| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #ifndef SkChecksum_DEFINED | |
| 9 #define SkChecksum_DEFINED | |
| 10 | |
| 11 #include "SkString.h" | |
| 12 #include "SkTLogic.h" | |
| 13 #include "SkTypes.h" | |
| 14 | |
| 15 /** | |
| 16 * Computes a 32bit checksum from a blob of 32bit aligned data. This is meant | |
| 17 * to be very very fast, as it is used internally by the font cache, in | |
| 18 * conjuction with the entire raw key. This algorithm does not generate | |
| 19 * unique values as well as others (e.g. MD5) but it performs much faster. | |
| 20 * Skia's use cases can survive non-unique values (since the entire key is | |
| 21 * always available). Clients should only be used in circumstances where speed | |
| 22 * over uniqueness is at a premium. | |
| 23 */ | |
| 24 class SkChecksum : SkNoncopyable { | |
| 25 private: | |
| 26 /* | |
| 27 * Our Rotate and Mash helpers are meant to automatically do the right | |
| 28 * thing depending if sizeof(uintptr_t) is 4 or 8. | |
| 29 */ | |
| 30 enum { | |
| 31 ROTR = 17, | |
| 32 ROTL = sizeof(uintptr_t) * 8 - ROTR, | |
| 33 HALFBITS = sizeof(uintptr_t) * 4 | |
| 34 }; | |
| 35 | |
| 36 static inline uintptr_t Mash(uintptr_t total, uintptr_t value) { | |
| 37 return ((total >> ROTR) | (total << ROTL)) ^ value; | |
| 38 } | |
| 39 | |
| 40 public: | |
| 41 /** | |
| 42 * uint32_t -> uint32_t hash, useful for when you're about to trucate this h
ash but you | |
| 43 * suspect its low bits aren't well mixed. | |
| 44 * | |
| 45 * This is the Murmur3 finalizer. | |
| 46 */ | |
| 47 static uint32_t Mix(uint32_t hash) { | |
| 48 hash ^= hash >> 16; | |
| 49 hash *= 0x85ebca6b; | |
| 50 hash ^= hash >> 13; | |
| 51 hash *= 0xc2b2ae35; | |
| 52 hash ^= hash >> 16; | |
| 53 return hash; | |
| 54 } | |
| 55 | |
| 56 /** | |
| 57 * uint32_t -> uint32_t hash, useful for when you're about to trucate this h
ash but you | |
| 58 * suspect its low bits aren't well mixed. | |
| 59 * | |
| 60 * This version is 2-lines cheaper than Mix, but seems to be sufficient for
the font cache. | |
| 61 */ | |
| 62 static uint32_t CheapMix(uint32_t hash) { | |
| 63 hash ^= hash >> 16; | |
| 64 hash *= 0x85ebca6b; | |
| 65 hash ^= hash >> 16; | |
| 66 return hash; | |
| 67 } | |
| 68 | |
| 69 /** | |
| 70 * Calculate 32-bit Murmur hash (murmur3). | |
| 71 * This should take 2-3x longer than SkChecksum::Compute, but is a considera
bly better hash. | |
| 72 * See en.wikipedia.org/wiki/MurmurHash. | |
| 73 * | |
| 74 * @param data Memory address of the data block to be processed. | |
| 75 * @param size Size of the data block in bytes. | |
| 76 * @param seed Initial hash seed. (optional) | |
| 77 * @return hash result | |
| 78 */ | |
| 79 static uint32_t Murmur3(const void* data, size_t bytes, uint32_t seed=0) { | |
| 80 // Use may_alias to remind the compiler we're intentionally violating st
rict aliasing, | |
| 81 // and so not to apply strict-aliasing-based optimizations. | |
| 82 typedef uint32_t SK_ATTRIBUTE(may_alias) aliased_uint32_t; | |
| 83 typedef uint8_t SK_ATTRIBUTE(may_alias) aliased_uint8_t; | |
| 84 | |
| 85 // Handle 4 bytes at a time while possible. | |
| 86 const aliased_uint32_t* safe_data = (const aliased_uint32_t*)data; | |
| 87 const size_t words = bytes/4; | |
| 88 uint32_t hash = seed; | |
| 89 for (size_t i = 0; i < words; i++) { | |
| 90 uint32_t k = safe_data[i]; | |
| 91 k *= 0xcc9e2d51; | |
| 92 k = (k << 15) | (k >> 17); | |
| 93 k *= 0x1b873593; | |
| 94 | |
| 95 hash ^= k; | |
| 96 hash = (hash << 13) | (hash >> 19); | |
| 97 hash *= 5; | |
| 98 hash += 0xe6546b64; | |
| 99 } | |
| 100 | |
| 101 // Handle last 0-3 bytes. | |
| 102 const aliased_uint8_t* safe_tail = (const uint8_t*)(safe_data + words); | |
| 103 uint32_t k = 0; | |
| 104 switch (bytes & 3) { | |
| 105 case 3: k ^= safe_tail[2] << 16; | |
| 106 case 2: k ^= safe_tail[1] << 8; | |
| 107 case 1: k ^= safe_tail[0] << 0; | |
| 108 k *= 0xcc9e2d51; | |
| 109 k = (k << 15) | (k >> 17); | |
| 110 k *= 0x1b873593; | |
| 111 hash ^= k; | |
| 112 } | |
| 113 | |
| 114 hash ^= bytes; | |
| 115 return Mix(hash); | |
| 116 } | |
| 117 | |
| 118 /** | |
| 119 * Compute a 32-bit checksum for a given data block | |
| 120 * | |
| 121 * WARNING: this algorithm is tuned for efficiency, not backward/forward | |
| 122 * compatibility. It may change at any time, so a checksum generated with | |
| 123 * one version of the Skia code may not match a checksum generated with | |
| 124 * a different version of the Skia code. | |
| 125 * | |
| 126 * @param data Memory address of the data block to be processed. Must be | |
| 127 * 32-bit aligned. | |
| 128 * @param size Size of the data block in bytes. Must be a multiple of 4. | |
| 129 * @return checksum result | |
| 130 */ | |
| 131 static uint32_t Compute(const uint32_t* data, size_t size) { | |
| 132 // Use may_alias to remind the compiler we're intentionally violating st
rict aliasing, | |
| 133 // and so not to apply strict-aliasing-based optimizations. | |
| 134 typedef uint32_t SK_ATTRIBUTE(may_alias) aliased_uint32_t; | |
| 135 const aliased_uint32_t* safe_data = (const aliased_uint32_t*)data; | |
| 136 | |
| 137 SkASSERT(SkIsAlign4(size)); | |
| 138 | |
| 139 /* | |
| 140 * We want to let the compiler use 32bit or 64bit addressing and math | |
| 141 * so we use uintptr_t as our magic type. This makes the code a little | |
| 142 * more obscure (we can't hard-code 32 or 64 anywhere, but have to use | |
| 143 * sizeof()). | |
| 144 */ | |
| 145 uintptr_t result = 0; | |
| 146 const uintptr_t* ptr = reinterpret_cast<const uintptr_t*>(safe_data); | |
| 147 | |
| 148 /* | |
| 149 * count the number of quad element chunks. This takes into account | |
| 150 * if we're on a 32bit or 64bit arch, since we use sizeof(uintptr_t) | |
| 151 * to compute how much to shift-down the size. | |
| 152 */ | |
| 153 size_t n4 = size / (sizeof(uintptr_t) << 2); | |
| 154 for (size_t i = 0; i < n4; ++i) { | |
| 155 result = Mash(result, *ptr++); | |
| 156 result = Mash(result, *ptr++); | |
| 157 result = Mash(result, *ptr++); | |
| 158 result = Mash(result, *ptr++); | |
| 159 } | |
| 160 size &= ((sizeof(uintptr_t) << 2) - 1); | |
| 161 | |
| 162 safe_data = reinterpret_cast<const aliased_uint32_t*>(ptr); | |
| 163 const aliased_uint32_t* stop = safe_data + (size >> 2); | |
| 164 while (safe_data < stop) { | |
| 165 result = Mash(result, *safe_data++); | |
| 166 } | |
| 167 | |
| 168 /* | |
| 169 * smash us down to 32bits if we were 64. Note that when uintptr_t is | |
| 170 * 32bits, this code-path should go away, but I still got a warning | |
| 171 * when I wrote | |
| 172 * result ^= result >> 32; | |
| 173 * since >>32 is undefined for 32bit ints, hence the wacky HALFBITS | |
| 174 * define. | |
| 175 */ | |
| 176 if (8 == sizeof(result)) { | |
| 177 result ^= result >> HALFBITS; | |
| 178 } | |
| 179 return static_cast<uint32_t>(result); | |
| 180 } | |
| 181 }; | |
| 182 | |
| 183 // SkGoodHash should usually be your first choice in hashing data. | |
| 184 // It should be both reasonably fast and high quality. | |
| 185 | |
| 186 template <typename K> | |
| 187 uint32_t SkGoodHash(const K& k) { | |
| 188 if (sizeof(K) == 4) { | |
| 189 return SkChecksum::Mix(*(const uint32_t*)&k); | |
| 190 } | |
| 191 return SkChecksum::Murmur3(&k, sizeof(K)); | |
| 192 } | |
| 193 | |
| 194 inline uint32_t SkGoodHash(const SkString& k) { | |
| 195 return SkChecksum::Murmur3(k.c_str(), k.size()); | |
| 196 } | |
| 197 | |
| 198 #endif | |
| OLD | NEW |