
391 attrs[1] = frame_buffer_size_.width();
392 attrs[3] = frame_buffer_size_.height();
393 attrs[5] = DRM_FORMAT_NV12;
394 for (size_t i = 0; i < mfc_output_buffer_map_.size(); ++i) {
395 DCHECK(buffers[i].size() == frame_buffer_size_);
396 MfcOutputRecord& output_record = mfc_output_buffer_map_[i];
397 attrs[7] = output_record.fds[0];
398 attrs[9] = 0;
399 attrs[11] = frame_buffer_size_.width();
400 attrs[13] = output_record.fds[1];
401 attrs[15] = 0;
402 attrs[17] = frame_buffer_size_.width();
403 EGLImageKHR egl_image = eglCreateImageKHR(
404 egl_display_, EGL_NO_CONTEXT, EGL_LINUX_DMA_BUF_EXT, NULL, attrs);
405 if (egl_image == EGL_NO_IMAGE_KHR) {
406 DLOG(ERROR) << "AssignPictureBuffers(): could not create EGLImageKHR";
407 NOTIFY_ERROR(PLATFORM_FAILURE);
408 return;
409 }
410
411 glBindTexture(GL_TEXTURE_EXTERNAL_OES, buffers[i].texture_id());
412 glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, egl_image);
413 picture_buffers_ref->picture_buffers.push_back(
414 PictureBufferArrayRef::PictureBufferRef(egl_image, buffers[i].id()));
415 }
416 decoder_thread_.message_loop()->PostTask(
417 FROM_HERE,
418 base::Bind(&ExynosVideoDecodeAccelerator::AssignPictureBuffersTask,
419 base::Unretained(this),
420 base::Passed(&picture_buffers_ref)));
421 }
422
423 void ExynosVideoDecodeAccelerator::ReusePictureBuffer(int32 picture_buffer_id) {
424 DVLOG(3) << "ReusePictureBuffer(): picture_buffer_id=" << picture_buffer_id;
425 // Must be run on child thread, as we'll insert a sync in the EGL context.
426 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
427
428 if (!make_context_current_.Run()) {
429 DLOG(ERROR) << "ReusePictureBuffer(): could not make context current";
430 NOTIFY_ERROR(PLATFORM_FAILURE);
431 return;
432 }
433
434 EGLSyncKHR egl_sync =
435 eglCreateSyncKHR(egl_display_, EGL_SYNC_FENCE_KHR, NULL);
436 if (egl_sync == EGL_NO_SYNC_KHR) {
437 DLOG(ERROR) << "ReusePictureBuffer(): eglCreateSyncKHR() failed";
438 NOTIFY_ERROR(PLATFORM_FAILURE);
439 return;
440 }
441
442 scoped_ptr<EGLSyncKHRRef> egl_sync_ref(new EGLSyncKHRRef(
443 egl_display_, egl_sync));
444 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
445 &ExynosVideoDecodeAccelerator::ReusePictureBufferTask,
446 base::Unretained(this), picture_buffer_id, base::Passed(&egl_sync_ref)));
447 }
448
449 void ExynosVideoDecodeAccelerator::Flush() {
450 DVLOG(3) << "Flush()";
451 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
452 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
453 &ExynosVideoDecodeAccelerator::FlushTask, base::Unretained(this)));
454 }
455
456 void ExynosVideoDecodeAccelerator::Reset() {
457 DVLOG(3) << "Reset()";
458 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
459 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
460 &ExynosVideoDecodeAccelerator::ResetTask, base::Unretained(this)));
461 }
462
463 void ExynosVideoDecodeAccelerator::Destroy() {
464 DVLOG(3) << "Destroy()";
465 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
466
467 // We're destroying; cancel all callbacks.
468 client_ptr_factory_.InvalidateWeakPtrs();
469
470 // If the decoder thread is running, destroy using posted task.
471 if (decoder_thread_.IsRunning()) {
472 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
473 &ExynosVideoDecodeAccelerator::DestroyTask, base::Unretained(this)));
474 // DestroyTask() will cause the decoder_thread_ to flush all tasks.
475 decoder_thread_.Stop();
476 } else {
477 // Otherwise, call the destroy task directly.
478 DestroyTask();
479 }
480
481 // Set to kError state just in case.
482 SetDecoderState(kError);
483
484 delete this;
485 }
486
487 bool ExynosVideoDecodeAccelerator::CanDecodeOnIOThread() { return true; }
488
489 void ExynosVideoDecodeAccelerator::DecodeTask(
490 const media::BitstreamBuffer& bitstream_buffer) {
491 DVLOG(3) << "DecodeTask(): input_id=" << bitstream_buffer.id();
492 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
493 DCHECK_NE(decoder_state_, kUninitialized);
494 TRACE_EVENT1("Video Decoder", "EVDA::DecodeTask", "input_id",
495 bitstream_buffer.id());
496
497 scoped_ptr<BitstreamBufferRef> bitstream_record(new BitstreamBufferRef(
498 io_client_, io_message_loop_proxy_,
499 new base::SharedMemory(bitstream_buffer.handle(), true),
500 bitstream_buffer.size(), bitstream_buffer.id()));
501 if (!bitstream_record->shm->Map(bitstream_buffer.size())) {
502 DLOG(ERROR) << "Decode(): could not map bitstream_buffer";
503 NOTIFY_ERROR(UNREADABLE_INPUT);
504 return;
505 }
506 DVLOG(3) << "Decode(): mapped to addr=" << bitstream_record->shm->memory();
507
508 if (decoder_state_ == kResetting || decoder_flushing_) {
509 // In the case that we're resetting or flushing, we need to delay decoding
510 // the BitstreamBuffers that come after the Reset() or Flush() call. When
511 // we're here, we know that this DecodeTask() was scheduled by a Decode()
512 // call that came after (in the client thread) the Reset() or Flush() call;
513 // thus set up the delay if necessary.
514 if (decoder_delay_bitstream_buffer_id_ == -1)
515 decoder_delay_bitstream_buffer_id_ = bitstream_record->input_id;
516 } else if (decoder_state_ == kError) {
517 DVLOG(2) << "DecodeTask(): early out: kError state";
518 return;
519 }
520
521 decoder_input_queue_.push(
522 linked_ptr<BitstreamBufferRef>(bitstream_record.release()));
523 decoder_decode_buffer_tasks_scheduled_++;
524 DecodeBufferTask();
525 }
526
527 void ExynosVideoDecodeAccelerator::DecodeBufferTask() {
528 DVLOG(3) << "DecodeBufferTask()";
529 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
530 DCHECK_NE(decoder_state_, kUninitialized);
531 TRACE_EVENT0("Video Decoder", "EVDA::DecodeBufferTask");
532
533 decoder_decode_buffer_tasks_scheduled_--;
534
535 if (decoder_state_ == kResetting) {
536 DVLOG(2) << "DecodeBufferTask(): early out: kResetting state";
537 return;
538 } else if (decoder_state_ == kError) {
539 DVLOG(2) << "DecodeBufferTask(): early out: kError state";
540 return;
541 } else if (decoder_state_ == kChangingResolution) {
542 DVLOG(2) << "DecodeBufferTask(): early out: resolution change pending";
543 return;
544 }
545
546 if (decoder_current_bitstream_buffer_ == NULL) {
547 if (decoder_input_queue_.empty()) {
548 // We're waiting for a new buffer -- exit without scheduling a new task.
549 return;
550 }
551 linked_ptr<BitstreamBufferRef>& buffer_ref = decoder_input_queue_.front();
552 if (decoder_delay_bitstream_buffer_id_ == buffer_ref->input_id) {
553 // We're asked to delay decoding on this and subsequent buffers.
554 return;
555 }
556
557 // Setup to use the next buffer.
558 decoder_current_bitstream_buffer_.reset(buffer_ref.release());
559 decoder_input_queue_.pop();
560 DVLOG(3) << "DecodeBufferTask(): reading input_id="
561 << decoder_current_bitstream_buffer_->input_id
562 << ", addr=" << (decoder_current_bitstream_buffer_->shm ?
563 decoder_current_bitstream_buffer_->shm->memory() :
564 NULL)
565 << ", size=" << decoder_current_bitstream_buffer_->size;
566 }
567 bool schedule_task = false;
568 const size_t size = decoder_current_bitstream_buffer_->size;
569 size_t decoded_size = 0;
570 if (size == 0) {
571 const int32 input_id = decoder_current_bitstream_buffer_->input_id;
572 if (input_id >= 0) {
573 // This is a buffer queued from the client that has zero size. Skip.
574 schedule_task = true;
575 } else {
576 // This is a buffer of zero size, queued to flush the pipe. Flush.
577 DCHECK_EQ(decoder_current_bitstream_buffer_->shm.get(),
578 static_cast<base::SharedMemory*>(NULL));
579 // Enqueue a buffer guaranteed to be empty. To do that, we flush the
580 // current input, enqueue no data to the next frame, then flush that down.
581 schedule_task = true;
582 if (decoder_current_input_buffer_ != -1 &&
583 mfc_input_buffer_map_[decoder_current_input_buffer_].input_id !=
584 kFlushBufferId)
585 schedule_task = FlushInputFrame();
586
587 if (schedule_task && AppendToInputFrame(NULL, 0) && FlushInputFrame()) {
588 DVLOG(2) << "DecodeBufferTask(): enqueued flush buffer";
589 decoder_partial_frame_pending_ = false;
590 schedule_task = true;
591 } else {
592 // If we failed to enqueue the empty buffer (due to pipeline
593 // backpressure), don't advance the bitstream buffer queue, and don't
594 // schedule the next task. This bitstream buffer queue entry will get
595 // reprocessed when the pipeline frees up.
596 schedule_task = false;
597 }
598 }
599 } else {
600 // This is a buffer queued from the client, with actual contents. Decode.
601 const uint8* const data =
602 reinterpret_cast<const uint8*>(
603 decoder_current_bitstream_buffer_->shm->memory()) +
604 decoder_current_bitstream_buffer_->bytes_used;
605 const size_t data_size =
606 decoder_current_bitstream_buffer_->size -
607 decoder_current_bitstream_buffer_->bytes_used;
608 if (!AdvanceFrameFragment(data, data_size, &decoded_size)) {
609 NOTIFY_ERROR(UNREADABLE_INPUT);
610 return;
611 }
612 // AdvanceFrameFragment should not return a size larger than the buffer
613 // size, even on invalid data.
614 CHECK_LE(decoded_size, data_size);
615
616 switch (decoder_state_) {
617 case kInitialized:
618 case kAfterReset:
619 schedule_task = DecodeBufferInitial(data, decoded_size, &decoded_size);
620 break;
621 case kDecoding:
622 schedule_task = DecodeBufferContinue(data, decoded_size);
623 break;
624 default:
625 NOTIFY_ERROR(ILLEGAL_STATE);
626 return;
627 }
628 }
629 if (decoder_state_ == kError) {
630 // Failed during decode.
631 return;
632 }
633
634 if (schedule_task) {
635 decoder_current_bitstream_buffer_->bytes_used += decoded_size;
636 if (decoder_current_bitstream_buffer_->bytes_used ==
637 decoder_current_bitstream_buffer_->size) {
638 // Our current bitstream buffer is done; return it.
639 int32 input_id = decoder_current_bitstream_buffer_->input_id;
640 DVLOG(3) << "DecodeBufferTask(): finished input_id=" << input_id;
641 // BitstreamBufferRef destructor calls NotifyEndOfBitstreamBuffer().
642 decoder_current_bitstream_buffer_.reset();
643 }
644 ScheduleDecodeBufferTaskIfNeeded();
645 }
646 }
647
648 bool ExynosVideoDecodeAccelerator::AdvanceFrameFragment(
649 const uint8* data,
650 size_t size,
651 size_t* endpos) {
652 if (video_profile_ >= media::H264PROFILE_MIN &&
653 video_profile_ <= media::H264PROFILE_MAX) {
654 // For H264, we need to feed HW one frame at a time. This is going to take
655 // some parsing of our input stream.
656 decoder_h264_parser_->SetStream(data, size);
657 content::H264NALU nalu;
658 content::H264Parser::Result result;
659 *endpos = 0;
660
661 // Keep on peeking the next NALs while they don't indicate a frame
662 // boundary.
663 for (;;) {
664 bool end_of_frame = false;
665 result = decoder_h264_parser_->AdvanceToNextNALU(&nalu);
666 if (result == content::H264Parser::kInvalidStream ||
667 result == content::H264Parser::kUnsupportedStream)
668 return false;
669 if (result == content::H264Parser::kEOStream) {
670 // We've reached the end of the buffer before finding a frame boundary.
671 decoder_partial_frame_pending_ = true;
672 return true;
673 }
674 switch (nalu.nal_unit_type) {
675 case content::H264NALU::kNonIDRSlice:
676 case content::H264NALU::kIDRSlice:
677 if (nalu.size < 1)
678 return false;
679 // For these two, if the "first_mb_in_slice" field is zero, start a
680 // new frame and return. This field is Exp-Golomb coded starting on
681 // the eighth data bit of the NAL; a zero value is encoded with a
682 // leading '1' bit in the byte, which we can detect as the byte being
683 // (unsigned) greater than or equal to 0x80.
684 if (nalu.data[1] >= 0x80) {
685 end_of_frame = true;
686 break;
687 }
688 break;
689 case content::H264NALU::kSPS:
690 case content::H264NALU::kPPS:
691 case content::H264NALU::kEOSeq:
692 case content::H264NALU::kEOStream:
693 // These unconditionally signal a frame boundary.
694 end_of_frame = true;
695 break;
696 default:
697 // For all others, keep going.
698 break;
699 }
700 if (end_of_frame) {
701 if (!decoder_partial_frame_pending_ && *endpos == 0) {
702 // The frame was previously restarted, and we haven't filled the
703 // current frame with any contents yet. Start the new frame here and
704 // continue parsing NALs.
705 } else {
706 // The frame wasn't previously restarted and/or we have contents for
707 // the current frame; signal the start of a new frame here: we don't
708 // have a partial frame anymore.
709 decoder_partial_frame_pending_ = false;
710 return true;
711 }
712 }
713 *endpos = (nalu.data + nalu.size) - data;
714 }
715 NOTREACHED();
716 return false;
717 } else {
718 DCHECK_GE(video_profile_, media::VP8PROFILE_MIN);
719 DCHECK_LE(video_profile_, media::VP8PROFILE_MAX);
720 // For VP8, we can just dump the entire buffer. No fragmentation needed,
721 // and we never return a partial frame.
722 *endpos = size;
723 decoder_partial_frame_pending_ = false;
724 return true;
725 }
726 }
727
728 void ExynosVideoDecodeAccelerator::ScheduleDecodeBufferTaskIfNeeded() {
729 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
730
731 // If we're behind on tasks, schedule another one.
732 int buffers_to_decode = decoder_input_queue_.size();
733 if (decoder_current_bitstream_buffer_ != NULL)
734 buffers_to_decode++;
735 if (decoder_decode_buffer_tasks_scheduled_ < buffers_to_decode) {
736 decoder_decode_buffer_tasks_scheduled_++;
737 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
738 &ExynosVideoDecodeAccelerator::DecodeBufferTask,
739 base::Unretained(this)));
740 }
741 }
742
743 bool ExynosVideoDecodeAccelerator::DecodeBufferInitial(
744 const void* data, size_t size, size_t* endpos) {
745 DVLOG(3) << "DecodeBufferInitial(): data=" << data << ", size=" << size;
746 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
747 DCHECK_NE(decoder_state_, kUninitialized);
748 DCHECK_NE(decoder_state_, kDecoding);
749 DCHECK(!device_poll_thread_.IsRunning());
750 // Initial decode. We haven't been able to get output stream format info yet.
751 // Get it, and start decoding.
752
753 // Copy in and send to HW.
754 if (!AppendToInputFrame(data, size))
755 return false;
756
757 // If we only have a partial frame, don't flush and process yet.
758 if (decoder_partial_frame_pending_)
759 return true;
760
761 if (!FlushInputFrame())
762 return false;
763
764 // Recycle buffers.
765 DequeueMfc();
766
767 // Check and see if we have format info yet.
768 struct v4l2_format format;
769 bool again = false;
770 if (!GetFormatInfo(&format, &again))
771 return false;
772
773 if (again) {
774 // Need more stream to decode format, return true and schedule next buffer.
775 *endpos = size;
776 return true;
777 }
778
779 // Run this initialization only on first startup.
780 if (decoder_state_ == kInitialized) {
781 DVLOG(3) << "DecodeBufferInitial(): running initialization";
782 // Success! Setup our parameters.
783 if (!CreateBuffersForFormat(format))
784 return false;
785
786 // MFC expects to process the initial buffer once during stream init to
787 // configure stream parameters, but will not consume the steam data on that
788 // iteration. Subsequent iterations (including after reset) do not require
789 // the stream init step.
790 *endpos = 0;
791 } else {
792 *endpos = size;
793 }
794
795 // StartDevicePoll will raise the error if there is one.
796 if (!StartDevicePoll())
797 return false;
798
799 decoder_state_ = kDecoding;
800 ScheduleDecodeBufferTaskIfNeeded();
801 return true;
802 }
803
804 bool ExynosVideoDecodeAccelerator::DecodeBufferContinue(
805 const void* data, size_t size) {
806 DVLOG(3) << "DecodeBufferContinue(): data=" << data << ", size=" << size;
807 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
808 DCHECK_EQ(decoder_state_, kDecoding);
809
810 // Both of these calls will set kError state if they fail.
811 // Only flush the frame if it's complete.
812 return (AppendToInputFrame(data, size) &&
813 (decoder_partial_frame_pending_ || FlushInputFrame()));
814 }
815
816 bool ExynosVideoDecodeAccelerator::AppendToInputFrame(
817 const void* data, size_t size) {
818 DVLOG(3) << "AppendToInputFrame()";
819 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
820 DCHECK_NE(decoder_state_, kUninitialized);
821 DCHECK_NE(decoder_state_, kResetting);
822 DCHECK_NE(decoder_state_, kError);
823 // This routine can handle data == NULL and size == 0, which occurs when
824 // we queue an empty buffer for the purposes of flushing the pipe.
825
826 // Flush if we're too big
827 if (decoder_current_input_buffer_ != -1) {
828 MfcInputRecord& input_record =
829 mfc_input_buffer_map_[decoder_current_input_buffer_];
830 if (input_record.bytes_used + size > input_record.length) {
831 if (!FlushInputFrame())
832 return false;
833 decoder_current_input_buffer_ = -1;
834 }
835 }
836
837 // Try to get an available input buffer
838 if (decoder_current_input_buffer_ == -1) {
839 if (mfc_free_input_buffers_.empty()) {
840 // See if we can get more free buffers from HW
841 DequeueMfc();
842 if (mfc_free_input_buffers_.empty()) {
843 // Nope!
844 DVLOG(2) << "AppendToInputFrame(): stalled for input buffers";
845 return false;
846 }
847 }
848 decoder_current_input_buffer_ = mfc_free_input_buffers_.back();
849 mfc_free_input_buffers_.pop_back();
850 MfcInputRecord& input_record =
851 mfc_input_buffer_map_[decoder_current_input_buffer_];
852 DCHECK_EQ(input_record.bytes_used, 0);
853 DCHECK_EQ(input_record.input_id, -1);
854 DCHECK(decoder_current_bitstream_buffer_ != NULL);
855 input_record.input_id = decoder_current_bitstream_buffer_->input_id;
856 }
857
858 DCHECK(data != NULL || size == 0);
859 if (size == 0) {
860 // If we asked for an empty buffer, return now. We return only after
861 // getting the next input buffer, since we might actually want an empty
862 // input buffer for flushing purposes.
863 return true;
864 }
865
866 // Copy in to the buffer.
867 MfcInputRecord& input_record =
868 mfc_input_buffer_map_[decoder_current_input_buffer_];
869 if (size > input_record.length - input_record.bytes_used) {
870 LOG(ERROR) << "AppendToInputFrame(): over-size frame, erroring";
871 NOTIFY_ERROR(UNREADABLE_INPUT);
872 return false;
873 }
874 memcpy(
875 reinterpret_cast<uint8*>(input_record.address) + input_record.bytes_used,
876 data,
877 size);
878 input_record.bytes_used += size;
879
880 return true;
881 }
882
883 bool ExynosVideoDecodeAccelerator::FlushInputFrame() {
884 DVLOG(3) << "FlushInputFrame()";
885 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
886 DCHECK_NE(decoder_state_, kUninitialized);
887 DCHECK_NE(decoder_state_, kResetting);
888 DCHECK_NE(decoder_state_, kError);
889
890 if (decoder_current_input_buffer_ == -1)
891 return true;
892
893 MfcInputRecord& input_record =
894 mfc_input_buffer_map_[decoder_current_input_buffer_];
895 DCHECK_NE(input_record.input_id, -1);
896 DCHECK(input_record.input_id != kFlushBufferId ||
897 input_record.bytes_used == 0);
898 // * if input_id >= 0, this input buffer was prompted by a bitstream buffer we
899 // got from the client. We can skip it if it is empty.
900 // * if input_id < 0 (should be kFlushBufferId in this case), this input
901 // buffer was prompted by a flush buffer, and should be queued even when
902 // empty.
903 if (input_record.input_id >= 0 && input_record.bytes_used == 0) {
904 input_record.input_id = -1;
905 mfc_free_input_buffers_.push_back(decoder_current_input_buffer_);
906 decoder_current_input_buffer_ = -1;
907 return true;
908 }
909
910 // Queue it to MFC.
911 mfc_input_ready_queue_.push(decoder_current_input_buffer_);
912 decoder_current_input_buffer_ = -1;
913 DVLOG(3) << "FlushInputFrame(): submitting input_id="
914 << input_record.input_id;
915 // Kick the MFC once since there's new available input for it.
916 EnqueueMfc();
917
918 return (decoder_state_ != kError);
919 }
920
921 void ExynosVideoDecodeAccelerator::AssignPictureBuffersTask(
922 scoped_ptr<PictureBufferArrayRef> pic_buffers) {
923 DVLOG(3) << "AssignPictureBuffersTask()";
924 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
925 DCHECK_NE(decoder_state_, kUninitialized);
926 TRACE_EVENT0("Video Decoder", "EVDA::AssignPictureBuffersTask");
927
928 // We run AssignPictureBuffersTask even if we're in kResetting.
929 if (decoder_state_ == kError) {
930 DVLOG(2) << "AssignPictureBuffersTask(): early out: kError state";
931 return;
932 }
933
934 DCHECK_EQ(pic_buffers->picture_buffers.size(), mfc_output_buffer_map_.size());
935 for (size_t i = 0; i < mfc_output_buffer_map_.size(); ++i) {
936 MfcOutputRecord& output_record = mfc_output_buffer_map_[i];
937 PictureBufferArrayRef::PictureBufferRef& buffer_ref =
938 pic_buffers->picture_buffers[i];
939 // We should be blank right now.
940 DCHECK(!output_record.at_device);
941 DCHECK(!output_record.at_client);
942 DCHECK_EQ(output_record.egl_image, EGL_NO_IMAGE_KHR);
943 DCHECK_EQ(output_record.egl_sync, EGL_NO_SYNC_KHR);
944 DCHECK_EQ(output_record.picture_id, -1);
945 DCHECK_EQ(output_record.cleared, false);
946 output_record.egl_image = buffer_ref.egl_image;
947 output_record.picture_id = buffer_ref.picture_id;
948 mfc_free_output_buffers_.push(i);
949 DVLOG(3) << "AssignPictureBuffersTask(): buffer[" << i
950 << "]: picture_id=" << buffer_ref.picture_id;
951 }
952 pic_buffers->picture_buffers.clear();
953
954 // We got buffers! Kick the MFC.
955 EnqueueMfc();
956
957 if (decoder_state_ == kChangingResolution)
958 ResumeAfterResolutionChange();
959 }
960
961 void ExynosVideoDecodeAccelerator::ServiceDeviceTask(bool mfc_event_pending) {
962 DVLOG(3) << "ServiceDeviceTask()";
963 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
964 DCHECK_NE(decoder_state_, kUninitialized);
965 DCHECK_NE(decoder_state_, kInitialized);
966 DCHECK_NE(decoder_state_, kAfterReset);
967 TRACE_EVENT0("Video Decoder", "EVDA::ServiceDeviceTask");
968
969 if (decoder_state_ == kResetting) {
970 DVLOG(2) << "ServiceDeviceTask(): early out: kResetting state";
971 return;
972 } else if (decoder_state_ == kError) {
973 DVLOG(2) << "ServiceDeviceTask(): early out: kError state";
974 return;
975 } else if (decoder_state_ == kChangingResolution) {
976 DVLOG(2) << "ServiceDeviceTask(): early out: kChangingResolution state";
977 return;
978 }
979
980 if (mfc_event_pending)
981 DequeueMfcEvents();
982 DequeueMfc();
983 EnqueueMfc();
984
985 // Clear the interrupt fd.
986 if (!ClearDevicePollInterrupt())
987 return;
988
989 unsigned int poll_fds = 0;
990 // Add MFC fd, if we should poll on it.
991 // MFC can be polled as soon as either input or output buffers are queued.
992 if (mfc_input_buffer_queued_count_ + mfc_output_buffer_queued_count_ > 0)
993 poll_fds |= kPollMfc;
994
995 // ServiceDeviceTask() should only ever be scheduled from DevicePollTask(),
996 // so either:
997 // * device_poll_thread_ is running normally
998 // * device_poll_thread_ scheduled us, but then a ResetTask() or DestroyTask()
999 // shut it down, in which case we're either in kResetting or kError states
1000 // respectively, and we should have early-outed already.
1001 DCHECK(device_poll_thread_.message_loop());
1002 // Queue the DevicePollTask() now.
1003 device_poll_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
1004 &ExynosVideoDecodeAccelerator::DevicePollTask,
1005 base::Unretained(this),
1006 poll_fds));
1007
1008 DVLOG(1) << "ServiceDeviceTask(): buffer counts: DEC["
1009 << decoder_input_queue_.size() << "->"
1010 << mfc_input_ready_queue_.size() << "] => MFC["
1011 << mfc_free_input_buffers_.size() << "+"
1012 << mfc_input_buffer_queued_count_ << "/"
1013 << mfc_input_buffer_map_.size() << "->"
1014 << mfc_free_output_buffers_.size() << "+"
1015 << mfc_output_buffer_queued_count_ << "/"
1016 << mfc_output_buffer_map_.size() << "] => VDA["
1017 << decoder_frames_at_client_ << "]";
1018
1019 ScheduleDecodeBufferTaskIfNeeded();
1020 StartResolutionChangeIfNeeded();
1021 }
1022
1023 void ExynosVideoDecodeAccelerator::EnqueueMfc() {
1024 DVLOG(3) << "EnqueueMfc()";
1025 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1026 DCHECK_NE(decoder_state_, kUninitialized);
1027 TRACE_EVENT0("Video Decoder", "EVDA::EnqueueMfc");
1028
1029 // Drain the pipe of completed decode buffers.
1030 const int old_mfc_inputs_queued = mfc_input_buffer_queued_count_;
1031 while (!mfc_input_ready_queue_.empty()) {
1032 if (!EnqueueMfcInputRecord())
1033 return;
1034 }
1035 if (old_mfc_inputs_queued == 0 && mfc_input_buffer_queued_count_ != 0) {
1036 // We just started up a previously empty queue.
1037 // Queue state changed; signal interrupt.
1038 if (!SetDevicePollInterrupt())
1039 return;
1040 // Start VIDIOC_STREAMON if we haven't yet.
1041 if (!mfc_input_streamon_) {
1042 __u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1043 IOCTL_OR_ERROR_RETURN(mfc_fd_, VIDIOC_STREAMON, &type);
1044 mfc_input_streamon_ = true;
1045 }
1046 }
1047
1048 // Enqueue all the MFC outputs we can.
1049 const int old_mfc_outputs_queued = mfc_output_buffer_queued_count_;
1050 while (!mfc_free_output_buffers_.empty()) {
1051 if (!EnqueueMfcOutputRecord())
1052 return;
1053 }
1054 if (old_mfc_outputs_queued == 0 && mfc_output_buffer_queued_count_ != 0) {
1055 // We just started up a previously empty queue.
1056 // Queue state changed; signal interrupt.
1057 if (!SetDevicePollInterrupt())
1058 return;
1059 // Start VIDIOC_STREAMON if we haven't yet.
1060 if (!mfc_output_streamon_) {
1061 __u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1062 IOCTL_OR_ERROR_RETURN(mfc_fd_, VIDIOC_STREAMON, &type);
1063 mfc_output_streamon_ = true;
1064 }
1065 }
1066 }
1067
1068 void ExynosVideoDecodeAccelerator::DequeueMfcEvents() {
1069 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1070 DCHECK_NE(decoder_state_, kUninitialized);
1071 DVLOG(3) << "DequeueMfcEvents()";
1072
1073 struct v4l2_event ev;
1074 memset(&ev, 0, sizeof(ev));
1075
1076 while (ioctl(mfc_fd_, VIDIOC_DQEVENT, &ev) == 0) {
1077 if (ev.type == V4L2_EVENT_RESOLUTION_CHANGE) {
1078 DVLOG(3) << "DequeueMfcEvents(): got resolution change event.";
1079 DCHECK(!resolution_change_pending_);
1080 resolution_change_pending_ = true;
1081 } else {
1082 DLOG(FATAL) << "DequeueMfcEvents(): got an event (" << ev.type
1083 << ") we haven't subscribed to.";
1084 }
1085 }
1086 }
1087
1088 void ExynosVideoDecodeAccelerator::DequeueMfc() {
1089 DVLOG(3) << "DequeueMfc()";
1090 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1091 DCHECK_NE(decoder_state_, kUninitialized);
1092 TRACE_EVENT0("Video Decoder", "EVDA::DequeueMfc");
1093
1094 // Dequeue completed MFC input (VIDEO_OUTPUT) buffers, and recycle to the free
1095 // list.
1096 struct v4l2_buffer dqbuf;
1097 struct v4l2_plane planes[2];
1098 while (mfc_input_buffer_queued_count_ > 0) {
1099 DCHECK(mfc_input_streamon_);
1100 memset(&dqbuf, 0, sizeof(dqbuf));
1101 memset(planes, 0, sizeof(planes));
1102 dqbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1103 dqbuf.memory = V4L2_MEMORY_MMAP;
1104 dqbuf.m.planes = planes;
1105 dqbuf.length = 1;
1106 if (ioctl(mfc_fd_, VIDIOC_DQBUF, &dqbuf) != 0) {
1107 if (errno == EAGAIN) {
1108 // EAGAIN if we're just out of buffers to dequeue.
1109 break;
1110 }
1111 DPLOG(ERROR) << "DequeueMfc(): ioctl() failed: VIDIOC_DQBUF";
1112 NOTIFY_ERROR(PLATFORM_FAILURE);
1113 return;
1114 }
1115 MfcInputRecord& input_record = mfc_input_buffer_map_[dqbuf.index];
1116 DCHECK(input_record.at_device);
1117 mfc_free_input_buffers_.push_back(dqbuf.index);
1118 input_record.at_device = false;
1119 input_record.bytes_used = 0;
1120 input_record.input_id = -1;
1121 mfc_input_buffer_queued_count_--;
1122 }
1123
1124 // Dequeue completed MFC output (VIDEO_CAPTURE) buffers, and queue to the
1125 // completed queue.
1126 while (mfc_output_buffer_queued_count_ > 0) {
1127 DCHECK(mfc_output_streamon_);
1128 memset(&dqbuf, 0, sizeof(dqbuf));
1129 memset(planes, 0, sizeof(planes));
1130 dqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1131 dqbuf.memory = V4L2_MEMORY_MMAP;
1132 dqbuf.m.planes = planes;
1133 dqbuf.length = 2;
1134 if (ioctl(mfc_fd_, VIDIOC_DQBUF, &dqbuf) != 0) {
1135 if (errno == EAGAIN) {
1136 // EAGAIN if we're just out of buffers to dequeue.
1137 break;
1138 }
1139 DPLOG(ERROR) << "DequeueMfc(): ioctl() failed: VIDIOC_DQBUF";
1140 NOTIFY_ERROR(PLATFORM_FAILURE);
1141 return;
1142 }
1143 MfcOutputRecord& output_record = mfc_output_buffer_map_[dqbuf.index];
1144 DCHECK(output_record.at_device);
1145 DCHECK(!output_record.at_client);
1146 DCHECK_NE(output_record.egl_image, EGL_NO_IMAGE_KHR);
1147 DCHECK_NE(output_record.picture_id, -1);
1148 output_record.at_device = false;
1149 if (dqbuf.m.planes[0].bytesused + dqbuf.m.planes[1].bytesused == 0) {
1150 // This is an empty output buffer returned as part of a flush.
1151 mfc_free_output_buffers_.push(dqbuf.index);
1152 } else {
1153 DCHECK_GE(dqbuf.timestamp.tv_sec, 0);
1154 output_record.at_client = true;
1155 DVLOG(3) << "DequeueMfc(): returning input_id=" << dqbuf.timestamp.tv_sec
1156 << " as picture_id=" << output_record.picture_id;
1157 const media::Picture& picture =
1158 media::Picture(output_record.picture_id, dqbuf.timestamp.tv_sec);
1159 pending_picture_ready_.push(
1160 PictureRecord(output_record.cleared, picture));
1161 SendPictureReady();
1162 output_record.cleared = true;
1163 decoder_frames_at_client_++;
1164 }
1165 mfc_output_buffer_queued_count_--;
1166 }
1167
1168 NotifyFlushDoneIfNeeded();
1169 }
1170
1171 bool ExynosVideoDecodeAccelerator::EnqueueMfcInputRecord() {
1172 DVLOG(3) << "EnqueueMfcInputRecord()";
1173 DCHECK(!mfc_input_ready_queue_.empty());
1174
1175 // Enqueue a MFC input (VIDEO_OUTPUT) buffer.
1176 const int buffer = mfc_input_ready_queue_.front();
1177 MfcInputRecord& input_record = mfc_input_buffer_map_[buffer];
1178 DCHECK(!input_record.at_device);
1179 struct v4l2_buffer qbuf;
1180 struct v4l2_plane qbuf_plane;
1181 memset(&qbuf, 0, sizeof(qbuf));
1182 memset(&qbuf_plane, 0, sizeof(qbuf_plane));
1183 qbuf.index = buffer;
1184 qbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1185 qbuf.timestamp.tv_sec = input_record.input_id;
1186 qbuf.memory = V4L2_MEMORY_MMAP;
1187 qbuf.m.planes = &qbuf_plane;
1188 qbuf.m.planes[0].bytesused = input_record.bytes_used;
1189 qbuf.length = 1;
1190 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_QBUF, &qbuf);
1191 mfc_input_ready_queue_.pop();
1192 input_record.at_device = true;
1193 mfc_input_buffer_queued_count_++;
1194 DVLOG(3) << "EnqueueMfcInputRecord(): enqueued input_id="
1195 << input_record.input_id;
1196 return true;
1197 }
1198
1199 bool ExynosVideoDecodeAccelerator::EnqueueMfcOutputRecord() {
1200 DVLOG(3) << "EnqueueMfcOutputRecord()";
1201 DCHECK(!mfc_free_output_buffers_.empty());
1202
1203 // Enqueue a MFC output (VIDEO_CAPTURE) buffer.
1204 const int buffer = mfc_free_output_buffers_.front();
1205 MfcOutputRecord& output_record = mfc_output_buffer_map_[buffer];
1206 DCHECK(!output_record.at_device);
1207 DCHECK(!output_record.at_client);
1208 DCHECK_NE(output_record.egl_image, EGL_NO_IMAGE_KHR);
1209 DCHECK_NE(output_record.picture_id, -1);
1210 if (output_record.egl_sync != EGL_NO_SYNC_KHR) {
1211 TRACE_EVENT0("Video Decoder",
1212 "EVDA::EnqueueMfcOutputRecord: eglClientWaitSyncKHR");
1213 // If we have to wait for completion, wait. Note that
1214 // mfc_free_output_buffers_ is a FIFO queue, so we always wait on the
1215 // buffer that has been in the queue the longest.
1216 eglClientWaitSyncKHR(egl_display_, output_record.egl_sync, 0,
1217 EGL_FOREVER_KHR);
1218 eglDestroySyncKHR(egl_display_, output_record.egl_sync);
1219 output_record.egl_sync = EGL_NO_SYNC_KHR;
1220 }
1221 struct v4l2_buffer qbuf;
1222 struct v4l2_plane qbuf_planes[arraysize(output_record.fds)];
1223 memset(&qbuf, 0, sizeof(qbuf));
1224 memset(qbuf_planes, 0, sizeof(qbuf_planes));
1225 qbuf.index = buffer;
1226 qbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1227 qbuf.memory = V4L2_MEMORY_MMAP;
1228 qbuf.m.planes = qbuf_planes;
1229 qbuf.length = arraysize(output_record.fds);
1230 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_QBUF, &qbuf);
1231 mfc_free_output_buffers_.pop();
1232 output_record.at_device = true;
1233 mfc_output_buffer_queued_count_++;
1234 return true;
1235 }
1236
1237 void ExynosVideoDecodeAccelerator::ReusePictureBufferTask(
1238 int32 picture_buffer_id, scoped_ptr<EGLSyncKHRRef> egl_sync_ref) {
1239 DVLOG(3) << "ReusePictureBufferTask(): picture_buffer_id="
1240 << picture_buffer_id;
1241 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1242 TRACE_EVENT0("Video Decoder", "EVDA::ReusePictureBufferTask");
1243
1244 // We run ReusePictureBufferTask even if we're in kResetting.
1245 if (decoder_state_ == kError) {
1246 DVLOG(2) << "ReusePictureBufferTask(): early out: kError state";
1247 return;
1248 }
1249
1250 if (decoder_state_ == kChangingResolution) {
1251 DVLOG(2) << "ReusePictureBufferTask(): early out: kChangingResolution";
1252 return;
1253 }
1254
1255 size_t index;
1256 for (index = 0; index < mfc_output_buffer_map_.size(); ++index)
1257 if (mfc_output_buffer_map_[index].picture_id == picture_buffer_id)
1258 break;
1259
1260 if (index >= mfc_output_buffer_map_.size()) {
1261 DLOG(ERROR) << "ReusePictureBufferTask(): picture_buffer_id not found";
1262 NOTIFY_ERROR(INVALID_ARGUMENT);
1263 return;
1264 }
1265
1266 MfcOutputRecord& output_record = mfc_output_buffer_map_[index];
1267 if (output_record.at_device || !output_record.at_client) {
1268 DLOG(ERROR) << "ReusePictureBufferTask(): picture_buffer_id not reusable";
1269 NOTIFY_ERROR(INVALID_ARGUMENT);
1270 return;
1271 }
1272
1273 DCHECK_EQ(output_record.egl_sync, EGL_NO_SYNC_KHR);
1274 output_record.at_client = false;
1275 output_record.egl_sync = egl_sync_ref->egl_sync;
1276 mfc_free_output_buffers_.push(index);
1277 decoder_frames_at_client_--;
1278 // Take ownership of the EGLSync.
1279 egl_sync_ref->egl_sync = EGL_NO_SYNC_KHR;
1280 // We got a buffer back, so kick the MFC.
1281 EnqueueMfc();
1282 }
1283
1284 void ExynosVideoDecodeAccelerator::FlushTask() {
1285 DVLOG(3) << "FlushTask()";
1286 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1287 TRACE_EVENT0("Video Decoder", "EVDA::FlushTask");
1288
1289 // Flush outstanding buffers.
1290 if (decoder_state_ == kInitialized || decoder_state_ == kAfterReset) {
1291 // There's nothing in the pipe, so return done immediately.
1292 DVLOG(3) << "FlushTask(): returning flush";
1293 child_message_loop_proxy_->PostTask(
1294 FROM_HERE, base::Bind(&Client::NotifyFlushDone, client_));
1295 return;
1296 } else if (decoder_state_ == kError) {
1297 DVLOG(2) << "FlushTask(): early out: kError state";
1298 return;
1299 }
1300
1301 // We don't support stacked flushing.
1302 DCHECK(!decoder_flushing_);
1303
1304 // Queue up an empty buffer -- this triggers the flush.
1305 decoder_input_queue_.push(
1306 linked_ptr<BitstreamBufferRef>(new BitstreamBufferRef(
1307 io_client_, io_message_loop_proxy_, NULL, 0, kFlushBufferId)));
1308 decoder_flushing_ = true;
1309 SendPictureReady(); // Send all pending PictureReady.
1310
1311 ScheduleDecodeBufferTaskIfNeeded();
1312 }
1313
1314 void ExynosVideoDecodeAccelerator::NotifyFlushDoneIfNeeded() {
1315 if (!decoder_flushing_)
1316 return;
1317
1318 // Pipeline is empty when:
1319 // * Decoder input queue is empty of non-delayed buffers.
1320 // * There is no currently filling input buffer.
1321 // * MFC input holding queue is empty.
1322 // * All MFC input (VIDEO_OUTPUT) buffers are returned.
1323 if (!decoder_input_queue_.empty()) {
1324 if (decoder_input_queue_.front()->input_id !=
1325 decoder_delay_bitstream_buffer_id_)
1326 return;
1327 }
1328 if (decoder_current_input_buffer_ != -1)
1329 return;
1330 if ((mfc_input_ready_queue_.size() + mfc_input_buffer_queued_count_) != 0)
1331 return;
1332
1333 // TODO(posciak): crbug.com/270039. MFC requires a streamoff-streamon
1334 // sequence after flush to continue, even if we are not resetting. This would
1335 // make sense, because we don't really want to resume from a non-resume point
1336 // (e.g. not from an IDR) if we are flushed.
1337 // MSE player however triggers a Flush() on chunk end, but never Reset(). One
1338 // could argue either way, or even say that Flush() is not needed/harmful when
1339 // transitioning to next chunk.
1340 // For now, do the streamoff-streamon cycle to satisfy MFC and not freeze when
1341 // doing MSE. This should be harmless otherwise.
1342 if (!StopDevicePoll(false))
1343 return;
1344
1345 if (!StartDevicePoll())
1346 return;
1347
1348 decoder_delay_bitstream_buffer_id_ = -1;
1349 decoder_flushing_ = false;
1350 DVLOG(3) << "NotifyFlushDoneIfNeeded(): returning flush";
1351 child_message_loop_proxy_->PostTask(
1352 FROM_HERE, base::Bind(&Client::NotifyFlushDone, client_));
1353
1354 // While we were flushing, we early-outed DecodeBufferTask()s.
1355 ScheduleDecodeBufferTaskIfNeeded();
1356 }
1357
1358 void ExynosVideoDecodeAccelerator::ResetTask() {
1359 DVLOG(3) << "ResetTask()";
1360 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1361 TRACE_EVENT0("Video Decoder", "EVDA::ResetTask");
1362
1363 if (decoder_state_ == kError) {
1364 DVLOG(2) << "ResetTask(): early out: kError state";
1365 return;
1366 }
1367
1368 // If we are in the middle of switching resolutions, postpone reset until
1369 // it's done. We don't have to worry about timing of this wrt to decoding,
1370 // because MFC input pipe is already stopped if we are changing resolution.
1371 // We will come back here after we are done with the resolution change.
1372 DCHECK(!resolution_change_reset_pending_);
1373 if (resolution_change_pending_ || decoder_state_ == kChangingResolution) {
1374 resolution_change_reset_pending_ = true;
1375 return;
1376 }
1377
1378 // We stop streaming and clear buffer tracking info (not preserving
1379 // MFC inputs).
1380 // StopDevicePoll() unconditionally does _not_ destroy buffers, however.
1381 if (!StopDevicePoll(false))
1382 return;
1383
1384 decoder_current_bitstream_buffer_.reset();
1385 while (!decoder_input_queue_.empty())
1386 decoder_input_queue_.pop();
1387
1388 decoder_current_input_buffer_ = -1;
1389
1390 // If we were flushing, we'll never return any more BitstreamBuffers or
1391 // PictureBuffers; they have all been dropped and returned by now.
1392 NotifyFlushDoneIfNeeded();
1393
1394 // Mark that we're resetting, then enqueue a ResetDoneTask(). All intervening
1395 // jobs will early-out in the kResetting state.
1396 decoder_state_ = kResetting;
1397 SendPictureReady(); // Send all pending PictureReady.
1398 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
1399 &ExynosVideoDecodeAccelerator::ResetDoneTask, base::Unretained(this)));
1400 }
1401
1402 void ExynosVideoDecodeAccelerator::ResetDoneTask() {
1403 DVLOG(3) << "ResetDoneTask()";
1404 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1405 TRACE_EVENT0("Video Decoder", "EVDA::ResetDoneTask");
1406
1407 if (decoder_state_ == kError) {
1408 DVLOG(2) << "ResetDoneTask(): early out: kError state";
1409 return;
1410 }
1411
1412 // We might have received a resolution change event while we were waiting
1413 // for the reset to finish. The codec will not post another event if the
1414 // resolution after reset remains the same as the one to which were just
1415 // about to switch, so preserve the event across reset so we can address
1416 // it after resuming.
1417
1418 // Reset format-specific bits.
1419 if (video_profile_ >= media::H264PROFILE_MIN &&
1420 video_profile_ <= media::H264PROFILE_MAX) {
1421 decoder_h264_parser_.reset(new content::H264Parser());
1422 }
1423
1424 // Jobs drained, we're finished resetting.
1425 DCHECK_EQ(decoder_state_, kResetting);
1426 decoder_state_ = kAfterReset;
1427 decoder_partial_frame_pending_ = false;
1428 decoder_delay_bitstream_buffer_id_ = -1;
1429 child_message_loop_proxy_->PostTask(FROM_HERE, base::Bind(
1430 &Client::NotifyResetDone, client_));
1431
1432 // While we were resetting, we early-outed DecodeBufferTask()s.
1433 ScheduleDecodeBufferTaskIfNeeded();
1434 }
1435
1436 void ExynosVideoDecodeAccelerator::DestroyTask() {
1437 DVLOG(3) << "DestroyTask()";
1438 TRACE_EVENT0("Video Decoder", "EVDA::DestroyTask");
1439
1440 // DestroyTask() should run regardless of decoder_state_.
1441
1442 // Stop streaming and the device_poll_thread_.
1443 StopDevicePoll(false);
1444
1445 decoder_current_bitstream_buffer_.reset();
1446 decoder_current_input_buffer_ = -1;
1447 decoder_decode_buffer_tasks_scheduled_ = 0;
1448 decoder_frames_at_client_ = 0;
1449 while (!decoder_input_queue_.empty())
1450 decoder_input_queue_.pop();
1451 decoder_flushing_ = false;
1452
1453 // Set our state to kError. Just in case.
1454 decoder_state_ = kError;
1455 }
1456
1457 bool ExynosVideoDecodeAccelerator::StartDevicePoll() {
1458 DVLOG(3) << "StartDevicePoll()";
1459 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1460 DCHECK(!device_poll_thread_.IsRunning());
1461
1462 // Start up the device poll thread and schedule its first DevicePollTask().
1463 if (!device_poll_thread_.Start()) {
1464 DLOG(ERROR) << "StartDevicePoll(): Device thread failed to start";
1465 NOTIFY_ERROR(PLATFORM_FAILURE);
1466 return false;
1467 }
1468 device_poll_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
1469 &ExynosVideoDecodeAccelerator::DevicePollTask,
1470 base::Unretained(this),
1471 0));
1472
1473 return true;
1474 }
1475
1476 bool ExynosVideoDecodeAccelerator::StopDevicePoll(bool keep_mfc_input_state) {
1477 DVLOG(3) << "StopDevicePoll()";
1478 if (decoder_thread_.IsRunning())
1479 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1480
1481 // Signal the DevicePollTask() to stop, and stop the device poll thread.
1482 if (!SetDevicePollInterrupt())
1483 return false;
1484 device_poll_thread_.Stop();
1485 // Clear the interrupt now, to be sure.
1486 if (!ClearDevicePollInterrupt())
1487 return false;
1488
1489 // Stop streaming.
1490 if (!keep_mfc_input_state) {
1491 if (mfc_input_streamon_) {
1492 __u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1493 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_STREAMOFF, &type);
1494 }
1495 mfc_input_streamon_ = false;
1496 }
1497 if (mfc_output_streamon_) {
1498 __u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1499 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_STREAMOFF, &type);
1500 }
1501 mfc_output_streamon_ = false;
1502
1503 // Reset all our accounting info.
1504 if (!keep_mfc_input_state) {
1505 while (!mfc_input_ready_queue_.empty())
1506 mfc_input_ready_queue_.pop();
1507 mfc_free_input_buffers_.clear();
1508 for (size_t i = 0; i < mfc_input_buffer_map_.size(); ++i) {
1509 mfc_free_input_buffers_.push_back(i);
1510 mfc_input_buffer_map_[i].at_device = false;
1511 mfc_input_buffer_map_[i].bytes_used = 0;
1512 mfc_input_buffer_map_[i].input_id = -1;
1513 }
1514 mfc_input_buffer_queued_count_ = 0;
1515 }
1516 while (!mfc_free_output_buffers_.empty())
1517 mfc_free_output_buffers_.pop();
1518 for (size_t i = 0; i < mfc_output_buffer_map_.size(); ++i) {
1519 MfcOutputRecord& output_record = mfc_output_buffer_map_[i];
1520 // Only mark those free that aren't being held by the VDA client.
1521 if (!output_record.at_client) {
1522 DCHECK_EQ(output_record.egl_sync, EGL_NO_SYNC_KHR);
1523 mfc_free_output_buffers_.push(i);
1524 mfc_output_buffer_map_[i].at_device = false;
1525 }
1526 }
1527 mfc_output_buffer_queued_count_ = 0;
1528
1529 DVLOG(3) << "StopDevicePoll(): device poll stopped";
1530 return true;
1531 }
1532
1533 bool ExynosVideoDecodeAccelerator::SetDevicePollInterrupt() {
1534 DVLOG(3) << "SetDevicePollInterrupt()";
1535 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1536
1537 const uint64 buf = 1;
1538 if (HANDLE_EINTR(write(device_poll_interrupt_fd_, &buf, sizeof(buf))) == -1) {
1539 DPLOG(ERROR) << "SetDevicePollInterrupt(): write() failed";
1540 NOTIFY_ERROR(PLATFORM_FAILURE);
1541 return false;
1542 }
1543 return true;
1544 }
1545
1546 bool ExynosVideoDecodeAccelerator::ClearDevicePollInterrupt() {
1547 DVLOG(3) << "ClearDevicePollInterrupt()";
1548 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1549
1550 uint64 buf;
1551 if (HANDLE_EINTR(read(device_poll_interrupt_fd_, &buf, sizeof(buf))) == -1) {
1552 if (errno == EAGAIN) {
1553 // No interrupt flag set, and we're reading nonblocking. Not an error.
1554 return true;
1555 } else {
1556 DPLOG(ERROR) << "ClearDevicePollInterrupt(): read() failed";
1557 NOTIFY_ERROR(PLATFORM_FAILURE);
1558 return false;
1559 }
1560 }
1561 return true;
1562 }
1563
1564 void ExynosVideoDecodeAccelerator::StartResolutionChangeIfNeeded() {
1565 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1566 DCHECK_EQ(decoder_state_, kDecoding);
1567
1568 if (!resolution_change_pending_)
1569 return;
1570
1571 DVLOG(3) << "No more work, initiate resolution change";
1572
1573 // Keep MFC input queue.
1574 if (!StopDevicePoll(true))
1575 return;
1576
1577 decoder_state_ = kChangingResolution;
1578 DCHECK(resolution_change_pending_);
1579 resolution_change_pending_ = false;
1580
1581 // Post a task to clean up buffers on child thread. This will also ensure
1582 // that we won't accept ReusePictureBuffer() anymore after that.
1583 child_message_loop_proxy_->PostTask(FROM_HERE, base::Bind(
1584 &ExynosVideoDecodeAccelerator::ResolutionChangeDestroyBuffers,
1585 weak_this_));
1586 }
1587
1588 void ExynosVideoDecodeAccelerator::FinishResolutionChange() {
1589 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1590 DVLOG(3) << "FinishResolutionChange()";
1591
1592 if (decoder_state_ == kError) {
1593 DVLOG(2) << "FinishResolutionChange(): early out: kError state";
1594 return;
1595 }
1596
1597 struct v4l2_format format;
1598 bool again;
1599 bool ret = GetFormatInfo(&format, &again);
1600 if (!ret || again) {
1601 DVLOG(3) << "Couldn't get format information after resolution change";
1602 NOTIFY_ERROR(PLATFORM_FAILURE);
1603 return;
1604 }
1605
1606 if (!CreateBuffersForFormat(format)) {
1607 DVLOG(3) << "Couldn't reallocate buffers after resolution change";
1608 NOTIFY_ERROR(PLATFORM_FAILURE);
1609 return;
1610 }
1611
1612 // From here we stay in kChangingResolution and wait for
1613 // AssignPictureBuffers() before we can resume.
1614 }
1615
1616 void ExynosVideoDecodeAccelerator::ResumeAfterResolutionChange() {
1617 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1618 DVLOG(3) << "ResumeAfterResolutionChange()";
1619
1620 decoder_state_ = kDecoding;
1621
1622 if (resolution_change_reset_pending_) {
1623 resolution_change_reset_pending_ = false;
1624 ResetTask();
1625 return;
1626 }
1627
1628 if (!StartDevicePoll())
1629 return;
1630
1631 EnqueueMfc();
1632 ScheduleDecodeBufferTaskIfNeeded();
1633 }
1634
1635 void ExynosVideoDecodeAccelerator::DevicePollTask(unsigned int poll_fds) {
1636 DVLOG(3) << "DevicePollTask()";
1637 DCHECK_EQ(device_poll_thread_.message_loop(), base::MessageLoop::current());
1638 TRACE_EVENT0("Video Decoder", "EVDA::DevicePollTask");
1639
1640 // This routine just polls the set of device fds, and schedules a
1641 // ServiceDeviceTask() on decoder_thread_ when processing needs to occur.
1642 // Other threads may notify this task to return early by writing to
1643 // device_poll_interrupt_fd_.
1644 struct pollfd pollfds[3];
1645 nfds_t nfds;
1646 int mfc_pollfd = -1;
1647
1648 // Add device_poll_interrupt_fd_;
1649 pollfds[0].fd = device_poll_interrupt_fd_;
1650 pollfds[0].events = POLLIN | POLLERR;
1651 nfds = 1;
1652
1653 if (poll_fds & kPollMfc) {
1654 DVLOG(3) << "DevicePollTask(): adding MFC to poll() set";
1655 pollfds[nfds].fd = mfc_fd_;
1656 pollfds[nfds].events = POLLIN | POLLOUT | POLLERR | POLLPRI;
1657 mfc_pollfd = nfds;
1658 nfds++;
1659 }
1660
1661 // Poll it!
1662 if (HANDLE_EINTR(poll(pollfds, nfds, -1)) == -1) {
1663 DPLOG(ERROR) << "DevicePollTask(): poll() failed";
1664 NOTIFY_ERROR(PLATFORM_FAILURE);
1665 return;
1666 }
1667
1668 bool mfc_event_pending = (mfc_pollfd != -1 &&
1669 pollfds[mfc_pollfd].revents & POLLPRI);
1670
1671 // All processing should happen on ServiceDeviceTask(), since we shouldn't
1672 // touch decoder state from this thread.
1673 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
1674 &ExynosVideoDecodeAccelerator::ServiceDeviceTask,
1675 base::Unretained(this), mfc_event_pending));
1676 }
1677
1678 void ExynosVideoDecodeAccelerator::NotifyError(Error error) {
1679 DVLOG(2) << "NotifyError()";
1680
1681 if (!child_message_loop_proxy_->BelongsToCurrentThread()) {
1682 child_message_loop_proxy_->PostTask(FROM_HERE, base::Bind(
1683 &ExynosVideoDecodeAccelerator::NotifyError, weak_this_, error));
1684 return;
1685 }
1686
1687 if (client_) {
1688 client_->NotifyError(error);
1689 client_ptr_factory_.InvalidateWeakPtrs();
1690 }
1691 }
1692
1693 void ExynosVideoDecodeAccelerator::SetDecoderState(State state) {
1694 DVLOG(3) << "SetDecoderState(): state=" << state;
1695
1696 // We can touch decoder_state_ only if this is the decoder thread or the
1697 // decoder thread isn't running.
1698 if (decoder_thread_.message_loop() != NULL &&
1699 decoder_thread_.message_loop() != base::MessageLoop::current()) {
1700 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
1701 &ExynosVideoDecodeAccelerator::SetDecoderState,
1702 base::Unretained(this), state));
1703 } else {
1704 decoder_state_ = state;
1705 }
1706 }
1707
1708 bool ExynosVideoDecodeAccelerator::GetFormatInfo(struct v4l2_format* format,
1709 bool* again) {
1710 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1711
1712 *again = false;
1713 memset(format, 0, sizeof(*format));
1714 format->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1715 if (HANDLE_EINTR(ioctl(mfc_fd_, VIDIOC_G_FMT, format)) != 0) {
1716 if (errno == EINVAL) {
1717 // EINVAL means we haven't seen sufficient stream to decode the format.
1718 *again = true;
1719 return true;
1720 } else {
1721 DPLOG(ERROR) << "DecodeBufferInitial(): ioctl() failed: VIDIOC_G_FMT";
1722 NOTIFY_ERROR(PLATFORM_FAILURE);
1723 return false;
1724 }
1725 }
1726
1727 return true;
1728 }
1729
1730 bool ExynosVideoDecodeAccelerator::CreateBuffersForFormat(
1731 const struct v4l2_format& format) {
1732 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1733 CHECK_EQ(format.fmt.pix_mp.num_planes, 2);
1734 frame_buffer_size_.SetSize(
1735 format.fmt.pix_mp.width, format.fmt.pix_mp.height);
1736 mfc_output_buffer_pixelformat_ = format.fmt.pix_mp.pixelformat;
1737 DCHECK_EQ(mfc_output_buffer_pixelformat_, V4L2_PIX_FMT_NV12M);
1738 DVLOG(3) << "CreateBuffersForFormat(): new resolution: "
1739 << frame_buffer_size_.ToString();
1740
1741 if (!CreateMfcOutputBuffers())
1742 return false;
1743
1744 return true;
1745 }
1746
1747 bool ExynosVideoDecodeAccelerator::CreateMfcInputBuffers() {
1748 DVLOG(3) << "CreateMfcInputBuffers()";
1749 // We always run this as we prepare to initialize.
1750 DCHECK_EQ(decoder_state_, kUninitialized);
1751 DCHECK(!mfc_input_streamon_);
1752 DCHECK(mfc_input_buffer_map_.empty());
1753
1754 __u32 pixelformat = 0;
1755 if (video_profile_ >= media::H264PROFILE_MIN &&
1756 video_profile_ <= media::H264PROFILE_MAX) {
1757 pixelformat = V4L2_PIX_FMT_H264;
1758 } else if (video_profile_ >= media::VP8PROFILE_MIN &&
1759 video_profile_ <= media::VP8PROFILE_MAX) {
1760 pixelformat = V4L2_PIX_FMT_VP8;
1761 } else {
1762 NOTREACHED();
1763 }
1764
1765 struct v4l2_format format;
1766 memset(&format, 0, sizeof(format));
1767 format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1768 format.fmt.pix_mp.pixelformat = pixelformat;
1769 format.fmt.pix_mp.plane_fmt[0].sizeimage = kMfcInputBufferMaxSize;
1770 format.fmt.pix_mp.num_planes = 1;
1771 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_S_FMT, &format);
1772
1773 struct v4l2_requestbuffers reqbufs;
1774 memset(&reqbufs, 0, sizeof(reqbufs));
1775 reqbufs.count = kMfcInputBufferCount;
1776 reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1777 reqbufs.memory = V4L2_MEMORY_MMAP;
1778 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_REQBUFS, &reqbufs);
1779 mfc_input_buffer_map_.resize(reqbufs.count);
1780 for (size_t i = 0; i < mfc_input_buffer_map_.size(); ++i) {
1781 mfc_free_input_buffers_.push_back(i);
1782
1783 // Query for the MEMORY_MMAP pointer.
1784 struct v4l2_plane planes[1];
1785 struct v4l2_buffer buffer;
1786 memset(&buffer, 0, sizeof(buffer));
1787 memset(planes, 0, sizeof(planes));
1788 buffer.index = i;
1789 buffer.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1790 buffer.memory = V4L2_MEMORY_MMAP;
1791 buffer.m.planes = planes;
1792 buffer.length = 1;
1793 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_QUERYBUF, &buffer);
1794 void* address = mmap(NULL, buffer.m.planes[0].length,
1795 PROT_READ | PROT_WRITE, MAP_SHARED, mfc_fd_,
1796 buffer.m.planes[0].m.mem_offset);
1797 if (address == MAP_FAILED) {
1798 DPLOG(ERROR) << "CreateMfcInputBuffers(): mmap() failed";
1799 return false;
1800 }
1801 mfc_input_buffer_map_[i].address = address;
1802 mfc_input_buffer_map_[i].length = buffer.m.planes[0].length;
1803 }
1804
1805 return true;
1806 }
1807
1808 bool ExynosVideoDecodeAccelerator::CreateMfcOutputBuffers() {
1809 DVLOG(3) << "CreateMfcOutputBuffers()";
1810 DCHECK(decoder_state_ == kInitialized ||
1811 decoder_state_ == kChangingResolution);
1812 DCHECK(!mfc_output_streamon_);
1813 DCHECK(mfc_output_buffer_map_.empty());
1814
1815 // Number of MFC output buffers we need.
1816 struct v4l2_control ctrl;
1817 memset(&ctrl, 0, sizeof(ctrl));
1818 ctrl.id = V4L2_CID_MIN_BUFFERS_FOR_CAPTURE;
1819 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_G_CTRL, &ctrl);
1820 mfc_output_dpb_size_ = ctrl.value;
1821
1822 // Output format setup in Initialize().
1823
1824 // Allocate the output buffers.
1825 struct v4l2_requestbuffers reqbufs;
1826 memset(&reqbufs, 0, sizeof(reqbufs));
1827 reqbufs.count = mfc_output_dpb_size_ + kDpbOutputBufferExtraCount;
1828 reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1829 reqbufs.memory = V4L2_MEMORY_MMAP;
1830 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_REQBUFS, &reqbufs);
1831
1832 // Create DMABUFs from output buffers.
1833 mfc_output_buffer_map_.resize(reqbufs.count);
1834 for (size_t i = 0; i < mfc_output_buffer_map_.size(); ++i) {
1835 MfcOutputRecord& output_record = mfc_output_buffer_map_[i];
1836 for (size_t j = 0; j < arraysize(output_record.fds); ++j) {
1837 // Export the DMABUF fd so we can export it as a texture.
1838 struct v4l2_exportbuffer expbuf;
1839 memset(&expbuf, 0, sizeof(expbuf));
1840 expbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1841 expbuf.index = i;
1842 expbuf.plane = j;
1843 expbuf.flags = O_CLOEXEC;
1844 IOCTL_OR_ERROR_RETURN_FALSE(mfc_fd_, VIDIOC_EXPBUF, &expbuf);
1845 output_record.fds[j] = expbuf.fd;
1846 }
1847 }
1848
1849 DVLOG(3) << "CreateMfcOutputBuffers(): ProvidePictureBuffers(): "
1850 << "buffer_count=" << mfc_output_buffer_map_.size()
1851 << ", width=" << frame_buffer_size_.width()
1852 << ", height=" << frame_buffer_size_.height();
1853 child_message_loop_proxy_->PostTask(FROM_HERE,
1854 base::Bind(&Client::ProvidePictureBuffers,
1855 client_,
1856 mfc_output_buffer_map_.size(),
1857 frame_buffer_size_,
1858 GL_TEXTURE_EXTERNAL_OES));
1859
1860 return true;
1861 }
1862
1863 void ExynosVideoDecodeAccelerator::DestroyMfcInputBuffers() {
1864 DVLOG(3) << "DestroyMfcInputBuffers()";
1865 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
1866 DCHECK(!mfc_input_streamon_);
1867
1868 for (size_t i = 0; i < mfc_input_buffer_map_.size(); ++i) {
1869 if (mfc_input_buffer_map_[i].address != NULL) {
1870 munmap(mfc_input_buffer_map_[i].address,
1871 mfc_input_buffer_map_[i].length);
1872 }
1873 }
1874
1875 struct v4l2_requestbuffers reqbufs;
1876 memset(&reqbufs, 0, sizeof(reqbufs));
1877 reqbufs.count = 0;
1878 reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1879 reqbufs.memory = V4L2_MEMORY_MMAP;
1880 if (ioctl(mfc_fd_, VIDIOC_REQBUFS, &reqbufs) != 0)
1881 DPLOG(ERROR) << "DestroyMfcInputBuffers(): ioctl() failed: VIDIOC_REQBUFS";
1882
1883 mfc_input_buffer_map_.clear();
1884 mfc_free_input_buffers_.clear();
1885 }
1886
1887 void ExynosVideoDecodeAccelerator::DestroyMfcOutputBuffers() {
1888 DVLOG(3) << "DestroyMfcOutputBuffers()";
1889 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
1890 DCHECK(!mfc_output_streamon_);
1891
1892 if (mfc_output_buffer_map_.size() != 0) {
1893 // TODO(sheu, posciak): Making the context current should not be required
1894 // anymore. Remove it and verify (crbug.com/327869).
1895 if (!make_context_current_.Run()) {
1896 DLOG(ERROR) << "DestroyMfcOutputBuffers(): "
1897 << "could not make context current";
1898 } else {
1899 size_t i = 0;
1900 do {
1901 MfcOutputRecord& output_record = mfc_output_buffer_map_[i];
1902 for (size_t j = 0; j < arraysize(output_record.fds); ++j) {
1903 if (output_record.fds[j] != -1)
1904 close(output_record.fds[j]);
1905 if (output_record.egl_image != EGL_NO_IMAGE_KHR)
1906 eglDestroyImageKHR(egl_display_, output_record.egl_image);
1907 if (output_record.egl_sync != EGL_NO_SYNC_KHR)
1908 eglDestroySyncKHR(egl_display_, output_record.egl_sync);
1909 }
1910 DVLOG(1) << "DestroyMfcOutputBuffers(): dismissing PictureBuffer id="
1911 << output_record.picture_id;
1912 child_message_loop_proxy_->PostTask(
1913 FROM_HERE,
1914 base::Bind(&Client::DismissPictureBuffer,
1915 client_,
1916 output_record.picture_id));
1917 i++;
1918 } while (i < mfc_output_buffer_map_.size());
1919 }
1920 }
1921
1922 struct v4l2_requestbuffers reqbufs;
1923 memset(&reqbufs, 0, sizeof(reqbufs));
1924 reqbufs.count = 0;
1925 reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1926 reqbufs.memory = V4L2_MEMORY_MMAP;
1927 if (ioctl(mfc_fd_, VIDIOC_REQBUFS, &reqbufs) != 0)
1928 DPLOG(ERROR) << "DestroyMfcOutputBuffers() ioctl() failed: VIDIOC_REQBUFS";
1929
1930 mfc_output_buffer_map_.clear();
1931 while (!mfc_free_output_buffers_.empty())
1932 mfc_free_output_buffers_.pop();
1933 }
1934
1935 void ExynosVideoDecodeAccelerator::ResolutionChangeDestroyBuffers() {
1936 DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
1937 DVLOG(3) << "ResolutionChangeDestroyBuffers()";
1938
1939 DestroyMfcOutputBuffers();
1940
1941 // Finish resolution change on decoder thread.
1942 decoder_thread_.message_loop()->PostTask(FROM_HERE, base::Bind(
1943 &ExynosVideoDecodeAccelerator::FinishResolutionChange,
1944 base::Unretained(this)));
1945 }
1946
1947 void ExynosVideoDecodeAccelerator::SendPictureReady() {
1948 DVLOG(3) << "SendPictureReady()";
1949 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1950 bool resetting_or_flushing =
1951 (decoder_state_ == kResetting || decoder_flushing_);
1952 while (pending_picture_ready_.size() > 0) {
1953 bool cleared = pending_picture_ready_.front().cleared;
1954 const media::Picture& picture = pending_picture_ready_.front().picture;
1955 if (cleared && picture_clearing_count_ == 0) {
1956 // This picture is cleared. Post it to IO thread to reduce latency. This
1957 // should be the case after all pictures are cleared at the beginning.
1958 io_message_loop_proxy_->PostTask(
1959 FROM_HERE, base::Bind(&Client::PictureReady, io_client_, picture));
1960 pending_picture_ready_.pop();
1961 } else if (!cleared || resetting_or_flushing) {
1962 DVLOG(3) << "SendPictureReady()"
1963 << ". cleared=" << pending_picture_ready_.front().cleared
1964 << ", decoder_state_=" << decoder_state_
1965 << ", decoder_flushing_=" << decoder_flushing_
1966 << ", picture_clearing_count_=" << picture_clearing_count_;
1967 // If the picture is not cleared, post it to the child thread because it
1968 // has to be cleared in the child thread. A picture only needs to be
1969 // cleared once. If the decoder is resetting or flushing, send all
1970 // pictures to ensure PictureReady arrive before reset or flush done.
1971 child_message_loop_proxy_->PostTaskAndReply(
1972 FROM_HERE,
1973 base::Bind(&Client::PictureReady, client_, picture),
1974 // Unretained is safe. If Client::PictureReady gets to run, |this| is
1975 // alive. Destroy() will wait the decode thread to finish.
1976 base::Bind(&ExynosVideoDecodeAccelerator::PictureCleared,
1977 base::Unretained(this)));
1978 picture_clearing_count_++;
1979 pending_picture_ready_.pop();
1980 } else {
1981 // This picture is cleared. But some pictures are about to be cleared on
1982 // the child thread. To preserve the order, do not send this until those
1983 // pictures are cleared.
1984 break;
1985 }
1986 }
1987 }
1988
1989 void ExynosVideoDecodeAccelerator::PictureCleared() {
1990 DVLOG(3) << "PictureCleared(). clearing count=" << picture_clearing_count_;
1991 DCHECK_EQ(decoder_thread_.message_loop(), base::MessageLoop::current());
1992 DCHECK_GT(picture_clearing_count_, 0);
1993 picture_clearing_count_--;
1994 SendPictureReady();
1995 }
1996
1997 } // namespace content
OLDNEW
« no previous file with comments | « content/common/gpu/media/exynos_video_decode_accelerator.h ('k') | content/common/gpu/media/gpu_video_decode_accelerator.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698