OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #ifndef SkTHash_DEFINED | |
9 #define SkTHash_DEFINED | |
10 | |
11 #include "SkChecksum.h" | |
12 #include "SkTypes.h" | |
13 #include "SkTemplates.h" | |
14 | |
15 // Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHash
Set works for you. | |
16 // They're easier to use, usually perform the same, and have fewer sharp edges. | |
17 | |
18 // T and K are treated as ordinary copyable C++ types. | |
19 // Traits must have: | |
20 // - static K GetKey(T) | |
21 // - static uint32_t Hash(K) | |
22 // If the key is large and stored inside T, you may want to make K a const&. | |
23 // Similarly, if T is large you might want it to be a pointer. | |
24 template <typename T, typename K, typename Traits = T> | |
25 class SkTHashTable : SkNoncopyable { | |
26 public: | |
27 SkTHashTable() : fCount(0), fRemoved(0), fCapacity(0) {} | |
28 | |
29 // Clear the table. | |
30 void reset() { | |
31 this->~SkTHashTable(); | |
32 SkNEW_PLACEMENT(this, SkTHashTable); | |
33 } | |
34 | |
35 // How many entries are in the table? | |
36 int count() const { return fCount; } | |
37 | |
38 // !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!
!!!! | |
39 // set(), find() and foreach() all allow mutable access to table entries. | |
40 // If you change an entry so that it no longer has the same key, all hell | |
41 // will break loose. Do not do that! | |
42 // | |
43 // Please prefer to use SkTHashMap or SkTHashSet, which do not have this dan
ger. | |
44 | |
45 // The pointers returned by set() and find() are valid only until the next c
all to set(). | |
46 // The pointers you receive in foreach() are only valid for its duration. | |
47 | |
48 // Copy val into the hash table, returning a pointer to the copy now in the
table. | |
49 // If there already is an entry in the table with the same key, we overwrite
it. | |
50 T* set(const T& val) { | |
51 if (4 * (fCount+fRemoved) >= 3 * fCapacity) { | |
52 this->resize(fCapacity > 0 ? fCapacity * 2 : 4); | |
53 } | |
54 return this->uncheckedSet(val); | |
55 } | |
56 | |
57 // If there is an entry in the table with this key, return a pointer to it.
If not, NULL. | |
58 T* find(const K& key) const { | |
59 uint32_t hash = Hash(key); | |
60 int index = hash & (fCapacity-1); | |
61 for (int n = 0; n < fCapacity; n++) { | |
62 Slot& s = fSlots[index]; | |
63 if (s.empty()) { | |
64 return NULL; | |
65 } | |
66 if (!s.removed() && hash == s.hash && key == Traits::GetKey(s.val))
{ | |
67 return &s.val; | |
68 } | |
69 index = this->next(index, n); | |
70 } | |
71 SkASSERT(fCapacity == 0); | |
72 return NULL; | |
73 } | |
74 | |
75 // Remove the value with this key from the hash table. | |
76 void remove(const K& key) { | |
77 SkASSERT(this->find(key)); | |
78 | |
79 uint32_t hash = Hash(key); | |
80 int index = hash & (fCapacity-1); | |
81 for (int n = 0; n < fCapacity; n++) { | |
82 Slot& s = fSlots[index]; | |
83 SkASSERT(!s.empty()); | |
84 if (!s.removed() && hash == s.hash && key == Traits::GetKey(s.val))
{ | |
85 fRemoved++; | |
86 fCount--; | |
87 s.markRemoved(); | |
88 return; | |
89 } | |
90 index = this->next(index, n); | |
91 } | |
92 SkASSERT(fCapacity == 0); | |
93 } | |
94 | |
95 // Call fn on every entry in the table. You may mutate the entries, but be
very careful. | |
96 template <typename Fn> // f(T*) | |
97 void foreach(Fn&& fn) { | |
98 for (int i = 0; i < fCapacity; i++) { | |
99 if (!fSlots[i].empty() && !fSlots[i].removed()) { | |
100 fn(&fSlots[i].val); | |
101 } | |
102 } | |
103 } | |
104 | |
105 // Call fn on every entry in the table. You may not mutate anything. | |
106 template <typename Fn> // f(T) or f(const T&) | |
107 void foreach(Fn&& fn) const { | |
108 for (int i = 0; i < fCapacity; i++) { | |
109 if (!fSlots[i].empty() && !fSlots[i].removed()) { | |
110 fn(fSlots[i].val); | |
111 } | |
112 } | |
113 } | |
114 | |
115 private: | |
116 T* uncheckedSet(const T& val) { | |
117 const K& key = Traits::GetKey(val); | |
118 uint32_t hash = Hash(key); | |
119 int index = hash & (fCapacity-1); | |
120 for (int n = 0; n < fCapacity; n++) { | |
121 Slot& s = fSlots[index]; | |
122 if (s.empty() || s.removed()) { | |
123 // New entry. | |
124 if (s.removed()) { | |
125 fRemoved--; | |
126 } | |
127 s.val = val; | |
128 s.hash = hash; | |
129 fCount++; | |
130 return &s.val; | |
131 } | |
132 if (hash == s.hash && key == Traits::GetKey(s.val)) { | |
133 // Overwrite previous entry. | |
134 // Note: this triggers extra copies when adding the same value r
epeatedly. | |
135 s.val = val; | |
136 return &s.val; | |
137 } | |
138 index = this->next(index, n); | |
139 } | |
140 SkASSERT(false); | |
141 return NULL; | |
142 } | |
143 | |
144 void resize(int capacity) { | |
145 int oldCapacity = fCapacity; | |
146 SkDEBUGCODE(int oldCount = fCount); | |
147 | |
148 fCount = fRemoved = 0; | |
149 fCapacity = capacity; | |
150 SkAutoTArray<Slot> oldSlots(capacity); | |
151 oldSlots.swap(fSlots); | |
152 | |
153 for (int i = 0; i < oldCapacity; i++) { | |
154 const Slot& s = oldSlots[i]; | |
155 if (!s.empty() && !s.removed()) { | |
156 this->uncheckedSet(s.val); | |
157 } | |
158 } | |
159 SkASSERT(fCount == oldCount); | |
160 } | |
161 | |
162 int next(int index, int n) const { | |
163 // A valid strategy explores all slots in [0, fCapacity) as n walks from
0 to fCapacity-1. | |
164 // Both of these strategies are valid: | |
165 //return (index + 0 + 1) & (fCapacity-1); // Linear probing. | |
166 return (index + n + 1) & (fCapacity-1); // Quadratic probing. | |
167 } | |
168 | |
169 static uint32_t Hash(const K& key) { | |
170 uint32_t hash = Traits::Hash(key); | |
171 return hash < 2 ? hash+2 : hash; // We reserve hash 0 and 1 to mark emp
ty or removed slots. | |
172 } | |
173 | |
174 struct Slot { | |
175 Slot() : hash(0) {} | |
176 bool empty() const { return this->hash == 0; } | |
177 bool removed() const { return this->hash == 1; } | |
178 | |
179 void markRemoved() { this->hash = 1; } | |
180 | |
181 T val; | |
182 uint32_t hash; | |
183 }; | |
184 | |
185 int fCount, fRemoved, fCapacity; | |
186 SkAutoTArray<Slot> fSlots; | |
187 }; | |
188 | |
189 // Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for mo
st use cases. | |
190 // K and V are treated as ordinary copyable C++ types, with no assumed relations
hip between the two. | |
191 template <typename K, typename V, uint32_t(*HashK)(const K&) = &SkGoodHash> | |
192 class SkTHashMap : SkNoncopyable { | |
193 public: | |
194 SkTHashMap() {} | |
195 | |
196 // Clear the map. | |
197 void reset() { fTable.reset(); } | |
198 | |
199 // How many key/value pairs are in the table? | |
200 int count() const { return fTable.count(); } | |
201 | |
202 // N.B. The pointers returned by set() and find() are valid only until the n
ext call to set(). | |
203 | |
204 // Set key to val in the table, replacing any previous value with the same k
ey. | |
205 // We copy both key and val, and return a pointer to the value copy now in t
he table. | |
206 V* set(const K& key, const V& val) { | |
207 Pair in = { key, val }; | |
208 Pair* out = fTable.set(in); | |
209 return &out->val; | |
210 } | |
211 | |
212 // If there is key/value entry in the table with this key, return a pointer
to the value. | |
213 // If not, return NULL. | |
214 V* find(const K& key) const { | |
215 if (Pair* p = fTable.find(key)) { | |
216 return &p->val; | |
217 } | |
218 return NULL; | |
219 } | |
220 | |
221 // Remove the key/value entry in the table with this key. | |
222 void remove(const K& key) { | |
223 SkASSERT(this->find(key)); | |
224 fTable.remove(key); | |
225 } | |
226 | |
227 // Call fn on every key/value pair in the table. You may mutate the value b
ut not the key. | |
228 template <typename Fn> // f(K, V*) or f(const K&, V*) | |
229 void foreach(Fn&& fn) { | |
230 fTable.foreach([&fn](Pair* p){ fn(p->key, &p->val); }); | |
231 } | |
232 | |
233 // Call fn on every key/value pair in the table. You may not mutate anythin
g. | |
234 template <typename Fn> // f(K, V), f(const K&, V), f(K, const V&) or f(cons
t K&, const V&). | |
235 void foreach(Fn&& fn) const { | |
236 fTable.foreach([&fn](const Pair& p){ fn(p.key, p.val); }); | |
237 } | |
238 | |
239 private: | |
240 struct Pair { | |
241 K key; | |
242 V val; | |
243 static const K& GetKey(const Pair& p) { return p.key; } | |
244 static uint32_t Hash(const K& key) { return HashK(key); } | |
245 }; | |
246 | |
247 SkTHashTable<Pair, K> fTable; | |
248 }; | |
249 | |
250 // A set of T. T is treated as an ordiary copyable C++ type. | |
251 template <typename T, uint32_t(*HashT)(const T&) = &SkGoodHash> | |
252 class SkTHashSet : SkNoncopyable { | |
253 public: | |
254 SkTHashSet() {} | |
255 | |
256 // Clear the set. | |
257 void reset() { fTable.reset(); } | |
258 | |
259 // How many items are in the set? | |
260 int count() const { return fTable.count(); } | |
261 | |
262 // Copy an item into the set. | |
263 void add(const T& item) { fTable.set(item); } | |
264 | |
265 // Is this item in the set? | |
266 bool contains(const T& item) const { return SkToBool(this->find(item)); } | |
267 | |
268 // If an item equal to this is in the set, return a pointer to it, otherwise
null. | |
269 // This pointer remains valid until the next call to add(). | |
270 const T* find(const T& item) const { return fTable.find(item); } | |
271 | |
272 // Remove the item in the set equal to this. | |
273 void remove(const T& item) { | |
274 SkASSERT(this->contains(item)); | |
275 fTable.remove(item); | |
276 } | |
277 | |
278 // Call fn on every item in the set. You may not mutate anything. | |
279 template <typename Fn> // f(T), f(const T&) | |
280 void foreach (Fn&& fn) const { | |
281 fTable.foreach(fn); | |
282 } | |
283 | |
284 private: | |
285 struct Traits { | |
286 static const T& GetKey(const T& item) { return item; } | |
287 static uint32_t Hash(const T& item) { return HashT(item); } | |
288 }; | |
289 SkTHashTable<T, T, Traits> fTable; | |
290 }; | |
291 | |
292 #endif//SkTHash_DEFINED | |
OLD | NEW |