| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "GrAAConvexTessellator.h" | 8 #include "GrAAConvexTessellator.h" |
| 9 #include "SkCanvas.h" | 9 #include "SkCanvas.h" |
| 10 #include "SkPath.h" | 10 #include "SkPath.h" |
| 11 #include "SkPoint.h" | 11 #include "SkPoint.h" |
| 12 #include "SkString.h" | 12 #include "SkString.h" |
| 13 #include "GrPathUtils.h" | 13 #include "GrPathUtils.h" |
| 14 | 14 |
| 15 // Next steps: | 15 // Next steps: |
| 16 // use in AAConvexPathRenderer |
| 16 // add an interactive sample app slide | 17 // add an interactive sample app slide |
| 17 // add debug check that all points are suitably far apart | 18 // add debug check that all points are suitably far apart |
| 18 // test more degenerate cases | 19 // test more degenerate cases |
| 19 | 20 |
| 20 // The tolerance for fusing vertices and eliminating colinear lines (It is in de
vice space). | 21 // The tolerance for fusing vertices and eliminating colinear lines (It is in de
vice space). |
| 21 static const SkScalar kClose = (SK_Scalar1 / 16); | 22 static const SkScalar kClose = (SK_Scalar1 / 16); |
| 22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | 23 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
| 23 | 24 |
| 24 // tesselation tolerance values, in device space pixels | |
| 25 static const SkScalar kQuadTolerance = 0.2f; | |
| 26 static const SkScalar kCubicTolerance = 0.2f; | |
| 27 static const SkScalar kConicTolerance = 0.5f; | |
| 28 | |
| 29 // dot product below which we use a round cap between curve segments | |
| 30 static const SkScalar kRoundCapThreshold = 0.8f; | |
| 31 | |
| 32 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, | 25 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, |
| 33 const SkPoint& p1, const SkPoint& n1) { | 26 const SkPoint& p1, const SkPoint& n1) { |
| 34 const SkPoint v = p1 - p0; | 27 const SkPoint v = p1 - p0; |
| 28 |
| 35 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; | 29 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
| 36 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; | 30 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
| 37 } | 31 } |
| 38 | 32 |
| 39 // This is a special case version of intersect where we have the vector | 33 // This is a special case version of intersect where we have the vector |
| 40 // perpendicular to the second line rather than the vector parallel to it. | 34 // perpendicular to the second line rather than the vector parallel to it. |
| 41 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, | 35 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, |
| 42 const SkPoint& p1, const SkPoint& perp) { | 36 const SkPoint& p1, const SkPoint& perp) { |
| 43 const SkPoint v = p1 - p0; | 37 const SkPoint v = p1 - p0; |
| 44 SkScalar perpDot = n0.dot(perp); | 38 SkScalar perpDot = n0.dot(perp); |
| 45 return v.dot(perp) / perpDot; | 39 return v.dot(perp) / perpDot; |
| 46 } | 40 } |
| 47 | 41 |
| 48 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { | 42 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
| 49 SkScalar distSq = p0.distanceToSqd(p1); | 43 SkScalar distSq = p0.distanceToSqd(p1); |
| 50 return distSq < kCloseSqd; | 44 return distSq < kCloseSqd; |
| 51 } | 45 } |
| 52 | 46 |
| 53 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
kPoint& test) { | 47 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
kPoint& test) { |
| 54 SkPoint testV = test - p0; | 48 SkPoint testV = test - p0; |
| 55 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; | 49 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; |
| 56 return SkScalarAbs(dist); | 50 return SkScalarAbs(dist); |
| 57 } | 51 } |
| 58 | 52 |
| 59 int GrAAConvexTessellator::addPt(const SkPoint& pt, | 53 int GrAAConvexTessellator::addPt(const SkPoint& pt, |
| 60 SkScalar depth, | 54 SkScalar depth, |
| 61 SkScalar coverage, | |
| 62 bool movable, | 55 bool movable, |
| 63 bool isCurve) { | 56 bool isCurve) { |
| 64 this->validate(); | 57 this->validate(); |
| 65 | 58 |
| 66 int index = fPts.count(); | 59 int index = fPts.count(); |
| 67 *fPts.push() = pt; | 60 *fPts.push() = pt; |
| 68 *fCoverages.push() = coverage; | 61 *fDepths.push() = depth; |
| 69 *fMovable.push() = movable; | 62 *fMovable.push() = movable; |
| 70 *fIsCurve.push() = isCurve; | 63 *fIsCurve.push() = isCurve; |
| 71 | 64 |
| 72 this->validate(); | 65 this->validate(); |
| 73 return index; | 66 return index; |
| 74 } | 67 } |
| 75 | 68 |
| 76 void GrAAConvexTessellator::popLastPt() { | 69 void GrAAConvexTessellator::popLastPt() { |
| 77 this->validate(); | 70 this->validate(); |
| 78 | 71 |
| 79 fPts.pop(); | 72 fPts.pop(); |
| 80 fCoverages.pop(); | 73 fDepths.pop(); |
| 81 fMovable.pop(); | 74 fMovable.pop(); |
| 82 | 75 |
| 83 this->validate(); | 76 this->validate(); |
| 84 } | 77 } |
| 85 | 78 |
| 86 void GrAAConvexTessellator::popFirstPtShuffle() { | 79 void GrAAConvexTessellator::popFirstPtShuffle() { |
| 87 this->validate(); | 80 this->validate(); |
| 88 | 81 |
| 89 fPts.removeShuffle(0); | 82 fPts.removeShuffle(0); |
| 90 fCoverages.removeShuffle(0); | 83 fDepths.removeShuffle(0); |
| 91 fMovable.removeShuffle(0); | 84 fMovable.removeShuffle(0); |
| 92 | 85 |
| 93 this->validate(); | 86 this->validate(); |
| 94 } | 87 } |
| 95 | 88 |
| 96 void GrAAConvexTessellator::updatePt(int index, | 89 void GrAAConvexTessellator::updatePt(int index, |
| 97 const SkPoint& pt, | 90 const SkPoint& pt, |
| 98 SkScalar depth, | 91 SkScalar depth) { |
| 99 SkScalar coverage) { | |
| 100 this->validate(); | 92 this->validate(); |
| 101 SkASSERT(fMovable[index]); | 93 SkASSERT(fMovable[index]); |
| 102 | 94 |
| 103 fPts[index] = pt; | 95 fPts[index] = pt; |
| 104 fCoverages[index] = coverage; | 96 fDepths[index] = depth; |
| 105 } | 97 } |
| 106 | 98 |
| 107 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { | 99 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { |
| 108 if (i0 == i1 || i1 == i2 || i2 == i0) { | 100 if (i0 == i1 || i1 == i2 || i2 == i0) { |
| 109 return; | 101 return; |
| 110 } | 102 } |
| 111 | 103 |
| 112 *fIndices.push() = i0; | 104 *fIndices.push() = i0; |
| 113 *fIndices.push() = i1; | 105 *fIndices.push() = i1; |
| 114 *fIndices.push() = i2; | 106 *fIndices.push() = i2; |
| 115 } | 107 } |
| 116 | 108 |
| 117 void GrAAConvexTessellator::rewind() { | 109 void GrAAConvexTessellator::rewind() { |
| 118 fPts.rewind(); | 110 fPts.rewind(); |
| 119 fCoverages.rewind(); | 111 fDepths.rewind(); |
| 120 fMovable.rewind(); | 112 fMovable.rewind(); |
| 121 fIndices.rewind(); | 113 fIndices.rewind(); |
| 122 fNorms.rewind(); | 114 fNorms.rewind(); |
| 123 fInitialRing.rewind(); | 115 fInitialRing.rewind(); |
| 124 fCandidateVerts.rewind(); | 116 fCandidateVerts.rewind(); |
| 125 #if GR_AA_CONVEX_TESSELLATOR_VIZ | 117 #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| 126 fRings.rewind(); // TODO: leak in this case! | 118 fRings.rewind(); // TODO: leak in this case! |
| 127 #else | 119 #else |
| 128 fRings[0].rewind(); | 120 fRings[0].rewind(); |
| 129 fRings[1].rewind(); | 121 fRings[1].rewind(); |
| (...skipping 14 matching lines...) Expand all Loading... |
| 144 fBisectors[cur] += other; | 136 fBisectors[cur] += other; |
| 145 SkAssertResult(fBisectors[cur].normalize()); | 137 SkAssertResult(fBisectors[cur].normalize()); |
| 146 } else { | 138 } else { |
| 147 fBisectors[cur].negate(); // make the bisector face in | 139 fBisectors[cur].negate(); // make the bisector face in |
| 148 } | 140 } |
| 149 | 141 |
| 150 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); | 142 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); |
| 151 } | 143 } |
| 152 } | 144 } |
| 153 | 145 |
| 154 // Create as many rings as we need to (up to a predefined limit) to reach the sp
ecified target | |
| 155 // depth. If we are in fill mode, the final ring will automatically be fanned. | |
| 156 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initia
lDepth, | |
| 157 SkScalar initialCoverage, SkScalar
targetDepth, | |
| 158 SkScalar targetCoverage, Ring** fin
alRing) { | |
| 159 static const int kMaxNumRings = 8; | |
| 160 | |
| 161 if (previousRing.numPts() < 3) { | |
| 162 return false; | |
| 163 } | |
| 164 Ring* currentRing = &previousRing; | |
| 165 int i; | |
| 166 for (i = 0; i < kMaxNumRings; ++i) { | |
| 167 Ring* nextRing = this->getNextRing(currentRing); | |
| 168 SkASSERT(nextRing != currentRing); | |
| 169 | |
| 170 bool done = this->createInsetRing(*currentRing, nextRing, initialDepth,
initialCoverage, | |
| 171 targetDepth, targetCoverage, i == 0); | |
| 172 currentRing = nextRing; | |
| 173 if (done) { | |
| 174 break; | |
| 175 } | |
| 176 currentRing->init(*this); | |
| 177 } | |
| 178 | |
| 179 if (kMaxNumRings == i) { | |
| 180 // Bail if we've exceeded the amount of time we want to throw at this. | |
| 181 this->terminate(*currentRing); | |
| 182 return false; | |
| 183 } | |
| 184 bool done = currentRing->numPts() >= 3; | |
| 185 if (done) { | |
| 186 currentRing->init(*this); | |
| 187 } | |
| 188 *finalRing = currentRing; | |
| 189 return done; | |
| 190 } | |
| 191 | |
| 192 // The general idea here is to, conceptually, start with the original polygon an
d slide | 146 // The general idea here is to, conceptually, start with the original polygon an
d slide |
| 193 // the vertices along the bisectors until the first intersection. At that | 147 // the vertices along the bisectors until the first intersection. At that |
| 194 // point two of the edges collapse and the process repeats on the new polygon. | 148 // point two of the edges collapse and the process repeats on the new polygon. |
| 195 // The polygon state is captured in the Ring class while the GrAAConvexTessellat
or | 149 // The polygon state is captured in the Ring class while the GrAAConvexTessellat
or |
| 196 // controls the iteration. The CandidateVerts holds the formative points for the | 150 // controls the iteration. The CandidateVerts holds the formative points for the |
| 197 // next ring. | 151 // next ring. |
| 198 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { | 152 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { |
| 153 static const int kMaxNumRings = 8; |
| 154 |
| 155 SkDEBUGCODE(fShouldCheckDepths = true;) |
| 156 |
| 199 if (!this->extractFromPath(m, path)) { | 157 if (!this->extractFromPath(m, path)) { |
| 200 return false; | 158 return false; |
| 201 } | 159 } |
| 202 | 160 |
| 203 SkScalar coverage = 1.0f; | 161 this->createOuterRing(); |
| 204 if (fStrokeWidth >= 0.0f) { | |
| 205 Ring outerStrokeRing; | |
| 206 this->createOuterRing(fInitialRing, fStrokeWidth / 2 - kAntialiasingRadi
us, coverage, | |
| 207 &outerStrokeRing); | |
| 208 outerStrokeRing.init(*this); | |
| 209 Ring outerAARing; | |
| 210 this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &o
uterAARing); | |
| 211 } else { | |
| 212 Ring outerAARing; | |
| 213 this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAAR
ing); | |
| 214 } | |
| 215 | 162 |
| 216 // the bisectors are only needed for the computation of the outer ring | 163 // the bisectors are only needed for the computation of the outer ring |
| 217 fBisectors.rewind(); | 164 fBisectors.rewind(); |
| 218 if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) { | 165 |
| 219 Ring* insetStrokeRing; | 166 Ring* lastRing = &fInitialRing; |
| 220 SkScalar strokeDepth = fStrokeWidth / 2 - kAntialiasingRadius; | 167 int i; |
| 221 if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, co
verage, | 168 for (i = 0; i < kMaxNumRings; ++i) { |
| 222 &insetStrokeRing)) { | 169 Ring* nextRing = this->getNextRing(lastRing); |
| 223 Ring* insetAARing; | 170 |
| 224 this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, stro
keDepth + | 171 if (this->createInsetRing(*lastRing, nextRing)) { |
| 225 kAntialiasingRadius * 2, 0.0f, &insetAARing); | 172 break; |
| 226 } | 173 } |
| 227 } else { | 174 |
| 228 Ring* insetAARing; | 175 nextRing->init(*this); |
| 229 this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.
0f, &insetAARing); | 176 lastRing = nextRing; |
| 230 } | 177 } |
| 231 | 178 |
| 232 SkDEBUGCODE(this->validate();) | 179 if (kMaxNumRings == i) { |
| 180 // If we've exceeded the amount of time we want to throw at this, set |
| 181 // the depth of all points in the final ring to 'fTargetDepth' and |
| 182 // create a fan. |
| 183 this->terminate(*lastRing); |
| 184 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 185 } |
| 186 |
| 187 #ifdef SK_DEBUG |
| 188 this->validate(); |
| 189 if (fShouldCheckDepths) { |
| 190 SkDEBUGCODE(this->checkAllDepths();) |
| 191 } |
| 192 #endif |
| 233 return true; | 193 return true; |
| 234 } | 194 } |
| 235 | 195 |
| 236 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint&
p) const { | 196 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint&
p) const { |
| 237 SkASSERT(edgeIdx < fNorms.count()); | 197 SkASSERT(edgeIdx < fNorms.count()); |
| 238 | 198 |
| 239 SkPoint v = p - fPts[edgeIdx]; | 199 SkPoint v = p - fPts[edgeIdx]; |
| 240 SkScalar depth = -fNorms[edgeIdx].dot(v); | 200 SkScalar depth = -fNorms[edgeIdx].dot(v); |
| 201 SkASSERT(depth >= 0.0f); |
| 241 return depth; | 202 return depth; |
| 242 } | 203 } |
| 243 | 204 |
| 244 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies | 205 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies |
| 245 // along the 'bisector' from the 'startIdx'-th point. | 206 // along the 'bisector' from the 'startIdx'-th point. |
| 246 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, | 207 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, |
| 247 const SkVector& bisector, | 208 const SkVector& bisector, |
| 248 int edgeIdx, | 209 int edgeIdx, |
| 249 SkScalar desiredDepth, | 210 SkScalar desiredDepth, |
| 250 SkPoint* result) const { | 211 SkPoint* result) const { |
| 251 const SkPoint& norm = fNorms[edgeIdx]; | 212 const SkPoint& norm = fNorms[edgeIdx]; |
| 252 | 213 |
| 253 // First find the point where the edge and the bisector intersect | 214 // First find the point where the edge and the bisector intersect |
| 254 SkPoint newP; | 215 SkPoint newP; |
| 255 | |
| 256 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); | 216 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); |
| 257 if (SkScalarNearlyEqual(t, 0.0f)) { | 217 if (SkScalarNearlyEqual(t, 0.0f)) { |
| 258 // the start point was one of the original ring points | 218 // the start point was one of the original ring points |
| 259 SkASSERT(startIdx < fPts.count()); | 219 SkASSERT(startIdx < fNorms.count()); |
| 260 newP = fPts[startIdx]; | 220 newP = fPts[startIdx]; |
| 261 } else if (t < 0.0f) { | 221 } else if (t > 0.0f) { |
| 222 SkASSERT(t < 0.0f); |
| 262 newP = bisector; | 223 newP = bisector; |
| 263 newP.scale(t); | 224 newP.scale(t); |
| 264 newP += fPts[startIdx]; | 225 newP += fPts[startIdx]; |
| 265 } else { | 226 } else { |
| 266 return false; | 227 return false; |
| 267 } | 228 } |
| 268 | 229 |
| 269 // Then offset along the bisector from that point the correct distance | 230 // Then offset along the bisector from that point the correct distance |
| 270 SkScalar dot = bisector.dot(norm); | 231 t = -desiredDepth / bisector.dot(norm); |
| 271 t = -desiredDepth / dot; | 232 SkASSERT(t > 0.0f); |
| 272 *result = bisector; | 233 *result = bisector; |
| 273 result->scale(t); | 234 result->scale(t); |
| 274 *result += newP; | 235 *result += newP; |
| 275 | 236 |
| 237 |
| 276 return true; | 238 return true; |
| 277 } | 239 } |
| 278 | 240 |
| 279 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
h) { | 241 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
h) { |
| 280 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); | 242 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); |
| 281 | 243 |
| 282 // Outer ring: 3*numPts | 244 // Outer ring: 3*numPts |
| 283 // Middle ring: numPts | 245 // Middle ring: numPts |
| 284 // Presumptive inner ring: numPts | 246 // Presumptive inner ring: numPts |
| 285 this->reservePts(5*path.countPoints()); | 247 this->reservePts(5*path.countPoints()); |
| 286 // Outer ring: 12*numPts | 248 // Outer ring: 12*numPts |
| 287 // Middle ring: 0 | 249 // Middle ring: 0 |
| 288 // Presumptive inner ring: 6*numPts + 6 | 250 // Presumptive inner ring: 6*numPts + 6 |
| 289 fIndices.setReserve(18*path.countPoints() + 6); | 251 fIndices.setReserve(18*path.countPoints() + 6); |
| 290 | 252 |
| 291 fNorms.setReserve(path.countPoints()); | 253 fNorms.setReserve(path.countPoints()); |
| 292 | 254 |
| 255 SkDEBUGCODE(fMinCross = SK_ScalarMax;) |
| 256 SkDEBUGCODE(fMaxCross = -SK_ScalarMax;) |
| 257 |
| 293 // TODO: is there a faster way to extract the points from the path? Perhaps | 258 // TODO: is there a faster way to extract the points from the path? Perhaps |
| 294 // get all the points via a new entry point, transform them all in bulk | 259 // get all the points via a new entry point, transform them all in bulk |
| 295 // and then walk them to find duplicates? | 260 // and then walk them to find duplicates? |
| 296 SkPath::Iter iter(path, true); | 261 SkPath::Iter iter(path, true); |
| 297 SkPoint pts[4]; | 262 SkPoint pts[4]; |
| 298 SkPath::Verb verb; | 263 SkPath::Verb verb; |
| 299 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | 264 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| 300 switch (verb) { | 265 switch (verb) { |
| 301 case SkPath::kLine_Verb: | 266 case SkPath::kLine_Verb: |
| 302 this->lineTo(m, pts[1], false); | 267 this->lineTo(m, pts[1], false); |
| 303 break; | 268 break; |
| 304 case SkPath::kQuad_Verb: | 269 case SkPath::kQuad_Verb: |
| 305 this->quadTo(m, pts); | 270 this->quadTo(m, pts); |
| 306 break; | 271 break; |
| 307 case SkPath::kCubic_Verb: | 272 case SkPath::kCubic_Verb: |
| 308 this->cubicTo(m, pts); | 273 this->cubicTo(m, pts); |
| 309 break; | 274 break; |
| 310 case SkPath::kConic_Verb: | 275 case SkPath::kConic_Verb: |
| 311 this->conicTo(m, pts, iter.conicWeight()); | 276 this->conicTo(m, pts, iter.conicWeight()); |
| 312 break; | 277 break; |
| 313 case SkPath::kMove_Verb: | 278 case SkPath::kMove_Verb: |
| 314 case SkPath::kClose_Verb: | 279 case SkPath::kClose_Verb: |
| 315 case SkPath::kDone_Verb: | 280 case SkPath::kDone_Verb: |
| 316 break; | 281 break; |
| 317 } | 282 } |
| 318 } | 283 } |
| 319 | 284 |
| 320 if (this->numPts() < 2) { | 285 if (this->numPts() < 3) { |
| 321 return false; | 286 return false; |
| 322 } | 287 } |
| 323 | 288 |
| 324 // check if last point is a duplicate of the first point. If so, remove it. | 289 // check if last point is a duplicate of the first point. If so, remove it. |
| 325 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { | 290 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { |
| 326 this->popLastPt(); | 291 this->popLastPt(); |
| 327 fNorms.pop(); | 292 fNorms.pop(); |
| 328 } | 293 } |
| 329 | 294 |
| 330 SkASSERT(fPts.count() == fNorms.count()+1); | 295 SkASSERT(fPts.count() == fNorms.count()+1); |
| 331 if (this->numPts() >= 3) { | 296 if (this->numPts() >= 3 && |
| 332 if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { | 297 abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { |
| 333 // The last point is on the line from the second to last to the firs
t point. | 298 // The last point is on the line from the second to last to the first po
int. |
| 334 this->popLastPt(); | 299 this->popLastPt(); |
| 335 fNorms.pop(); | 300 fNorms.pop(); |
| 336 } | |
| 337 | |
| 338 *fNorms.push() = fPts[0] - fPts.top(); | |
| 339 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | |
| 340 SkASSERT(len > 0.0f); | |
| 341 SkASSERT(fPts.count() == fNorms.count()); | |
| 342 } | 301 } |
| 343 | 302 |
| 344 if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]
) < kClose) { | 303 if (this->numPts() < 3) { |
| 304 return false; |
| 305 } |
| 306 |
| 307 *fNorms.push() = fPts[0] - fPts.top(); |
| 308 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
| 309 SkASSERT(len > 0.0f); |
| 310 SkASSERT(fPts.count() == fNorms.count()); |
| 311 |
| 312 if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { |
| 345 // The first point is on the line from the last to the second. | 313 // The first point is on the line from the last to the second. |
| 346 this->popFirstPtShuffle(); | 314 this->popFirstPtShuffle(); |
| 347 fNorms.removeShuffle(0); | 315 fNorms.removeShuffle(0); |
| 348 fNorms[0] = fPts[1] - fPts[0]; | 316 fNorms[0] = fPts[1] - fPts[0]; |
| 349 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); | 317 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); |
| 350 SkASSERT(len > 0.0f); | 318 SkASSERT(len > 0.0f); |
| 351 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); | 319 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); |
| 352 } | 320 } |
| 353 | 321 |
| 354 if (this->numPts() >= 3) { | 322 if (this->numPts() < 3) { |
| 355 // Check the cross product of the final trio | |
| 356 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); | |
| 357 if (cross > 0.0f) { | |
| 358 fSide = SkPoint::kRight_Side; | |
| 359 } else { | |
| 360 fSide = SkPoint::kLeft_Side; | |
| 361 } | |
| 362 | |
| 363 // Make all the normals face outwards rather than along the edge | |
| 364 for (int cur = 0; cur < fNorms.count(); ++cur) { | |
| 365 fNorms[cur].setOrthog(fNorms[cur], fSide); | |
| 366 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | |
| 367 } | |
| 368 | |
| 369 this->computeBisectors(); | |
| 370 } else if (this->numPts() == 2) { | |
| 371 // We've got two points, so we're degenerate. | |
| 372 if (fStrokeWidth < 0.0f) { | |
| 373 // it's a fill, so we don't need to worry about degenerate paths | |
| 374 return false; | |
| 375 } | |
| 376 // For stroking, we still need to process the degenerate path, so fix it
up | |
| 377 fSide = SkPoint::kLeft_Side; | |
| 378 | |
| 379 // Make all the normals face outwards rather than along the edge | |
| 380 for (int cur = 0; cur < fNorms.count(); ++cur) { | |
| 381 fNorms[cur].setOrthog(fNorms[cur], fSide); | |
| 382 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | |
| 383 } | |
| 384 | |
| 385 fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY)); | |
| 386 // we won't actually use the bisectors, so just push zeroes | |
| 387 fBisectors.push(SkPoint::Make(0.0, 0.0)); | |
| 388 fBisectors.push(SkPoint::Make(0.0, 0.0)); | |
| 389 } else { | |
| 390 return false; | 323 return false; |
| 391 } | 324 } |
| 392 | 325 |
| 326 // Check the cross product of the final trio |
| 327 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
| 328 SkDEBUGCODE(fMaxCross = SkTMax(fMaxCross, cross)); |
| 329 SkDEBUGCODE(fMinCross = SkTMin(fMinCross, cross)); |
| 330 SkASSERT((fMaxCross >= 0.0f) == (fMinCross >= 0.0f)); |
| 331 if (cross > 0.0f) { |
| 332 fSide = SkPoint::kRight_Side; |
| 333 } else { |
| 334 fSide = SkPoint::kLeft_Side; |
| 335 } |
| 336 |
| 337 // Make all the normals face outwards rather than along the edge |
| 338 for (int cur = 0; cur < fNorms.count(); ++cur) { |
| 339 fNorms[cur].setOrthog(fNorms[cur], fSide); |
| 340 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
| 341 } |
| 342 |
| 343 this->computeBisectors(); |
| 344 |
| 393 fCandidateVerts.setReserve(this->numPts()); | 345 fCandidateVerts.setReserve(this->numPts()); |
| 394 fInitialRing.setReserve(this->numPts()); | 346 fInitialRing.setReserve(this->numPts()); |
| 395 for (int i = 0; i < this->numPts(); ++i) { | 347 for (int i = 0; i < this->numPts(); ++i) { |
| 396 fInitialRing.addIdx(i, i); | 348 fInitialRing.addIdx(i, i); |
| 397 } | 349 } |
| 398 fInitialRing.init(fNorms, fBisectors); | 350 fInitialRing.init(fNorms, fBisectors); |
| 399 | 351 |
| 400 this->validate(); | 352 this->validate(); |
| 401 return true; | 353 return true; |
| 402 } | 354 } |
| 403 | 355 |
| 404 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing)
{ | 356 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing)
{ |
| 405 #if GR_AA_CONVEX_TESSELLATOR_VIZ | 357 #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| 406 Ring* ring = *fRings.push() = SkNEW(Ring); | 358 Ring* ring = *fRings.push() = SkNEW(Ring); |
| 407 ring->setReserve(fInitialRing.numPts()); | 359 ring->setReserve(fInitialRing.numPts()); |
| 408 ring->rewind(); | 360 ring->rewind(); |
| 409 return ring; | 361 return ring; |
| 410 #else | 362 #else |
| 411 // Flip flop back and forth between fRings[0] & fRings[1] | 363 // Flip flop back and forth between fRings[0] & fRings[1] |
| 412 int nextRing = (lastRing == &fRings[0]) ? 1 : 0; | 364 int nextRing = (lastRing == &fRings[0]) ? 1 : 0; |
| 413 fRings[nextRing].setReserve(fInitialRing.numPts()); | 365 fRings[nextRing].setReserve(fInitialRing.numPts()); |
| 414 fRings[nextRing].rewind(); | 366 fRings[nextRing].rewind(); |
| 415 return &fRings[nextRing]; | 367 return &fRings[nextRing]; |
| 416 #endif | 368 #endif |
| 417 } | 369 } |
| 418 | 370 |
| 419 void GrAAConvexTessellator::fanRing(const Ring& ring) { | 371 void GrAAConvexTessellator::fanRing(const Ring& ring) { |
| 420 // fan out from point 0 | 372 // fan out from point 0 |
| 421 int startIdx = ring.index(0); | 373 for (int cur = 1; cur < ring.numPts()-1; ++cur) { |
| 422 for (int cur = ring.numPts() - 2; cur >= 0; --cur) { | 374 this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); |
| 423 this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); | |
| 424 } | 375 } |
| 425 } | 376 } |
| 426 | 377 |
| 427 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar o
utset, | 378 void GrAAConvexTessellator::createOuterRing() { |
| 428 SkScalar coverage, Ring* nextRing) { | 379 // For now, we're only generating one outer ring (at the start). This |
| 429 const int numPts = previousRing.numPts(); | 380 // could be relaxed for stroking use cases. |
| 430 if (numPts == 0) { | 381 SkASSERT(0 == fIndices.count()); |
| 431 return; | 382 SkASSERT(fPts.count() == fNorms.count()); |
| 432 } | 383 |
| 384 const int numPts = fPts.count(); |
| 433 | 385 |
| 434 int prev = numPts - 1; | 386 int prev = numPts - 1; |
| 435 int lastPerpIdx = -1, firstPerpIdx = -1; | 387 int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2; |
| 388 for (int cur = 0; cur < numPts; ++cur) { |
| 389 if (fIsCurve[cur]) { |
| 390 // Inside a curve, we assume that the curvature is shallow enough (d
ue to tesselation) |
| 391 // that we only need one corner point. Mathematically, the distance
the corner point |
| 392 // gets shifted out should depend on the angle between the two line
segments (as in |
| 393 // mitering), but again due to tesselation we assume that this angle
is small and |
| 394 // therefore the correction factor is negligible and we do not bothe
r with it. |
| 436 | 395 |
| 437 const SkScalar outsetSq = SkScalarMul(outset, outset); | 396 // The bisector outset point |
| 438 SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit); | 397 SkPoint temp = fBisectors[cur]; |
| 439 miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq); | 398 temp.scale(-fTargetDepth); // the bisectors point in |
| 440 for (int cur = 0; cur < numPts; ++cur) { | 399 temp += fPts[cur]; |
| 441 int originalIdx = previousRing.index(cur); | |
| 442 // For each vertex of the original polygon we add at least two points to
the | |
| 443 // outset polygon - one extending perpendicular to each impinging edge.
Connecting these | |
| 444 // two points yields a bevel join. We need one additional point for a mi
tered join, and | |
| 445 // a round join requires one or more points depending upon curvature. | |
| 446 | 400 |
| 447 // The perpendicular point for the last edge | 401 // double-check our "sufficiently flat" assumption; we want the bise
ctor point to be |
| 448 SkPoint normal1 = previousRing.norm(prev); | 402 // close to the normal point. |
| 449 SkPoint perp1 = normal1; | 403 #define kFlatnessTolerance 1.0f |
| 450 perp1.scale(outset); | 404 SkDEBUGCODE(SkPoint prevNormal = fNorms[prev];) |
| 451 perp1 += this->point(originalIdx); | 405 SkDEBUGCODE(prevNormal.scale(fTargetDepth);) |
| 406 SkDEBUGCODE(prevNormal += fPts[cur];) |
| 407 SkASSERT((temp - prevNormal).length() < kFlatnessTolerance); |
| 452 | 408 |
| 453 // The perpendicular point for the next edge. | 409 newIdx1 = this->addPt(temp, -fTargetDepth, false, true); |
| 454 SkPoint normal2 = previousRing.norm(cur); | |
| 455 SkPoint perp2 = normal2; | |
| 456 perp2.scale(outset); | |
| 457 perp2 += fPts[originalIdx]; | |
| 458 | 410 |
| 459 bool isCurve = fIsCurve[originalIdx]; | 411 if (0 == cur) { |
| 460 | 412 // Store the index of the first perpendicular point to finish up |
| 461 // We know it isn't a duplicate of the prior point (since it and this | 413 firstPerpIdx = newIdx1; |
| 462 // one are just perpendicular offsets from the non-merged polygon points
) | 414 SkASSERT(-1 == lastPerpIdx); |
| 463 int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); | |
| 464 nextRing->addIdx(perp1Idx, originalIdx); | |
| 465 | |
| 466 int perp2Idx; | |
| 467 // For very shallow angles all the corner points could fuse. | |
| 468 if (duplicate_pt(perp2, this->point(perp1Idx))) { | |
| 469 perp2Idx = perp1Idx; | |
| 470 } else { | |
| 471 perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); | |
| 472 } | |
| 473 | |
| 474 if (perp2Idx != perp1Idx) { | |
| 475 if (isCurve) { | |
| 476 // bevel or round depending upon curvature | |
| 477 SkScalar dotProd = normal1.dot(normal2); | |
| 478 if (dotProd < kRoundCapThreshold) { | |
| 479 // Currently we "round" by creating a single extra point, wh
ich produces | |
| 480 // good results for common cases. For thick strokes with hig
h curvature, we will | |
| 481 // need to add more points; for the time being we simply fal
l back to software | |
| 482 // rendering for thick strokes. | |
| 483 SkPoint miter = previousRing.bisector(cur); | |
| 484 miter.setLength(-outset); | |
| 485 miter += fPts[originalIdx]; | |
| 486 | |
| 487 // For very shallow angles all the corner points could fuse | |
| 488 if (!duplicate_pt(miter, this->point(perp1Idx))) { | |
| 489 int miterIdx; | |
| 490 miterIdx = this->addPt(miter, -outset, coverage, false,
false); | |
| 491 nextRing->addIdx(miterIdx, originalIdx); | |
| 492 // The two triangles for the corner | |
| 493 this->addTri(originalIdx, perp1Idx, miterIdx); | |
| 494 this->addTri(originalIdx, miterIdx, perp2Idx); | |
| 495 } | |
| 496 } else { | |
| 497 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
| 498 } | |
| 499 } else { | 415 } else { |
| 500 switch (fJoin) { | 416 // The triangles for the previous edge |
| 501 case SkPaint::Join::kMiter_Join: { | 417 this->addTri(prev, newIdx1, cur); |
| 502 // The bisector outset point | 418 this->addTri(prev, lastPerpIdx, newIdx1); |
| 503 SkPoint miter = previousRing.bisector(cur); | |
| 504 SkScalar dotProd = normal1.dot(normal2); | |
| 505 SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotP
rod); | |
| 506 SkScalar lengthSq = outsetSq / sinHalfAngleSq; | |
| 507 if (lengthSq > miterLimitSq) { | |
| 508 // just bevel it | |
| 509 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
| 510 break; | |
| 511 } | |
| 512 miter.setLength(-SkScalarSqrt(lengthSq)); | |
| 513 miter += fPts[originalIdx]; | |
| 514 | |
| 515 // For very shallow angles all the corner points could f
use | |
| 516 if (!duplicate_pt(miter, this->point(perp1Idx))) { | |
| 517 int miterIdx; | |
| 518 miterIdx = this->addPt(miter, -outset, coverage, fal
se, false); | |
| 519 nextRing->addIdx(miterIdx, originalIdx); | |
| 520 // The two triangles for the corner | |
| 521 this->addTri(originalIdx, perp1Idx, miterIdx); | |
| 522 this->addTri(originalIdx, miterIdx, perp2Idx); | |
| 523 } | |
| 524 break; | |
| 525 } | |
| 526 case SkPaint::Join::kBevel_Join: | |
| 527 this->addTri(originalIdx, perp1Idx, perp2Idx); | |
| 528 break; | |
| 529 default: | |
| 530 // kRound_Join is unsupported for now. GrAALinearizingCo
nvexPathRenderer is | |
| 531 // only willing to draw mitered or beveled, so we should
never get here. | |
| 532 SkASSERT(false); | |
| 533 } | |
| 534 } | 419 } |
| 535 | 420 |
| 536 nextRing->addIdx(perp2Idx, originalIdx); | 421 prev = cur; |
| 422 // Track the last perpendicular outset point so we can construct the |
| 423 // trailing edge triangles. |
| 424 lastPerpIdx = newIdx1; |
| 537 } | 425 } |
| 426 else { |
| 427 // For each vertex of the original polygon we add three points to th
e |
| 428 // outset polygon - one extending perpendicular to each impinging ed
ge |
| 429 // and one along the bisector. Two triangles are added for each corn
er |
| 430 // and two are added along each edge. |
| 538 | 431 |
| 539 if (0 == cur) { | 432 // The perpendicular point for the last edge |
| 540 // Store the index of the first perpendicular point to finish up | 433 SkPoint temp = fNorms[prev]; |
| 541 firstPerpIdx = perp1Idx; | 434 temp.scale(fTargetDepth); |
| 542 SkASSERT(-1 == lastPerpIdx); | 435 temp += fPts[cur]; |
| 543 } else { | 436 |
| 544 // The triangles for the previous edge | 437 // We know it isn't a duplicate of the prior point (since it and thi
s |
| 545 int prevIdx = previousRing.index(prev); | 438 // one are just perpendicular offsets from the non-merged polygon po
ints) |
| 546 this->addTri(prevIdx, perp1Idx, originalIdx); | 439 newIdx0 = this->addPt(temp, -fTargetDepth, false, false); |
| 547 this->addTri(prevIdx, lastPerpIdx, perp1Idx); | 440 |
| 441 // The bisector outset point |
| 442 temp = fBisectors[cur]; |
| 443 temp.scale(-fTargetDepth); // the bisectors point in |
| 444 temp += fPts[cur]; |
| 445 |
| 446 // For very shallow angles all the corner points could fuse |
| 447 if (duplicate_pt(temp, this->point(newIdx0))) { |
| 448 newIdx1 = newIdx0; |
| 449 } else { |
| 450 newIdx1 = this->addPt(temp, -fTargetDepth, false, false); |
| 451 } |
| 452 |
| 453 // The perpendicular point for the next edge. |
| 454 temp = fNorms[cur]; |
| 455 temp.scale(fTargetDepth); |
| 456 temp += fPts[cur]; |
| 457 |
| 458 // For very shallow angles all the corner points could fuse. |
| 459 if (duplicate_pt(temp, this->point(newIdx1))) { |
| 460 newIdx2 = newIdx1; |
| 461 } else { |
| 462 newIdx2 = this->addPt(temp, -fTargetDepth, false, false); |
| 463 } |
| 464 |
| 465 if (0 == cur) { |
| 466 // Store the index of the first perpendicular point to finish up |
| 467 firstPerpIdx = newIdx0; |
| 468 SkASSERT(-1 == lastPerpIdx); |
| 469 } else { |
| 470 // The triangles for the previous edge |
| 471 this->addTri(prev, newIdx0, cur); |
| 472 this->addTri(prev, lastPerpIdx, newIdx0); |
| 473 } |
| 474 |
| 475 // The two triangles for the corner |
| 476 this->addTri(cur, newIdx0, newIdx1); |
| 477 this->addTri(cur, newIdx1, newIdx2); |
| 478 |
| 479 prev = cur; |
| 480 // Track the last perpendicular outset point so we can construct the |
| 481 // trailing edge triangles. |
| 482 lastPerpIdx = newIdx2; |
| 548 } | 483 } |
| 549 | |
| 550 // Track the last perpendicular outset point so we can construct the | |
| 551 // trailing edge triangles. | |
| 552 lastPerpIdx = perp2Idx; | |
| 553 prev = cur; | |
| 554 } | 484 } |
| 555 | 485 |
| 556 // pick up the final edge rect | 486 // pick up the final edge rect |
| 557 int lastIdx = previousRing.index(numPts - 1); | 487 this->addTri(numPts - 1, firstPerpIdx, 0); |
| 558 this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); | 488 this->addTri(numPts - 1, lastPerpIdx, firstPerpIdx); |
| 559 this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); | |
| 560 | 489 |
| 561 this->validate(); | 490 this->validate(); |
| 562 } | 491 } |
| 563 | 492 |
| 564 // Something went wrong in the creation of the next ring. If we're filling the s
hape, just go ahead | 493 // Something went wrong in the creation of the next ring. Mark the last good |
| 565 // and fan it. | 494 // ring as being at the desired depth and fan it. |
| 566 void GrAAConvexTessellator::terminate(const Ring& ring) { | 495 void GrAAConvexTessellator::terminate(const Ring& ring) { |
| 567 if (fStrokeWidth < 0.0f) { | 496 for (int i = 0; i < ring.numPts(); ++i) { |
| 568 this->fanRing(ring); | 497 fDepths[ring.index(i)] = fTargetDepth; |
| 569 } | 498 } |
| 570 } | |
| 571 | 499 |
| 572 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar
initialCoverage, | 500 this->fanRing(ring); |
| 573 SkScalar targetDepth, SkScalar targetCoverage) { | |
| 574 if (SkScalarNearlyEqual(initialDepth, targetDepth)) { | |
| 575 return targetCoverage; | |
| 576 } | |
| 577 SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) * | |
| 578 (targetCoverage - initialCoverage) + initialCoverage; | |
| 579 return SkScalarClampMax(result, 1.0f); | |
| 580 } | 501 } |
| 581 | 502 |
| 582 // return true when processing is complete | 503 // return true when processing is complete |
| 583 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
, | 504 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
) { |
| 584 SkScalar initialDepth, SkScalar init
ialCoverage, | |
| 585 SkScalar targetDepth, SkScalar targe
tCoverage, | |
| 586 bool forceNew) { | |
| 587 bool done = false; | 505 bool done = false; |
| 588 | 506 |
| 589 fCandidateVerts.rewind(); | 507 fCandidateVerts.rewind(); |
| 590 | 508 |
| 591 // Loop through all the points in the ring and find the intersection with th
e smallest depth | 509 // Loop through all the points in the ring and find the intersection with th
e smallest depth |
| 592 SkScalar minDist = SK_ScalarMax, minT = 0.0f; | 510 SkScalar minDist = SK_ScalarMax, minT = 0.0f; |
| 593 int minEdgeIdx = -1; | 511 int minEdgeIdx = -1; |
| 594 | 512 |
| 595 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | 513 for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
| 596 int next = (cur + 1) % lastRing.numPts(); | 514 int next = (cur + 1) % lastRing.numPts(); |
| 515 |
| 597 SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisec
tor(cur), | 516 SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisec
tor(cur), |
| 598 this->point(lastRing.index(next)), lastRing.bisec
tor(next)); | 517 this->point(lastRing.index(next)), lastRing.bisec
tor(next)); |
| 599 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); | 518 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); |
| 600 | 519 |
| 601 if (minDist > dist) { | 520 if (minDist > dist) { |
| 602 minDist = dist; | 521 minDist = dist; |
| 603 minT = t; | 522 minT = t; |
| 604 minEdgeIdx = cur; | 523 minEdgeIdx = cur; |
| 605 } | 524 } |
| 606 } | 525 } |
| 607 | 526 |
| 608 if (minEdgeIdx == -1) { | |
| 609 return false; | |
| 610 } | |
| 611 SkPoint newPt = lastRing.bisector(minEdgeIdx); | 527 SkPoint newPt = lastRing.bisector(minEdgeIdx); |
| 612 newPt.scale(minT); | 528 newPt.scale(minT); |
| 613 newPt += this->point(lastRing.index(minEdgeIdx)); | 529 newPt += this->point(lastRing.index(minEdgeIdx)); |
| 614 | 530 |
| 615 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx),
newPt); | 531 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx),
newPt); |
| 616 if (depth >= targetDepth) { | 532 if (depth >= fTargetDepth) { |
| 617 // None of the bisectors intersect before reaching the desired depth. | 533 // None of the bisectors intersect before reaching the desired depth. |
| 618 // Just step them all to the desired depth | 534 // Just step them all to the desired depth |
| 619 depth = targetDepth; | 535 depth = fTargetDepth; |
| 620 done = true; | 536 done = true; |
| 621 } | 537 } |
| 622 | 538 |
| 623 // 'dst' stores where each point in the last ring maps to/transforms into | 539 // 'dst' stores where each point in the last ring maps to/transforms into |
| 624 // in the next ring. | 540 // in the next ring. |
| 625 SkTDArray<int> dst; | 541 SkTDArray<int> dst; |
| 626 dst.setCount(lastRing.numPts()); | 542 dst.setCount(lastRing.numPts()); |
| 627 | 543 |
| 628 // Create the first point (who compares with no one) | 544 // Create the first point (who compares with no one) |
| 629 if (!this->computePtAlongBisector(lastRing.index(0), | 545 if (!this->computePtAlongBisector(lastRing.index(0), |
| 630 lastRing.bisector(0), | 546 lastRing.bisector(0), |
| 631 lastRing.origEdgeID(0), | 547 lastRing.origEdgeID(0), |
| 632 depth, &newPt)) { | 548 depth, &newPt)) { |
| 633 this->terminate(lastRing); | 549 this->terminate(lastRing); |
| 550 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 634 return true; | 551 return true; |
| 635 } | 552 } |
| 636 dst[0] = fCandidateVerts.addNewPt(newPt, | 553 dst[0] = fCandidateVerts.addNewPt(newPt, |
| 637 lastRing.index(0), lastRing.origEdgeID(0), | 554 lastRing.index(0), lastRing.origEdgeID(0), |
| 638 !this->movable(lastRing.index(0))); | 555 !this->movable(lastRing.index(0))); |
| 639 | 556 |
| 640 // Handle the middle points (who only compare with the prior point) | 557 // Handle the middle points (who only compare with the prior point) |
| 641 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { | 558 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { |
| 642 if (!this->computePtAlongBisector(lastRing.index(cur), | 559 if (!this->computePtAlongBisector(lastRing.index(cur), |
| 643 lastRing.bisector(cur), | 560 lastRing.bisector(cur), |
| 644 lastRing.origEdgeID(cur), | 561 lastRing.origEdgeID(cur), |
| 645 depth, &newPt)) { | 562 depth, &newPt)) { |
| 646 this->terminate(lastRing); | 563 this->terminate(lastRing); |
| 564 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 647 return true; | 565 return true; |
| 648 } | 566 } |
| 649 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { | 567 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { |
| 650 dst[cur] = fCandidateVerts.addNewPt(newPt, | 568 dst[cur] = fCandidateVerts.addNewPt(newPt, |
| 651 lastRing.index(cur), lastRing.or
igEdgeID(cur), | 569 lastRing.index(cur), lastRing.or
igEdgeID(cur), |
| 652 !this->movable(lastRing.index(cu
r))); | 570 !this->movable(lastRing.index(cu
r))); |
| 653 } else { | 571 } else { |
| 654 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 572 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| 655 } | 573 } |
| 656 } | 574 } |
| 657 | 575 |
| 658 // Check on the last point (handling the wrap around) | 576 // Check on the last point (handling the wrap around) |
| 659 int cur = lastRing.numPts()-1; | 577 int cur = lastRing.numPts()-1; |
| 660 if (!this->computePtAlongBisector(lastRing.index(cur), | 578 if (!this->computePtAlongBisector(lastRing.index(cur), |
| 661 lastRing.bisector(cur), | 579 lastRing.bisector(cur), |
| 662 lastRing.origEdgeID(cur), | 580 lastRing.origEdgeID(cur), |
| 663 depth, &newPt)) { | 581 depth, &newPt)) { |
| 664 this->terminate(lastRing); | 582 this->terminate(lastRing); |
| 583 SkDEBUGCODE(fShouldCheckDepths = false;) |
| 665 return true; | 584 return true; |
| 666 } | 585 } |
| 667 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); | 586 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); |
| 668 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); | 587 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); |
| 669 | 588 |
| 670 if (!dupPrev && !dupNext) { | 589 if (!dupPrev && !dupNext) { |
| 671 dst[cur] = fCandidateVerts.addNewPt(newPt, | 590 dst[cur] = fCandidateVerts.addNewPt(newPt, |
| 672 lastRing.index(cur), lastRing.origEd
geID(cur), | 591 lastRing.index(cur), lastRing.origEd
geID(cur), |
| 673 !this->movable(lastRing.index(cur)))
; | 592 !this->movable(lastRing.index(cur)))
; |
| 674 } else if (dupPrev && !dupNext) { | 593 } else if (dupPrev && !dupNext) { |
| 675 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 594 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| 676 } else if (!dupPrev && dupNext) { | 595 } else if (!dupPrev && dupNext) { |
| 677 dst[cur] = fCandidateVerts.fuseWithNext(); | 596 dst[cur] = fCandidateVerts.fuseWithNext(); |
| 678 } else { | 597 } else { |
| 679 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandida
teVerts.lastPoint()); | 598 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandida
teVerts.lastPoint()); |
| 680 | 599 |
| 681 if (!dupPrevVsNext) { | 600 if (!dupPrevVsNext) { |
| 682 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 601 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); |
| 683 } else { | 602 } else { |
| 684 dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); | 603 dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth(); |
| 685 } | 604 } |
| 686 } | 605 } |
| 687 | 606 |
| 688 // Fold the new ring's points into the global pool | 607 // Fold the new ring's points into the global pool |
| 689 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { | 608 for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
| 690 int newIdx; | 609 int newIdx; |
| 691 if (fCandidateVerts.needsToBeNew(i) || forceNew) { | 610 if (fCandidateVerts.needsToBeNew(i)) { |
| 692 // if the originating index is still valid then this point wasn't | 611 // if the originating index is still valid then this point wasn't |
| 693 // fused (and is thus movable) | 612 // fused (and is thus movable) |
| 694 SkScalar coverage = compute_coverage(depth, initialDepth, initialCov
erage, | 613 newIdx = this->addPt(fCandidateVerts.point(i), depth, |
| 695 targetDepth, targetCoverage); | |
| 696 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, | |
| 697 fCandidateVerts.originatingIdx(i) != -1, false)
; | 614 fCandidateVerts.originatingIdx(i) != -1, false)
; |
| 698 } else { | 615 } else { |
| 699 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); | 616 SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
| 700 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po
int(i), depth, | 617 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.po
int(i), depth); |
| 701 targetCoverage); | |
| 702 newIdx = fCandidateVerts.originatingIdx(i); | 618 newIdx = fCandidateVerts.originatingIdx(i); |
| 703 } | 619 } |
| 704 | 620 |
| 705 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); | 621 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); |
| 706 } | 622 } |
| 707 | 623 |
| 708 // 'dst' currently has indices into the ring. Remap these to be indices | 624 // 'dst' currently has indices into the ring. Remap these to be indices |
| 709 // into the global pool since the triangulation operates in that space. | 625 // into the global pool since the triangulation operates in that space. |
| 710 for (int i = 0; i < dst.count(); ++i) { | 626 for (int i = 0; i < dst.count(); ++i) { |
| 711 dst[i] = nextRing->index(dst[i]); | 627 dst[i] = nextRing->index(dst[i]); |
| 712 } | 628 } |
| 713 | 629 |
| 714 for (int cur = 0; cur < lastRing.numPts(); ++cur) { | 630 for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
| 715 int next = (cur + 1) % lastRing.numPts(); | 631 int next = (cur + 1) % lastRing.numPts(); |
| 716 | 632 |
| 717 this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); | 633 this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); |
| 718 this->addTri(lastRing.index(cur), dst[next], dst[cur]); | 634 this->addTri(lastRing.index(cur), dst[next], dst[cur]); |
| 719 } | 635 } |
| 720 | 636 |
| 721 if (done && fStrokeWidth < 0.0f) { | 637 if (done) { |
| 722 // fill | |
| 723 this->fanRing(*nextRing); | 638 this->fanRing(*nextRing); |
| 724 } | 639 } |
| 725 | 640 |
| 726 if (nextRing->numPts() < 3) { | 641 if (nextRing->numPts() < 3) { |
| 727 done = true; | 642 done = true; |
| 728 } | 643 } |
| 644 |
| 729 return done; | 645 return done; |
| 730 } | 646 } |
| 731 | 647 |
| 732 void GrAAConvexTessellator::validate() const { | 648 void GrAAConvexTessellator::validate() const { |
| 649 SkASSERT(fPts.count() == fDepths.count()); |
| 733 SkASSERT(fPts.count() == fMovable.count()); | 650 SkASSERT(fPts.count() == fMovable.count()); |
| 734 SkASSERT(0 == (fIndices.count() % 3)); | 651 SkASSERT(0 == (fIndices.count() % 3)); |
| 735 } | 652 } |
| 736 | 653 |
| 737 ////////////////////////////////////////////////////////////////////////////// | 654 ////////////////////////////////////////////////////////////////////////////// |
| 738 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { | 655 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { |
| 739 this->computeNormals(tess); | 656 this->computeNormals(tess); |
| 740 this->computeBisectors(tess); | 657 this->computeBisectors(tess); |
| 658 SkASSERT(this->isConvex(tess)); |
| 741 } | 659 } |
| 742 | 660 |
| 743 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, | 661 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, |
| 744 const SkTDArray<SkVector>& bisectors) { | 662 const SkTDArray<SkVector>& bisectors) { |
| 745 for (int i = 0; i < fPts.count(); ++i) { | 663 for (int i = 0; i < fPts.count(); ++i) { |
| 746 fPts[i].fNorm = norms[i]; | 664 fPts[i].fNorm = norms[i]; |
| 747 fPts[i].fBisector = bisectors[i]; | 665 fPts[i].fBisector = bisectors[i]; |
| 748 } | 666 } |
| 749 } | 667 } |
| 750 | 668 |
| 751 // Compute the outward facing normal at each vertex. | 669 // Compute the outward facing normal at each vertex. |
| 752 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& te
ss) { | 670 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& te
ss) { |
| 753 for (int cur = 0; cur < fPts.count(); ++cur) { | 671 for (int cur = 0; cur < fPts.count(); ++cur) { |
| 754 int next = (cur + 1) % fPts.count(); | 672 int next = (cur + 1) % fPts.count(); |
| 755 | 673 |
| 756 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].f
Index); | 674 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].f
Index); |
| 757 SkPoint::Normalize(&fPts[cur].fNorm); | 675 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); |
| 676 SkASSERT(len > 0.0f); |
| 758 fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); | 677 fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); |
| 678 |
| 679 SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); |
| 759 } | 680 } |
| 760 } | 681 } |
| 761 | 682 |
| 762 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator&
tess) { | 683 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator&
tess) { |
| 763 int prev = fPts.count() - 1; | 684 int prev = fPts.count() - 1; |
| 764 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { | 685 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { |
| 765 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; | 686 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; |
| 766 if (!fPts[cur].fBisector.normalize()) { | 687 if (!fPts[cur].fBisector.normalize()) { |
| 767 SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side
== tess.side()); | 688 SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side
== tess.side()); |
| 768 fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.
side()); | 689 fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.
side()); |
| 769 SkVector other; | 690 SkVector other; |
| 770 other.setOrthog(fPts[prev].fNorm, tess.side()); | 691 other.setOrthog(fPts[prev].fNorm, tess.side()); |
| 771 fPts[cur].fBisector += other; | 692 fPts[cur].fBisector += other; |
| 772 SkAssertResult(fPts[cur].fBisector.normalize()); | 693 SkAssertResult(fPts[cur].fBisector.normalize()); |
| 773 } else { | 694 } else { |
| 774 fPts[cur].fBisector.negate(); // make the bisector face in | 695 fPts[cur].fBisector.negate(); // make the bisector face in |
| 775 } | 696 } |
| 776 } | 697 |
| 698 SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); |
| 699 } |
| 777 } | 700 } |
| 778 | 701 |
| 779 ////////////////////////////////////////////////////////////////////////////// | 702 ////////////////////////////////////////////////////////////////////////////// |
| 780 #ifdef SK_DEBUG | 703 #ifdef SK_DEBUG |
| 781 // Is this ring convex? | 704 // Is this ring convex? |
| 782 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) co
nst { | 705 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) co
nst { |
| 783 if (fPts.count() < 3) { | 706 if (fPts.count() < 3) { |
| 784 return true; | 707 return false; |
| 785 } | 708 } |
| 786 | 709 |
| 787 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); | 710 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); |
| 788 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); | 711 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); |
| 789 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; | 712 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; |
| 790 SkScalar maxDot = minDot; | 713 SkScalar maxDot = minDot; |
| 791 | 714 |
| 792 prev = cur; | 715 prev = cur; |
| 793 for (int i = 1; i < fPts.count(); ++i) { | 716 for (int i = 1; i < fPts.count(); ++i) { |
| 794 int next = (i + 1) % fPts.count(); | 717 int next = (i + 1) % fPts.count(); |
| 795 | 718 |
| 796 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); | 719 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); |
| 797 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; | 720 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; |
| 798 | 721 |
| 799 minDot = SkMinScalar(minDot, dot); | 722 minDot = SkMinScalar(minDot, dot); |
| 800 maxDot = SkMaxScalar(maxDot, dot); | 723 maxDot = SkMaxScalar(maxDot, dot); |
| 801 | 724 |
| 802 prev = cur; | 725 prev = cur; |
| 803 } | 726 } |
| 804 | 727 |
| 805 if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { | 728 return (maxDot > 0.0f) == (minDot >= 0.0f); |
| 806 maxDot = 0; | |
| 807 } | |
| 808 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { | |
| 809 minDot = 0; | |
| 810 } | |
| 811 return (maxDot >= 0.0f) == (minDot >= 0.0f); | |
| 812 } | 729 } |
| 813 | 730 |
| 731 static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, |
| 732 const SkPoint& test, SkPoint::Side side, |
| 733 int* sign) { |
| 734 *sign = -1; |
| 735 SkPoint edge = p1 - p0; |
| 736 SkScalar len = SkPoint::Normalize(&edge); |
| 737 |
| 738 SkPoint testVec = test - p0; |
| 739 |
| 740 SkScalar d0 = edge.dot(testVec); |
| 741 if (d0 < 0.0f) { |
| 742 return SkPoint::Distance(p0, test); |
| 743 } |
| 744 if (d0 > len) { |
| 745 return SkPoint::Distance(p1, test); |
| 746 } |
| 747 |
| 748 SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; |
| 749 if (SkPoint::kRight_Side == side) { |
| 750 perpDist = -perpDist; |
| 751 } |
| 752 |
| 753 if (perpDist < 0.0f) { |
| 754 perpDist = -perpDist; |
| 755 } else { |
| 756 *sign = 1; |
| 757 } |
| 758 return perpDist; |
| 759 } |
| 760 |
| 761 SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { |
| 762 SkScalar minDist = SK_ScalarMax; |
| 763 int closestSign, sign; |
| 764 |
| 765 for (int edge = 0; edge < fNorms.count(); ++edge) { |
| 766 SkScalar dist = capsule_depth(this->point(edge), |
| 767 this->point((edge+1) % fNorms.count()), |
| 768 p, fSide, &sign); |
| 769 SkASSERT(dist >= 0.0f); |
| 770 |
| 771 if (minDist > dist) { |
| 772 minDist = dist; |
| 773 closestSign = sign; |
| 774 } |
| 775 } |
| 776 |
| 777 return closestSign * minDist; |
| 778 } |
| 779 |
| 780 // Verify that the incrementally computed depths are close to the actual depths. |
| 781 void GrAAConvexTessellator::checkAllDepths() const { |
| 782 for (int cur = 0; cur < this->numPts(); ++cur) { |
| 783 SkScalar realDepth = this->computeRealDepth(this->point(cur)); |
| 784 SkScalar computedDepth = this->depth(cur); |
| 785 SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); |
| 786 } |
| 787 } |
| 814 #endif | 788 #endif |
| 815 | 789 |
| 816 void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { | 790 #define kQuadTolerance 0.2f |
| 791 #define kCubicTolerance 0.2f |
| 792 #define kConicTolerance 0.5f |
| 793 |
| 794 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { |
| 795 m.mapPoints(&p, 1); |
| 817 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { | 796 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { |
| 818 return; | 797 return; |
| 819 } | 798 } |
| 820 | 799 |
| 821 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); | 800 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); |
| 822 if (this->numPts() >= 2 && | 801 if (this->numPts() >= 2 && |
| 823 abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { | 802 abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { |
| 824 // The old last point is on the line from the second to last to the new
point | 803 // The old last point is on the line from the second to last to the new
point |
| 825 this->popLastPt(); | 804 this->popLastPt(); |
| 826 fNorms.pop(); | 805 fNorms.pop(); |
| 827 fIsCurve.pop(); | 806 fIsCurve.pop(); |
| 828 } | 807 } |
| 829 SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; | 808 this->addPt(p, 0.0f, false, isCurve); |
| 830 this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); | |
| 831 if (this->numPts() > 1) { | 809 if (this->numPts() > 1) { |
| 832 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; | 810 *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
| 833 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | 811 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
| 834 SkASSERT(len > 0.0f); | 812 SkASSERT(len > 0.0f); |
| 835 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); | 813 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
| 836 } | 814 } |
| 815 SkDEBUGCODE( |
| 816 if (this->numPts() >= 3) { |
| 817 int cur = this->numPts()-1; |
| 818 SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2])
; |
| 819 fMaxCross = SkTMax(fMaxCross, cross); |
| 820 fMinCross = SkTMin(fMinCross, cross); |
| 821 } |
| 822 ) |
| 837 } | 823 } |
| 838 | 824 |
| 839 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { | 825 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { |
| 840 m.mapPoints(&p, 1); | |
| 841 this->lineTo(p, isCurve); | |
| 842 } | |
| 843 | |
| 844 void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { | |
| 845 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); | 826 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
| 846 fPointBuffer.setReserve(maxCount); | 827 fPointBuffer.setReserve(maxCount); |
| 847 SkPoint* target = fPointBuffer.begin(); | 828 SkPoint* target = fPointBuffer.begin(); |
| 848 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], | 829 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], |
| 849 kQuadTolerance, &target, maxCount); | 830 kQuadTolerance, &target, maxCount); |
| 850 fPointBuffer.setCount(count); | 831 fPointBuffer.setCount(count); |
| 851 for (int i = 0; i < count; i++) { | 832 for (int i = 0; i < count; i++) { |
| 852 lineTo(fPointBuffer[i], true); | 833 lineTo(m, fPointBuffer[i], true); |
| 853 } | 834 } |
| 854 } | 835 } |
| 855 | 836 |
| 856 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { | |
| 857 SkPoint transformed[3]; | |
| 858 transformed[0] = pts[0]; | |
| 859 transformed[1] = pts[1]; | |
| 860 transformed[2] = pts[2]; | |
| 861 m.mapPoints(transformed, 3); | |
| 862 quadTo(transformed); | |
| 863 } | |
| 864 | |
| 865 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { | 837 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { |
| 866 m.mapPoints(pts, 4); | |
| 867 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); | 838 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
| 868 fPointBuffer.setReserve(maxCount); | 839 fPointBuffer.setReserve(maxCount); |
| 869 SkPoint* target = fPointBuffer.begin(); | 840 SkPoint* target = fPointBuffer.begin(); |
| 870 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
| 841 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
|
| 871 kCubicTolerance, &target, maxCount); | 842 kCubicTolerance, &target, maxCount); |
| 872 fPointBuffer.setCount(count); | 843 fPointBuffer.setCount(count); |
| 873 for (int i = 0; i < count; i++) { | 844 for (int i = 0; i < count; i++) { |
| 874 lineTo(fPointBuffer[i], true); | 845 lineTo(m, fPointBuffer[i], true); |
| 875 } | 846 } |
| 876 } | 847 } |
| 877 | 848 |
| 878 // include down here to avoid compilation errors caused by "-" overload in SkGeo
metry.h | 849 // include down here to avoid compilation errors caused by "-" overload in SkGeo
metry.h |
| 879 #include "SkGeometry.h" | 850 #include "SkGeometry.h" |
| 880 | 851 |
| 881 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar
w) { | 852 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w)
{ |
| 882 m.mapPoints(pts, 3); | |
| 883 SkAutoConicToQuads quadder; | 853 SkAutoConicToQuads quadder; |
| 884 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); | 854 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
| 885 SkPoint lastPoint = *(quads++); | 855 SkPoint lastPoint = *(quads++); |
| 886 int count = quadder.countQuads(); | 856 int count = quadder.countQuads(); |
| 887 for (int i = 0; i < count; ++i) { | 857 for (int i = 0; i < count; ++i) { |
| 888 SkPoint quadPts[3]; | 858 SkPoint quadPts[3]; |
| 889 quadPts[0] = lastPoint; | 859 quadPts[0] = lastPoint; |
| 890 quadPts[1] = quads[0]; | 860 quadPts[1] = quads[0]; |
| 891 quadPts[2] = i == count - 1 ? pts[2] : quads[1]; | 861 quadPts[2] = i == count - 1 ? pts[2] : quads[1]; |
| 892 quadTo(quadPts); | 862 quadTo(m, quadPts); |
| 893 lastPoint = quadPts[2]; | 863 lastPoint = quadPts[2]; |
| 894 quads += 2; | 864 quads += 2; |
| 895 } | 865 } |
| 896 } | 866 } |
| 897 | 867 |
| 898 ////////////////////////////////////////////////////////////////////////////// | 868 ////////////////////////////////////////////////////////////////////////////// |
| 899 #if GR_AA_CONVEX_TESSELLATOR_VIZ | 869 #if GR_AA_CONVEX_TESSELLATOR_VIZ |
| 900 static const SkScalar kPointRadius = 0.02f; | 870 static const SkScalar kPointRadius = 0.02f; |
| 901 static const SkScalar kArrowStrokeWidth = 0.0f; | 871 static const SkScalar kArrowStrokeWidth = 0.0f; |
| 902 static const SkScalar kArrowLength = 0.2f; | 872 static const SkScalar kArrowLength = 0.2f; |
| (...skipping 85 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 988 SK_ColorBLACK); | 958 SK_ColorBLACK); |
| 989 } | 959 } |
| 990 | 960 |
| 991 fInitialRing.draw(canvas, *this); | 961 fInitialRing.draw(canvas, *this); |
| 992 for (int i = 0; i < fRings.count(); ++i) { | 962 for (int i = 0; i < fRings.count(); ++i) { |
| 993 fRings[i]->draw(canvas, *this); | 963 fRings[i]->draw(canvas, *this); |
| 994 } | 964 } |
| 995 | 965 |
| 996 for (int i = 0; i < this->numPts(); ++i) { | 966 for (int i = 0; i < this->numPts(); ++i) { |
| 997 draw_point(canvas, | 967 draw_point(canvas, |
| 998 this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadi
us)), | 968 this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), |
| 999 !this->movable(i)); | 969 !this->movable(i)); |
| 1000 | 970 |
| 1001 SkPaint paint; | 971 SkPaint paint; |
| 1002 paint.setTextSize(kPointTextSize); | 972 paint.setTextSize(kPointTextSize); |
| 1003 paint.setTextAlign(SkPaint::kCenter_Align); | 973 paint.setTextAlign(SkPaint::kCenter_Align); |
| 1004 if (this->depth(i) <= -kAntialiasingRadius) { | 974 if (this->depth(i) <= -fTargetDepth) { |
| 1005 paint.setColor(SK_ColorWHITE); | 975 paint.setColor(SK_ColorWHITE); |
| 1006 } | 976 } |
| 1007 | 977 |
| 1008 SkString num; | 978 SkString num; |
| 1009 num.printf("%d", i); | 979 num.printf("%d", i); |
| 1010 canvas->drawText(num.c_str(), num.size(), | 980 canvas->drawText(num.c_str(), num.size(), |
| 1011 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f
), | 981 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f
), |
| 1012 paint); | 982 paint); |
| 1013 } | 983 } |
| 1014 } | 984 } |
| 1015 | 985 |
| 1016 #endif | 986 #endif |
| 1017 | 987 |
| OLD | NEW |