| Index: sdk/lib/_internal/compiler/implementation/lib/js_helper.dart
|
| diff --git a/sdk/lib/_internal/compiler/implementation/lib/js_helper.dart b/sdk/lib/_internal/compiler/implementation/lib/js_helper.dart
|
| index ee23e0dbb08ec629f16073732225897c4dc55c7f..9b6b8bcb6a006559f50f76c4ef9ba53cd23b4277 100644
|
| --- a/sdk/lib/_internal/compiler/implementation/lib/js_helper.dart
|
| +++ b/sdk/lib/_internal/compiler/implementation/lib/js_helper.dart
|
| @@ -1541,18 +1541,59 @@ getArguments(var type) => JS('var', r'#.slice(1)', type);
|
| getField(var object, var name) => JS('var', r'#[#]', object, name);
|
|
|
| /**
|
| + * Tests whether the Dart object [o] is a subtype of the runtime type
|
| + * representation [t], which is a type representation as described in the
|
| + * comment on [isSubtype].
|
| + */
|
| +bool objectIsSubtype(Object o, var t) {
|
| + if (JS('bool', '# == null', o) || JS('bool', '# == null', t)) return true;
|
| + // In the case of [List], [t] will be an array with the type representation
|
| + // in the first entry and the type argument in the second.
|
| + var typeOfT = isJsArray(t) ? getField(t, 0) : t;
|
| + var nativeCheck = getField(typeOfT, '\$nativeCheck');
|
| + if (nativeCheck != null) {
|
| + bool isInstance = invoke(nativeCheck, [o]);
|
| + if (!isInstance) return false;
|
| + if (o is List) {
|
| + // If the object is a list and passed the native check, we know that [t]
|
| + // is an array containing the type argument as its second entry.
|
| + return isSubtype(getRuntimeTypeArgument(o, null, 0), getField(t, 1));
|
| + }
|
| + return true;
|
| + } else {
|
| + var type;
|
| + var rti = getRuntimeTypeInfo(o);
|
| + // If the type has type variables (that is, [:rti != null:]), make a copy of
|
| + // the type arguments and insert [o] in the first position to create a
|
| + // compound type representation, otherwise use [o] itself.
|
| + if (JS('bool', '# != null', rti)) {
|
| + type = JS('List', '#.slice().splice(0, 0, #)', rti, o);
|
| + } else {
|
| + // We can use the object as its own type representation because we install
|
| + // the subtype flags and the substitution on the prototype, so they are
|
| + // properties of the object in JS.
|
| + type = o;
|
| + }
|
| + return isSubtype(type, t);
|
| + }
|
| +}
|
| +
|
| +
|
| +/**
|
| * Check whether the type represented by [s] is a subtype of the type
|
| * represented by [t].
|
| *
|
| * Type representations can be:
|
| * 1) a JavaScript constructor for a class C: the represented type is the raw
|
| * type C.
|
| - * 2) a JavaScript object: this represents a class for which there is no
|
| + * 2) a Dart object.
|
| + * 3) a JavaScript object: this represents a class for which there is no
|
| * JavaScript constructor, because it is only used in type arguments or it
|
| * is native. The represented type is the raw type of this class.
|
| - * 3) a JavaScript array: the first entry is of type 1 or 2 and identifies the
|
| - * class of the type and the rest of the array are the type arguments.
|
| - * 4) [:null:]: the dynamic type.
|
| + * 4) a JavaScript array: the first entry is of type 1, 2 or 3 and contains the
|
| + * subtyping flags and the substitution of the type and the rest of the
|
| + * array are the type arguments.
|
| + * 5) [:null:]: the dynamic type.
|
| */
|
| bool isSubtype(var s, var t) {
|
| // If either type is dynamic, [s] is a subtype of [t].
|
|
|