Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(266)

Side by Side Diff: sdk/lib/_internal/compiler/js_lib/native_typed_data.dart

Issue 1212513002: sdk files reorganization to make dart2js a proper package (Closed) Base URL: git@github.com:dart-lang/sdk.git@master
Patch Set: renamed Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 /**
6 * Specialized integers and floating point numbers,
7 * with SIMD support and efficient lists.
8 */
9 library dart.typed_data.implementation;
10
11 import 'dart:collection';
12 import 'dart:_internal';
13 import 'dart:_interceptors' show JSIndexable, JSUInt32, JSUInt31;
14 import 'dart:_js_helper' show
15 Creates, JavaScriptIndexingBehavior, JSName, Native, Null, Returns,
16 diagnoseIndexError;
17 import 'dart:_foreign_helper' show JS;
18 import 'dart:math' as Math;
19
20 import 'dart:typed_data';
21
22 @Native("ArrayBuffer")
23 class NativeByteBuffer implements ByteBuffer {
24 @JSName('byteLength')
25 final int lengthInBytes;
26
27 Type get runtimeType => ByteBuffer;
28
29 Uint8List asUint8List([int offsetInBytes = 0, int length]) {
30 return new NativeUint8List.view(this, offsetInBytes, length);
31 }
32
33 Int8List asInt8List([int offsetInBytes = 0, int length]) {
34 return new NativeInt8List.view(this, offsetInBytes, length);
35 }
36
37 Uint8ClampedList asUint8ClampedList([int offsetInBytes = 0, int length]) {
38 return new NativeUint8ClampedList.view(this, offsetInBytes, length);
39 }
40
41 Uint16List asUint16List([int offsetInBytes = 0, int length]) {
42 return new NativeUint16List.view(this, offsetInBytes, length);
43 }
44 Int16List asInt16List([int offsetInBytes = 0, int length]) {
45 return new NativeInt16List.view(this, offsetInBytes, length);
46 }
47
48 Uint32List asUint32List([int offsetInBytes = 0, int length]) {
49 return new NativeUint32List.view(this, offsetInBytes, length);
50 }
51
52 Int32List asInt32List([int offsetInBytes = 0, int length]) {
53 return new NativeInt32List.view(this, offsetInBytes, length);
54 }
55
56 Uint64List asUint64List([int offsetInBytes = 0, int length]) {
57 throw new UnsupportedError("Uint64List not supported by dart2js.");
58 }
59
60 Int64List asInt64List([int offsetInBytes = 0, int length]) {
61 throw new UnsupportedError("Int64List not supported by dart2js.");
62 }
63
64 Int32x4List asInt32x4List([int offsetInBytes = 0, int length]) {
65 NativeInt32List storage =
66 this.asInt32List(offsetInBytes, length != null ? length * 4 : null);
67 return new NativeInt32x4List._externalStorage(storage);
68 }
69
70 Float32List asFloat32List([int offsetInBytes = 0, int length]) {
71 return new NativeFloat32List.view(this, offsetInBytes, length);
72 }
73
74 Float64List asFloat64List([int offsetInBytes = 0, int length]) {
75 return new NativeFloat64List.view(this, offsetInBytes, length);
76 }
77
78 Float32x4List asFloat32x4List([int offsetInBytes = 0, int length]) {
79 NativeFloat32List storage =
80 this.asFloat32List(offsetInBytes, length != null ? length * 4 : null);
81 return new NativeFloat32x4List._externalStorage(storage);
82 }
83
84 Float64x2List asFloat64x2List([int offsetInBytes = 0, int length]) {
85 NativeFloat64List storage =
86 this.asFloat64List(offsetInBytes, length != null ? length * 2 : null);
87 return new NativeFloat64x2List._externalStorage(storage);
88 }
89
90 ByteData asByteData([int offsetInBytes = 0, int length]) {
91 return new NativeByteData.view(this, offsetInBytes, length);
92 }
93 }
94
95
96
97 /**
98 * A fixed-length list of Float32x4 numbers that is viewable as a
99 * [TypedData]. For long lists, this implementation will be considerably more
100 * space- and time-efficient than the default [List] implementation.
101 */
102 class NativeFloat32x4List
103 extends Object with ListMixin<Float32x4>, FixedLengthListMixin<Float32x4>
104 implements Float32x4List {
105
106 final NativeFloat32List _storage;
107
108 /**
109 * Creates a [Float32x4List] of the specified length (in elements),
110 * all of whose elements are initially zero.
111 */
112 NativeFloat32x4List(int length)
113 : _storage = new NativeFloat32List(length * 4);
114
115 NativeFloat32x4List._externalStorage(this._storage);
116
117 NativeFloat32x4List._slowFromList(List<Float32x4> list)
118 : _storage = new NativeFloat32List(list.length * 4) {
119 for (int i = 0; i < list.length; i++) {
120 var e = list[i];
121 _storage[(i * 4) + 0] = e.x;
122 _storage[(i * 4) + 1] = e.y;
123 _storage[(i * 4) + 2] = e.z;
124 _storage[(i * 4) + 3] = e.w;
125 }
126 }
127
128 Type get runtimeType => Float32x4List;
129
130 /**
131 * Creates a [Float32x4List] with the same size as the [elements] list
132 * and copies over the elements.
133 */
134 factory NativeFloat32x4List.fromList(List<Float32x4> list) {
135 if (list is NativeFloat32x4List) {
136 return new NativeFloat32x4List._externalStorage(
137 new NativeFloat32List.fromList(list._storage));
138 } else {
139 return new NativeFloat32x4List._slowFromList(list);
140 }
141 }
142
143 ByteBuffer get buffer => _storage.buffer;
144
145 int get lengthInBytes => _storage.lengthInBytes;
146
147 int get offsetInBytes => _storage.offsetInBytes;
148
149 int get elementSizeInBytes => Float32x4List.BYTES_PER_ELEMENT;
150
151 void _invalidIndex(int index, int length) {
152 if (index < 0 || index >= length) {
153 if (length == this.length) {
154 throw new RangeError.index(index, this);
155 }
156 throw new RangeError.range(index, 0, length - 1);
157 } else {
158 throw new ArgumentError('Invalid list index $index');
159 }
160 }
161
162 void _checkIndex(int index, int length) {
163 if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) {
164 _invalidIndex(index, length);
165 }
166 }
167
168 int _checkSublistArguments(int start, int end, int length) {
169 // For `sublist` the [start] and [end] indices are allowed to be equal to
170 // [length]. However, [_checkIndex] only allows indices in the range
171 // 0 .. length - 1. We therefore increment the [length] argument by one
172 // for the [_checkIndex] checks.
173 _checkIndex(start, length + 1);
174 if (end == null) return length;
175 _checkIndex(end, length + 1);
176 if (start > end) throw new RangeError.range(start, 0, end);
177 return end;
178 }
179
180 int get length => _storage.length ~/ 4;
181
182 Float32x4 operator[](int index) {
183 _checkIndex(index, length);
184 double _x = _storage[(index * 4) + 0];
185 double _y = _storage[(index * 4) + 1];
186 double _z = _storage[(index * 4) + 2];
187 double _w = _storage[(index * 4) + 3];
188 return new NativeFloat32x4._truncated(_x, _y, _z, _w);
189 }
190
191 void operator[]=(int index, Float32x4 value) {
192 _checkIndex(index, length);
193 _storage[(index * 4) + 0] = value.x;
194 _storage[(index * 4) + 1] = value.y;
195 _storage[(index * 4) + 2] = value.z;
196 _storage[(index * 4) + 3] = value.w;
197 }
198
199 List<Float32x4> sublist(int start, [int end]) {
200 end = _checkSublistArguments(start, end, length);
201 return new NativeFloat32x4List._externalStorage(
202 _storage.sublist(start * 4, end * 4));
203 }
204 }
205
206
207 /**
208 * A fixed-length list of Int32x4 numbers that is viewable as a
209 * [TypedData]. For long lists, this implementation will be considerably more
210 * space- and time-efficient than the default [List] implementation.
211 */
212 class NativeInt32x4List
213 extends Object with ListMixin<Int32x4>, FixedLengthListMixin<Int32x4>
214 implements Int32x4List {
215
216 final Int32List _storage;
217
218 /**
219 * Creates a [Int32x4List] of the specified length (in elements),
220 * all of whose elements are initially zero.
221 */
222 NativeInt32x4List(int length) : _storage = new NativeInt32List(length * 4);
223
224 NativeInt32x4List._externalStorage(Int32List storage) : _storage = storage;
225
226 NativeInt32x4List._slowFromList(List<Int32x4> list)
227 : _storage = new NativeInt32List(list.length * 4) {
228 for (int i = 0; i < list.length; i++) {
229 var e = list[i];
230 _storage[(i * 4) + 0] = e.x;
231 _storage[(i * 4) + 1] = e.y;
232 _storage[(i * 4) + 2] = e.z;
233 _storage[(i * 4) + 3] = e.w;
234 }
235 }
236
237 Type get runtimeType => Int32x4List;
238
239 /**
240 * Creates a [Int32x4List] with the same size as the [elements] list
241 * and copies over the elements.
242 */
243 factory NativeInt32x4List.fromList(List<Int32x4> list) {
244 if (list is NativeInt32x4List) {
245 return new NativeInt32x4List._externalStorage(
246 new NativeInt32List.fromList(list._storage));
247 } else {
248 return new NativeInt32x4List._slowFromList(list);
249 }
250 }
251
252 ByteBuffer get buffer => _storage.buffer;
253
254 int get lengthInBytes => _storage.lengthInBytes;
255
256 int get offsetInBytes => _storage.offsetInBytes;
257
258 int get elementSizeInBytes => Int32x4List.BYTES_PER_ELEMENT;
259
260 void _invalidIndex(int index, int length) {
261 if (index < 0 || index >= length) {
262 if (length == this.length) {
263 throw new RangeError.index(index, this);
264 }
265 throw new RangeError.range(index, 0, length - 1);
266 } else {
267 throw new ArgumentError('Invalid list index $index');
268 }
269 }
270
271 void _checkIndex(int index, int length) {
272 if (JS('bool', '(# >>> 0 != #)', index, index)
273 || JS('bool', '# >= #', index, length)) {
274 _invalidIndex(index, length);
275 }
276 }
277
278 int _checkSublistArguments(int start, int end, int length) {
279 // For `sublist` the [start] and [end] indices are allowed to be equal to
280 // [length]. However, [_checkIndex] only allows indices in the range
281 // 0 .. length - 1. We therefore increment the [length] argument by one
282 // for the [_checkIndex] checks.
283 _checkIndex(start, length + 1);
284 if (end == null) return length;
285 _checkIndex(end, length + 1);
286 if (start > end) throw new RangeError.range(start, 0, end);
287 return end;
288 }
289
290 int get length => _storage.length ~/ 4;
291
292 Int32x4 operator[](int index) {
293 _checkIndex(index, length);
294 int _x = _storage[(index * 4) + 0];
295 int _y = _storage[(index * 4) + 1];
296 int _z = _storage[(index * 4) + 2];
297 int _w = _storage[(index * 4) + 3];
298 return new NativeInt32x4._truncated(_x, _y, _z, _w);
299 }
300
301 void operator[]=(int index, Int32x4 value) {
302 _checkIndex(index, length);
303 _storage[(index * 4) + 0] = value.x;
304 _storage[(index * 4) + 1] = value.y;
305 _storage[(index * 4) + 2] = value.z;
306 _storage[(index * 4) + 3] = value.w;
307 }
308
309 List<Int32x4> sublist(int start, [int end]) {
310 end = _checkSublistArguments(start, end, length);
311 return new NativeInt32x4List._externalStorage(
312 _storage.sublist(start * 4, end * 4));
313 }
314 }
315
316
317 /**
318 * A fixed-length list of Float64x2 numbers that is viewable as a
319 * [TypedData]. For long lists, this implementation will be considerably more
320 * space- and time-efficient than the default [List] implementation.
321 */
322 class NativeFloat64x2List
323 extends Object with ListMixin<Float64x2>, FixedLengthListMixin<Float64x2>
324 implements Float64x2List {
325
326 final NativeFloat64List _storage;
327
328 /**
329 * Creates a [Float64x2List] of the specified length (in elements),
330 * all of whose elements are initially zero.
331 */
332 NativeFloat64x2List(int length)
333 : _storage = new NativeFloat64List(length * 2);
334
335 NativeFloat64x2List._externalStorage(this._storage);
336
337 NativeFloat64x2List._slowFromList(List<Float64x2> list)
338 : _storage = new NativeFloat64List(list.length * 2) {
339 for (int i = 0; i < list.length; i++) {
340 var e = list[i];
341 _storage[(i * 2) + 0] = e.x;
342 _storage[(i * 2) + 1] = e.y;
343 }
344 }
345
346 /**
347 * Creates a [Float64x2List] with the same size as the [elements] list
348 * and copies over the elements.
349 */
350 factory NativeFloat64x2List.fromList(List<Float64x2> list) {
351 if (list is NativeFloat64x2List) {
352 return new NativeFloat64x2List._externalStorage(
353 new NativeFloat64List.fromList(list._storage));
354 } else {
355 return new NativeFloat64x2List._slowFromList(list);
356 }
357 }
358
359 Type get runtimeType => Float64x2List;
360
361 ByteBuffer get buffer => _storage.buffer;
362
363 int get lengthInBytes => _storage.lengthInBytes;
364
365 int get offsetInBytes => _storage.offsetInBytes;
366
367 int get elementSizeInBytes => Float64x2List.BYTES_PER_ELEMENT;
368
369 void _invalidIndex(int index, int length) {
370 if (index < 0 || index >= length) {
371 if (length == this.length) {
372 throw new RangeError.index(index, this);
373 }
374 throw new RangeError.range(index, 0, length - 1);
375 } else {
376 throw new ArgumentError('Invalid list index $index');
377 }
378 }
379
380 void _checkIndex(int index, int length) {
381 if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) {
382 _invalidIndex(index, length);
383 }
384 }
385
386 int _checkSublistArguments(int start, int end, int length) {
387 // For `sublist` the [start] and [end] indices are allowed to be equal to
388 // [length]. However, [_checkIndex] only allows indices in the range
389 // 0 .. length - 1. We therefore increment the [length] argument by one
390 // for the [_checkIndex] checks.
391 _checkIndex(start, length + 1);
392 if (end == null) return length;
393 _checkIndex(end, length + 1);
394 if (start > end) throw new RangeError.range(start, 0, end);
395 return end;
396 }
397
398 int get length => _storage.length ~/ 2;
399
400 Float64x2 operator[](int index) {
401 _checkIndex(index, length);
402 double _x = _storage[(index * 2) + 0];
403 double _y = _storage[(index * 2) + 1];
404 return new Float64x2(_x, _y);
405 }
406
407 void operator[]=(int index, Float64x2 value) {
408 _checkIndex(index, length);
409 _storage[(index * 2) + 0] = value.x;
410 _storage[(index * 2) + 1] = value.y;
411 }
412
413 List<Float64x2> sublist(int start, [int end]) {
414 end = _checkSublistArguments(start, end, length);
415 return new NativeFloat64x2List._externalStorage(
416 _storage.sublist(start * 2, end * 2));
417 }
418 }
419
420 @Native("ArrayBufferView")
421 class NativeTypedData implements TypedData {
422 /**
423 * Returns the byte buffer associated with this object.
424 */
425 @Creates('NativeByteBuffer')
426 // May be Null for IE's CanvasPixelArray.
427 @Returns('NativeByteBuffer|Null')
428 final ByteBuffer buffer;
429
430 /**
431 * Returns the length of this view, in bytes.
432 */
433 @JSName('byteLength')
434 final int lengthInBytes;
435
436 /**
437 * Returns the offset in bytes into the underlying byte buffer of this view.
438 */
439 @JSName('byteOffset')
440 final int offsetInBytes;
441
442 /**
443 * Returns the number of bytes in the representation of each element in this
444 * list.
445 */
446 @JSName('BYTES_PER_ELEMENT')
447 final int elementSizeInBytes;
448
449 void _checkIndex(int index, int length) {
450 if (JS('bool', '(# >>> 0) !== #', index, index) ||
451 JS('int', '#', index) >= length) { // 'int' guaranteed by above test.
452 throw diagnoseIndexError(this, index);
453 }
454 }
455
456 void _invalidPosition(int position, int length) {
457 if (position is !int) {
458 throw new ArgumentError.value(position, null, 'Invalid list position');
459 } else {
460 throw new RangeError.range(position, 0, length);
461 }
462 }
463
464 void _checkPosition(int position, int length) {
465 if (JS('bool', '(# >>> 0) !== #', position, position) ||
466 JS('int', '#', position) > length) { // 'int' guaranteed by above test.
467 _invalidPosition(position, length);
468 }
469 }
470
471 int _checkSublistArguments(int start, int end, int length) {
472 // For `sublist` the [start] and [end] indices are allowed to be equal to
473 // [length].
474 _checkPosition(start, length);
475 if (end == null) return length;
476 _checkPosition(end, length);
477 if (start > end) throw new RangeError.range(start, 0, end);
478 return end;
479 }
480 }
481
482
483 // Validates the unnamed constructor length argument. Checking is necessary
484 // because passing unvalidated values to the native constructors can cause
485 // conversions or create views.
486 int _checkLength(length) {
487 if (length is! int) throw new ArgumentError('Invalid length $length');
488 return length;
489 }
490
491 // Validates `.view` constructor arguments. Checking is necessary because
492 // passing unvalidated values to the native constructors can cause conversions
493 // (e.g. String arguments) or create typed data objects that are not actually
494 // views of the input.
495 void _checkViewArguments(buffer, offsetInBytes, length) {
496 if (buffer is! NativeByteBuffer) {
497 throw new ArgumentError('Invalid view buffer');
498 }
499 if (offsetInBytes is! int) {
500 throw new ArgumentError('Invalid view offsetInBytes $offsetInBytes');
501 }
502 if (length != null && length is! int) {
503 throw new ArgumentError('Invalid view length $length');
504 }
505 }
506
507 // Ensures that [list] is a JavaScript Array or a typed array. If necessary,
508 // returns a copy of the list.
509 List _ensureNativeList(List list) {
510 if (list is JSIndexable) return list;
511 List result = new List(list.length);
512 for (int i = 0; i < list.length; i++) {
513 result[i] = list[i];
514 }
515 return result;
516 }
517
518
519 @Native("DataView")
520 class NativeByteData extends NativeTypedData implements ByteData {
521 /**
522 * Creates a [ByteData] of the specified length (in elements), all of
523 * whose elements are initially zero.
524 */
525 factory NativeByteData(int length) => _create1(_checkLength(length));
526
527 /**
528 * Creates an [ByteData] _view_ of the specified region in the specified
529 * byte buffer. Changes in the [ByteData] will be visible in the byte
530 * buffer and vice versa. If the [offsetInBytes] index of the region is not
531 * specified, it defaults to zero (the first byte in the byte buffer).
532 * If the length is not specified, it defaults to null, which indicates
533 * that the view extends to the end of the byte buffer.
534 *
535 * Throws [RangeError] if [offsetInBytes] or [length] are negative, or
536 * if [offsetInBytes] + ([length] * elementSizeInBytes) is greater than
537 * the length of [buffer].
538 */
539 factory NativeByteData.view(ByteBuffer buffer,
540 int offsetInBytes, int length) {
541 _checkViewArguments(buffer, offsetInBytes, length);
542 return length == null
543 ? _create2(buffer, offsetInBytes)
544 : _create3(buffer, offsetInBytes, length);
545 }
546
547 Type get runtimeType => ByteData;
548
549 int get elementSizeInBytes => 1;
550
551 /**
552 * Returns the floating point number represented by the four bytes at
553 * the specified [byteOffset] in this object, in IEEE 754
554 * single-precision binary floating-point format (binary32).
555 *
556 * Throws [RangeError] if [byteOffset] is negative, or
557 * `byteOffset + 4` is greater than the length of this object.
558 */
559 num getFloat32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
560 _getFloat32(byteOffset, Endianness.LITTLE_ENDIAN == endian);
561
562 @JSName('getFloat32')
563 @Returns('num')
564 num _getFloat32(int byteOffset, [bool littleEndian]) native;
565
566 /**
567 * Returns the floating point number represented by the eight bytes at
568 * the specified [byteOffset] in this object, in IEEE 754
569 * double-precision binary floating-point format (binary64).
570 *
571 * Throws [RangeError] if [byteOffset] is negative, or
572 * `byteOffset + 8` is greater than the length of this object.
573 */
574 num getFloat64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
575 _getFloat64(byteOffset, Endianness.LITTLE_ENDIAN == endian);
576
577 @JSName('getFloat64')
578 @Returns('num')
579 num _getFloat64(int byteOffset, [bool littleEndian]) native;
580
581 /**
582 * Returns the (possibly negative) integer represented by the two bytes at
583 * the specified [byteOffset] in this object, in two's complement binary
584 * form.
585 * The return value will be between 2<sup>15</sup> and 2<sup>15</sup> - 1,
586 * inclusive.
587 *
588 * Throws [RangeError] if [byteOffset] is negative, or
589 * `byteOffset + 2` is greater than the length of this object.
590 */
591 int getInt16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
592 _getInt16(byteOffset, Endianness.LITTLE_ENDIAN == endian);
593
594 @JSName('getInt16')
595 @Returns('int')
596 int _getInt16(int byteOffset, [bool littleEndian]) native;
597
598 /**
599 * Returns the (possibly negative) integer represented by the four bytes at
600 * the specified [byteOffset] in this object, in two's complement binary
601 * form.
602 * The return value will be between 2<sup>31</sup> and 2<sup>31</sup> - 1,
603 * inclusive.
604 *
605 * Throws [RangeError] if [byteOffset] is negative, or
606 * `byteOffset + 4` is greater than the length of this object.
607 */
608 int getInt32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
609 _getInt32(byteOffset, Endianness.LITTLE_ENDIAN == endian);
610
611 @JSName('getInt32')
612 @Returns('int')
613 int _getInt32(int byteOffset, [bool littleEndian]) native;
614
615 /**
616 * Returns the (possibly negative) integer represented by the eight bytes at
617 * the specified [byteOffset] in this object, in two's complement binary
618 * form.
619 * The return value will be between 2<sup>63</sup> and 2<sup>63</sup> - 1,
620 * inclusive.
621 *
622 * Throws [RangeError] if [byteOffset] is negative, or
623 * `byteOffset + 8` is greater than the length of this object.
624 */
625 int getInt64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) {
626 throw new UnsupportedError('Int64 accessor not supported by dart2js.');
627 }
628
629 /**
630 * Returns the (possibly negative) integer represented by the byte at the
631 * specified [byteOffset] in this object, in two's complement binary
632 * representation. The return value will be between -128 and 127, inclusive.
633 *
634 * Throws [RangeError] if [byteOffset] is negative, or
635 * greater than or equal to the length of this object.
636 */
637 int getInt8(int byteOffset) native;
638
639 /**
640 * Returns the positive integer represented by the two bytes starting
641 * at the specified [byteOffset] in this object, in unsigned binary
642 * form.
643 * The return value will be between 0 and 2<sup>16</sup> - 1, inclusive.
644 *
645 * Throws [RangeError] if [byteOffset] is negative, or
646 * `byteOffset + 2` is greater than the length of this object.
647 */
648 int getUint16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
649 _getUint16(byteOffset, Endianness.LITTLE_ENDIAN == endian);
650
651 @JSName('getUint16')
652 @Returns('JSUInt31')
653 int _getUint16(int byteOffset, [bool littleEndian]) native;
654
655 /**
656 * Returns the positive integer represented by the four bytes starting
657 * at the specified [byteOffset] in this object, in unsigned binary
658 * form.
659 * The return value will be between 0 and 2<sup>32</sup> - 1, inclusive.
660 *
661 * Throws [RangeError] if [byteOffset] is negative, or
662 * `byteOffset + 4` is greater than the length of this object.
663 */
664 int getUint32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
665 _getUint32(byteOffset, Endianness.LITTLE_ENDIAN == endian);
666
667 @JSName('getUint32')
668 @Returns('JSUInt32')
669 int _getUint32(int byteOffset, [bool littleEndian]) native;
670
671 /**
672 * Returns the positive integer represented by the eight bytes starting
673 * at the specified [byteOffset] in this object, in unsigned binary
674 * form.
675 * The return value will be between 0 and 2<sup>64</sup> - 1, inclusive.
676 *
677 * Throws [RangeError] if [byteOffset] is negative, or
678 * `byteOffset + 8` is greater than the length of this object.
679 */
680 int getUint64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) {
681 throw new UnsupportedError('Uint64 accessor not supported by dart2js.');
682 }
683
684 /**
685 * Returns the positive integer represented by the byte at the specified
686 * [byteOffset] in this object, in unsigned binary form. The
687 * return value will be between 0 and 255, inclusive.
688 *
689 * Throws [RangeError] if [byteOffset] is negative, or
690 * greater than or equal to the length of this object.
691 */
692 int getUint8(int byteOffset) native;
693
694 /**
695 * Sets the four bytes starting at the specified [byteOffset] in this
696 * object to the IEEE 754 single-precision binary floating-point
697 * (binary32) representation of the specified [value].
698 *
699 * **Note that this method can lose precision.** The input [value] is
700 * a 64-bit floating point value, which will be converted to 32-bit
701 * floating point value by IEEE 754 rounding rules before it is stored.
702 * If [value] cannot be represented exactly as a binary32, it will be
703 * converted to the nearest binary32 value. If two binary32 values are
704 * equally close, the one whose least significant bit is zero will be used.
705 * Note that finite (but large) values can be converted to infinity, and
706 * small non-zero values can be converted to zero.
707 *
708 * Throws [RangeError] if [byteOffset] is negative, or
709 * `byteOffset + 4` is greater than the length of this object.
710 */
711 void setFloat32(int byteOffset, num value,
712 [Endianness endian=Endianness.BIG_ENDIAN]) =>
713 _setFloat32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
714
715 @JSName('setFloat32')
716 void _setFloat32(int byteOffset, num value, [bool littleEndian]) native;
717
718 /**
719 * Sets the eight bytes starting at the specified [byteOffset] in this
720 * object to the IEEE 754 double-precision binary floating-point
721 * (binary64) representation of the specified [value].
722 *
723 * Throws [RangeError] if [byteOffset] is negative, or
724 * `byteOffset + 8` is greater than the length of this object.
725 */
726 void setFloat64(int byteOffset, num value,
727 [Endianness endian=Endianness.BIG_ENDIAN]) =>
728 _setFloat64(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
729
730 @JSName('setFloat64')
731 void _setFloat64(int byteOffset, num value, [bool littleEndian]) native;
732
733 /**
734 * Sets the two bytes starting at the specified [byteOffset] in this
735 * object to the two's complement binary representation of the specified
736 * [value], which must fit in two bytes. In other words, [value] must lie
737 * between 2<sup>15</sup> and 2<sup>15</sup> - 1, inclusive.
738 *
739 * Throws [RangeError] if [byteOffset] is negative, or
740 * `byteOffset + 2` is greater than the length of this object.
741 */
742 void setInt16(int byteOffset, int value,
743 [Endianness endian=Endianness.BIG_ENDIAN]) =>
744 _setInt16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
745
746 @JSName('setInt16')
747 void _setInt16(int byteOffset, int value, [bool littleEndian]) native;
748
749 /**
750 * Sets the four bytes starting at the specified [byteOffset] in this
751 * object to the two's complement binary representation of the specified
752 * [value], which must fit in four bytes. In other words, [value] must lie
753 * between 2<sup>31</sup> and 2<sup>31</sup> - 1, inclusive.
754 *
755 * Throws [RangeError] if [byteOffset] is negative, or
756 * `byteOffset + 4` is greater than the length of this object.
757 */
758 void setInt32(int byteOffset, int value,
759 [Endianness endian=Endianness.BIG_ENDIAN]) =>
760 _setInt32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
761
762 @JSName('setInt32')
763 void _setInt32(int byteOffset, int value, [bool littleEndian]) native;
764
765 /**
766 * Sets the eight bytes starting at the specified [byteOffset] in this
767 * object to the two's complement binary representation of the specified
768 * [value], which must fit in eight bytes. In other words, [value] must lie
769 * between 2<sup>63</sup> and 2<sup>63</sup> - 1, inclusive.
770 *
771 * Throws [RangeError] if [byteOffset] is negative, or
772 * `byteOffset + 8` is greater than the length of this object.
773 */
774 void setInt64(int byteOffset, int value,
775 [Endianness endian=Endianness.BIG_ENDIAN]) {
776 throw new UnsupportedError('Int64 accessor not supported by dart2js.');
777 }
778
779 /**
780 * Sets the byte at the specified [byteOffset] in this object to the
781 * two's complement binary representation of the specified [value], which
782 * must fit in a single byte. In other words, [value] must be between
783 * -128 and 127, inclusive.
784 *
785 * Throws [RangeError] if [byteOffset] is negative, or
786 * greater than or equal to the length of this object.
787 */
788 void setInt8(int byteOffset, int value) native;
789
790 /**
791 * Sets the two bytes starting at the specified [byteOffset] in this object
792 * to the unsigned binary representation of the specified [value],
793 * which must fit in two bytes. in other words, [value] must be between
794 * 0 and 2<sup>16</sup> - 1, inclusive.
795 *
796 * Throws [RangeError] if [byteOffset] is negative, or
797 * `byteOffset + 2` is greater than the length of this object.
798 */
799 void setUint16(int byteOffset, int value,
800 [Endianness endian=Endianness.BIG_ENDIAN]) =>
801 _setUint16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
802
803 @JSName('setUint16')
804 void _setUint16(int byteOffset, int value, [bool littleEndian]) native;
805
806 /**
807 * Sets the four bytes starting at the specified [byteOffset] in this object
808 * to the unsigned binary representation of the specified [value],
809 * which must fit in four bytes. in other words, [value] must be between
810 * 0 and 2<sup>32</sup> - 1, inclusive.
811 *
812 * Throws [RangeError] if [byteOffset] is negative, or
813 * `byteOffset + 4` is greater than the length of this object.
814 */
815 void setUint32(int byteOffset, int value,
816 [Endianness endian=Endianness.BIG_ENDIAN]) =>
817 _setUint32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian);
818
819 @JSName('setUint32')
820 void _setUint32(int byteOffset, int value, [bool littleEndian]) native;
821
822 /**
823 * Sets the eight bytes starting at the specified [byteOffset] in this object
824 * to the unsigned binary representation of the specified [value],
825 * which must fit in eight bytes. in other words, [value] must be between
826 * 0 and 2<sup>64</sup> - 1, inclusive.
827 *
828 * Throws [RangeError] if [byteOffset] is negative, or
829 * `byteOffset + 8` is greater than the length of this object.
830 */
831 void setUint64(int byteOffset, int value,
832 [Endianness endian=Endianness.BIG_ENDIAN]) {
833 throw new UnsupportedError('Uint64 accessor not supported by dart2js.');
834 }
835
836 /**
837 * Sets the byte at the specified [byteOffset] in this object to the
838 * unsigned binary representation of the specified [value], which must fit
839 * in a single byte. in other words, [value] must be between 0 and 255,
840 * inclusive.
841 *
842 * Throws [RangeError] if [byteOffset] is negative,
843 * or greater than or equal to the length of this object.
844 */
845 void setUint8(int byteOffset, int value) native;
846
847 static NativeByteData _create1(arg) =>
848 JS('NativeByteData', 'new DataView(new ArrayBuffer(#))', arg);
849
850 static NativeByteData _create2(arg1, arg2) =>
851 JS('NativeByteData', 'new DataView(#, #)', arg1, arg2);
852
853 static NativeByteData _create3(arg1, arg2, arg3) =>
854 JS('NativeByteData', 'new DataView(#, #, #)', arg1, arg2, arg3);
855 }
856
857
858 abstract class NativeTypedArray extends NativeTypedData
859 implements JavaScriptIndexingBehavior {
860 int get length => JS('JSUInt32', '#.length', this);
861
862 void _setRangeFast(int start, int end,
863 NativeTypedArray source, int skipCount) {
864 int targetLength = this.length;
865 _checkPosition(start, targetLength);
866 _checkPosition(end, targetLength);
867 if (start > end) throw new RangeError.range(start, 0, end);
868 int count = end - start;
869
870 if (skipCount < 0) throw new ArgumentError(skipCount);
871
872 int sourceLength = source.length;
873 if (sourceLength - skipCount < count) {
874 throw new StateError('Not enough elements');
875 }
876
877 if (skipCount != 0 || sourceLength != count) {
878 // Create a view of the exact subrange that is copied from the source.
879 source = JS('', '#.subarray(#, #)',
880 source, skipCount, skipCount + count);
881 }
882 JS('void', '#.set(#, #)', this, source, start);
883 }
884 }
885
886 abstract class NativeTypedArrayOfDouble
887 extends NativeTypedArray
888 with ListMixin<double>, FixedLengthListMixin<double> {
889
890 num operator[](int index) {
891 _checkIndex(index, length);
892 return JS('num', '#[#]', this, index);
893 }
894
895 void operator[]=(int index, num value) {
896 _checkIndex(index, length);
897 JS('void', '#[#] = #', this, index, value);
898 }
899
900 void setRange(int start, int end, Iterable<double> iterable,
901 [int skipCount = 0]) {
902 if (iterable is NativeTypedArrayOfDouble) {
903 _setRangeFast(start, end, iterable, skipCount);
904 return;
905 }
906 super.setRange(start, end, iterable, skipCount);
907 }
908 }
909
910 abstract class NativeTypedArrayOfInt
911 extends NativeTypedArray
912 with ListMixin<int>, FixedLengthListMixin<int>
913 implements List<int> {
914
915 // operator[]() is not here since different versions have different return
916 // types
917
918 void operator[]=(int index, int value) {
919 _checkIndex(index, length);
920 JS('void', '#[#] = #', this, index, value);
921 }
922
923 void setRange(int start, int end, Iterable<int> iterable,
924 [int skipCount = 0]) {
925 if (iterable is NativeTypedArrayOfInt) {
926 _setRangeFast(start, end, iterable, skipCount);
927 return;
928 }
929 super.setRange(start, end, iterable, skipCount);
930 }
931 }
932
933
934 @Native("Float32Array")
935 class NativeFloat32List
936 extends NativeTypedArrayOfDouble
937 implements Float32List {
938
939 factory NativeFloat32List(int length) => _create1(_checkLength(length));
940
941 factory NativeFloat32List.fromList(List<double> elements) =>
942 _create1(_ensureNativeList(elements));
943
944 factory NativeFloat32List.view(ByteBuffer buffer,
945 int offsetInBytes, int length) {
946 _checkViewArguments(buffer, offsetInBytes, length);
947 return length == null
948 ? _create2(buffer, offsetInBytes)
949 : _create3(buffer, offsetInBytes, length);
950 }
951
952 Type get runtimeType => Float32List;
953
954 List<double> sublist(int start, [int end]) {
955 end = _checkSublistArguments(start, end, length);
956 var source = JS('NativeFloat32List', '#.subarray(#, #)', this, start, end);
957 return _create1(source);
958 }
959
960 static NativeFloat32List _create1(arg) =>
961 JS('NativeFloat32List', 'new Float32Array(#)', arg);
962
963 static NativeFloat32List _create2(arg1, arg2) =>
964 JS('NativeFloat32List', 'new Float32Array(#, #)', arg1, arg2);
965
966 static NativeFloat32List _create3(arg1, arg2, arg3) =>
967 JS('NativeFloat32List', 'new Float32Array(#, #, #)', arg1, arg2, arg3);
968 }
969
970
971 @Native("Float64Array")
972 class NativeFloat64List
973 extends NativeTypedArrayOfDouble
974 implements Float64List {
975
976 factory NativeFloat64List(int length) => _create1(_checkLength(length));
977
978 factory NativeFloat64List.fromList(List<double> elements) =>
979 _create1(_ensureNativeList(elements));
980
981 factory NativeFloat64List.view(ByteBuffer buffer,
982 int offsetInBytes, int length) {
983 _checkViewArguments(buffer, offsetInBytes, length);
984 return length == null
985 ? _create2(buffer, offsetInBytes)
986 : _create3(buffer, offsetInBytes, length);
987 }
988
989 Type get runtimeType => Float64List;
990
991 List<double> sublist(int start, [int end]) {
992 end = _checkSublistArguments(start, end, length);
993 var source = JS('NativeFloat64List', '#.subarray(#, #)', this, start, end);
994 return _create1(source);
995 }
996
997 static NativeFloat64List _create1(arg) =>
998 JS('NativeFloat64List', 'new Float64Array(#)', arg);
999
1000 static NativeFloat64List _create2(arg1, arg2) =>
1001 JS('NativeFloat64List', 'new Float64Array(#, #)', arg1, arg2);
1002
1003 static NativeFloat64List _create3(arg1, arg2, arg3) =>
1004 JS('NativeFloat64List', 'new Float64Array(#, #, #)', arg1, arg2, arg3);
1005 }
1006
1007
1008 @Native("Int16Array")
1009 class NativeInt16List
1010 extends NativeTypedArrayOfInt
1011 implements Int16List {
1012
1013 factory NativeInt16List(int length) => _create1(_checkLength(length));
1014
1015 factory NativeInt16List.fromList(List<int> elements) =>
1016 _create1(_ensureNativeList(elements));
1017
1018 factory NativeInt16List.view(NativeByteBuffer buffer,
1019 int offsetInBytes, int length) {
1020 _checkViewArguments(buffer, offsetInBytes, length);
1021 return length == null
1022 ? _create2(buffer, offsetInBytes)
1023 : _create3(buffer, offsetInBytes, length);
1024 }
1025
1026 Type get runtimeType => Int16List;
1027
1028 int operator[](int index) {
1029 _checkIndex(index, length);
1030 return JS('int', '#[#]', this, index);
1031 }
1032
1033 List<int> sublist(int start, [int end]) {
1034 end = _checkSublistArguments(start, end, length);
1035 var source = JS('NativeInt16List', '#.subarray(#, #)', this, start, end);
1036 return _create1(source);
1037 }
1038
1039 static NativeInt16List _create1(arg) =>
1040 JS('NativeInt16List', 'new Int16Array(#)', arg);
1041
1042 static NativeInt16List _create2(arg1, arg2) =>
1043 JS('NativeInt16List', 'new Int16Array(#, #)', arg1, arg2);
1044
1045 static NativeInt16List _create3(arg1, arg2, arg3) =>
1046 JS('NativeInt16List', 'new Int16Array(#, #, #)', arg1, arg2, arg3);
1047 }
1048
1049
1050 @Native("Int32Array")
1051 class NativeInt32List extends NativeTypedArrayOfInt implements Int32List {
1052
1053 factory NativeInt32List(int length) => _create1(_checkLength(length));
1054
1055 factory NativeInt32List.fromList(List<int> elements) =>
1056 _create1(_ensureNativeList(elements));
1057
1058 factory NativeInt32List.view(ByteBuffer buffer,
1059 int offsetInBytes, int length) {
1060 _checkViewArguments(buffer, offsetInBytes, length);
1061 return length == null
1062 ? _create2(buffer, offsetInBytes)
1063 : _create3(buffer, offsetInBytes, length);
1064 }
1065
1066 Type get runtimeType => Int32List;
1067
1068 int operator[](int index) {
1069 _checkIndex(index, length);
1070 return JS('int', '#[#]', this, index);
1071 }
1072
1073 List<int> sublist(int start, [int end]) {
1074 end = _checkSublistArguments(start, end, length);
1075 var source = JS('NativeInt32List', '#.subarray(#, #)', this, start, end);
1076 return _create1(source);
1077 }
1078
1079 static NativeInt32List _create1(arg) =>
1080 JS('NativeInt32List', 'new Int32Array(#)', arg);
1081
1082 static NativeInt32List _create2(arg1, arg2) =>
1083 JS('NativeInt32List', 'new Int32Array(#, #)', arg1, arg2);
1084
1085 static NativeInt32List _create3(arg1, arg2, arg3) =>
1086 JS('NativeInt32List', 'new Int32Array(#, #, #)', arg1, arg2, arg3);
1087 }
1088
1089
1090 @Native("Int8Array")
1091 class NativeInt8List extends NativeTypedArrayOfInt implements Int8List {
1092
1093 factory NativeInt8List(int length) => _create1(_checkLength(length));
1094
1095 factory NativeInt8List.fromList(List<int> elements) =>
1096 _create1(_ensureNativeList(elements));
1097
1098 factory NativeInt8List.view(ByteBuffer buffer,
1099 int offsetInBytes, int length) {
1100 _checkViewArguments(buffer, offsetInBytes, length);
1101 return length == null
1102 ? _create2(buffer, offsetInBytes)
1103 : _create3(buffer, offsetInBytes, length);
1104 }
1105
1106 Type get runtimeType => Int8List;
1107
1108 int operator[](int index) {
1109 _checkIndex(index, length);
1110 return JS('int', '#[#]', this, index);
1111 }
1112
1113 List<int> sublist(int start, [int end]) {
1114 end = _checkSublistArguments(start, end, length);
1115 var source = JS('NativeInt8List', '#.subarray(#, #)', this, start, end);
1116 return _create1(source);
1117 }
1118
1119 static NativeInt8List _create1(arg) =>
1120 JS('NativeInt8List', 'new Int8Array(#)', arg);
1121
1122 static NativeInt8List _create2(arg1, arg2) =>
1123 JS('NativeInt8List', 'new Int8Array(#, #)', arg1, arg2);
1124
1125 static Int8List _create3(arg1, arg2, arg3) =>
1126 JS('NativeInt8List', 'new Int8Array(#, #, #)', arg1, arg2, arg3);
1127 }
1128
1129
1130 @Native("Uint16Array")
1131 class NativeUint16List extends NativeTypedArrayOfInt implements Uint16List {
1132
1133 factory NativeUint16List(int length) => _create1(_checkLength(length));
1134
1135 factory NativeUint16List.fromList(List<int> list) =>
1136 _create1(_ensureNativeList(list));
1137
1138 factory NativeUint16List.view(ByteBuffer buffer,
1139 int offsetInBytes, int length) {
1140 _checkViewArguments(buffer, offsetInBytes, length);
1141 return length == null
1142 ? _create2(buffer, offsetInBytes)
1143 : _create3(buffer, offsetInBytes, length);
1144 }
1145
1146 Type get runtimeType => Uint16List;
1147
1148 int operator[](int index) {
1149 _checkIndex(index, length);
1150 return JS('JSUInt31', '#[#]', this, index);
1151 }
1152
1153 List<int> sublist(int start, [int end]) {
1154 end = _checkSublistArguments(start, end, length);
1155 var source = JS('NativeUint16List', '#.subarray(#, #)', this, start, end);
1156 return _create1(source);
1157 }
1158
1159 static NativeUint16List _create1(arg) =>
1160 JS('NativeUint16List', 'new Uint16Array(#)', arg);
1161
1162 static NativeUint16List _create2(arg1, arg2) =>
1163 JS('NativeUint16List', 'new Uint16Array(#, #)', arg1, arg2);
1164
1165 static NativeUint16List _create3(arg1, arg2, arg3) =>
1166 JS('NativeUint16List', 'new Uint16Array(#, #, #)', arg1, arg2, arg3);
1167 }
1168
1169
1170 @Native("Uint32Array")
1171 class NativeUint32List extends NativeTypedArrayOfInt implements Uint32List {
1172
1173 factory NativeUint32List(int length) => _create1(_checkLength(length));
1174
1175 factory NativeUint32List.fromList(List<int> elements) =>
1176 _create1(_ensureNativeList(elements));
1177
1178 factory NativeUint32List.view(ByteBuffer buffer,
1179 int offsetInBytes, int length) {
1180 _checkViewArguments(buffer, offsetInBytes, length);
1181 return length == null
1182 ? _create2(buffer, offsetInBytes)
1183 : _create3(buffer, offsetInBytes, length);
1184 }
1185
1186 Type get runtimeType => Uint32List;
1187
1188 int operator[](int index) {
1189 _checkIndex(index, length);
1190 return JS('JSUInt32', '#[#]', this, index);
1191 }
1192
1193 List<int> sublist(int start, [int end]) {
1194 end = _checkSublistArguments(start, end, length);
1195 var source = JS('NativeUint32List', '#.subarray(#, #)', this, start, end);
1196 return _create1(source);
1197 }
1198
1199 static NativeUint32List _create1(arg) =>
1200 JS('NativeUint32List', 'new Uint32Array(#)', arg);
1201
1202 static NativeUint32List _create2(arg1, arg2) =>
1203 JS('NativeUint32List', 'new Uint32Array(#, #)', arg1, arg2);
1204
1205 static NativeUint32List _create3(arg1, arg2, arg3) =>
1206 JS('NativeUint32List', 'new Uint32Array(#, #, #)', arg1, arg2, arg3);
1207 }
1208
1209
1210 @Native("Uint8ClampedArray,CanvasPixelArray")
1211 class NativeUint8ClampedList
1212 extends NativeTypedArrayOfInt
1213 implements Uint8ClampedList {
1214
1215 factory NativeUint8ClampedList(int length) => _create1(_checkLength(length));
1216
1217 factory NativeUint8ClampedList.fromList(List<int> elements) =>
1218 _create1(_ensureNativeList(elements));
1219
1220 factory NativeUint8ClampedList.view(ByteBuffer buffer,
1221 int offsetInBytes, int length) {
1222 _checkViewArguments(buffer, offsetInBytes, length);
1223 return length == null
1224 ? _create2(buffer, offsetInBytes)
1225 : _create3(buffer, offsetInBytes, length);
1226 }
1227
1228 Type get runtimeType => Uint8ClampedList;
1229
1230 int get length => JS('JSUInt32', '#.length', this);
1231
1232 int operator[](int index) {
1233 _checkIndex(index, length);
1234 return JS('JSUInt31', '#[#]', this, index);
1235 }
1236
1237 List<int> sublist(int start, [int end]) {
1238 end = _checkSublistArguments(start, end, length);
1239 var source = JS('NativeUint8ClampedList', '#.subarray(#, #)',
1240 this, start, end);
1241 return _create1(source);
1242 }
1243
1244 static NativeUint8ClampedList _create1(arg) =>
1245 JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#)', arg);
1246
1247 static NativeUint8ClampedList _create2(arg1, arg2) =>
1248 JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #)', arg1, arg2);
1249
1250 static NativeUint8ClampedList _create3(arg1, arg2, arg3) =>
1251 JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #, #)',
1252 arg1, arg2, arg3);
1253 }
1254
1255
1256 // On some browsers Uint8ClampedArray is a subtype of Uint8Array. Marking
1257 // Uint8List as !nonleaf ensures that the native dispatch correctly handles
1258 // the potential for Uint8ClampedArray to 'accidentally' pick up the
1259 // dispatch record for Uint8List.
1260 @Native("Uint8Array,!nonleaf")
1261 class NativeUint8List extends NativeTypedArrayOfInt implements Uint8List {
1262
1263 factory NativeUint8List(int length) => _create1(_checkLength(length));
1264
1265 factory NativeUint8List.fromList(List<int> elements) =>
1266 _create1(_ensureNativeList(elements));
1267
1268 factory NativeUint8List.view(ByteBuffer buffer,
1269 int offsetInBytes, int length) {
1270 _checkViewArguments(buffer, offsetInBytes, length);
1271 return length == null
1272 ? _create2(buffer, offsetInBytes)
1273 : _create3(buffer, offsetInBytes, length);
1274 }
1275
1276 Type get runtimeType => Uint8List;
1277
1278 int get length => JS('JSUInt32', '#.length', this);
1279
1280 int operator[](int index) {
1281 _checkIndex(index, length);
1282 return JS('JSUInt31', '#[#]', this, index);
1283 }
1284
1285 List<int> sublist(int start, [int end]) {
1286 end = _checkSublistArguments(start, end, length);
1287 var source = JS('NativeUint8List', '#.subarray(#, #)', this, start, end);
1288 return _create1(source);
1289 }
1290
1291 static NativeUint8List _create1(arg) =>
1292 JS('NativeUint8List', 'new Uint8Array(#)', arg);
1293
1294 static NativeUint8List _create2(arg1, arg2) =>
1295 JS('NativeUint8List', 'new Uint8Array(#, #)', arg1, arg2);
1296
1297 static NativeUint8List _create3(arg1, arg2, arg3) =>
1298 JS('NativeUint8List', 'new Uint8Array(#, #, #)', arg1, arg2, arg3);
1299 }
1300
1301
1302 /**
1303 * Implementation of Dart Float32x4 immutable value type and operations.
1304 * Float32x4 stores 4 32-bit floating point values in "lanes".
1305 * The lanes are "x", "y", "z", and "w" respectively.
1306 */
1307 class NativeFloat32x4 implements Float32x4 {
1308 final double x;
1309 final double y;
1310 final double z;
1311 final double w;
1312
1313 static final NativeFloat32List _list = new NativeFloat32List(4);
1314 static final Uint32List _uint32view = _list.buffer.asUint32List();
1315
1316 static _truncate(x) {
1317 _list[0] = x;
1318 return _list[0];
1319 }
1320
1321 NativeFloat32x4(double x, double y, double z, double w)
1322 : this.x = _truncate(x),
1323 this.y = _truncate(y),
1324 this.z = _truncate(z),
1325 this.w = _truncate(w) {
1326 // We would prefer to check for `double` but in dart2js we can't see the
1327 // difference anyway.
1328 if (x is! num) throw new ArgumentError(x);
1329 if (y is! num) throw new ArgumentError(y);
1330 if (z is! num) throw new ArgumentError(z);
1331 if (w is! num) throw new ArgumentError(w);
1332 }
1333
1334 NativeFloat32x4.splat(double v) : this(v, v, v, v);
1335 NativeFloat32x4.zero() : this._truncated(0.0, 0.0, 0.0, 0.0);
1336
1337 /// Returns a bit-wise copy of [i] as a Float32x4.
1338 factory NativeFloat32x4.fromInt32x4Bits(Int32x4 i) {
1339 _uint32view[0] = i.x;
1340 _uint32view[1] = i.y;
1341 _uint32view[2] = i.z;
1342 _uint32view[3] = i.w;
1343 return new NativeFloat32x4._truncated(_list[0], _list[1], _list[2], _list[3] );
1344 }
1345
1346 NativeFloat32x4.fromFloat64x2(Float64x2 v)
1347 : this._truncated(_truncate(v.x), _truncate(v.y), 0.0, 0.0);
1348
1349 /// Creates a new NativeFloat32x4.
1350 ///
1351 /// Does not verify if the given arguments are non-null.
1352 NativeFloat32x4._doubles(double x, double y, double z, double w)
1353 : this.x = _truncate(x),
1354 this.y = _truncate(y),
1355 this.z = _truncate(z),
1356 this.w = _truncate(w);
1357
1358 /// Creates a new NativeFloat32x4.
1359 ///
1360 /// The constructor does not truncate the arguments. They must already be in
1361 /// the correct range. It does not verify the type of the given arguments,
1362 /// either.
1363 NativeFloat32x4._truncated(this.x, this.y, this.z, this.w);
1364
1365 String toString() {
1366 return '[$x, $y, $z, $w]';
1367 }
1368
1369 /// Addition operator.
1370 Float32x4 operator+(Float32x4 other) {
1371 double _x = x + other.x;
1372 double _y = y + other.y;
1373 double _z = z + other.z;
1374 double _w = w + other.w;
1375 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1376 }
1377
1378 /// Negate operator.
1379 Float32x4 operator-() {
1380 return new NativeFloat32x4._truncated(-x, -y, -z, -w);
1381 }
1382
1383 /// Subtraction operator.
1384 Float32x4 operator-(Float32x4 other) {
1385 double _x = x - other.x;
1386 double _y = y - other.y;
1387 double _z = z - other.z;
1388 double _w = w - other.w;
1389 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1390 }
1391
1392 /// Multiplication operator.
1393 Float32x4 operator*(Float32x4 other) {
1394 double _x = x * other.x;
1395 double _y = y * other.y;
1396 double _z = z * other.z;
1397 double _w = w * other.w;
1398 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1399 }
1400
1401 /// Division operator.
1402 Float32x4 operator/(Float32x4 other) {
1403 double _x = x / other.x;
1404 double _y = y / other.y;
1405 double _z = z / other.z;
1406 double _w = w / other.w;
1407 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1408 }
1409
1410 /// Relational less than.
1411 Int32x4 lessThan(Float32x4 other) {
1412 bool _cx = x < other.x;
1413 bool _cy = y < other.y;
1414 bool _cz = z < other.z;
1415 bool _cw = w < other.w;
1416 return new NativeInt32x4._truncated(_cx ? -1 : 0,
1417 _cy ? -1 : 0,
1418 _cz ? -1 : 0,
1419 _cw ? -1 : 0);
1420 }
1421
1422 /// Relational less than or equal.
1423 Int32x4 lessThanOrEqual(Float32x4 other) {
1424 bool _cx = x <= other.x;
1425 bool _cy = y <= other.y;
1426 bool _cz = z <= other.z;
1427 bool _cw = w <= other.w;
1428 return new NativeInt32x4._truncated(_cx ? -1 : 0,
1429 _cy ? -1 : 0,
1430 _cz ? -1 : 0,
1431 _cw ? -1 : 0);
1432 }
1433
1434 /// Relational greater than.
1435 Int32x4 greaterThan(Float32x4 other) {
1436 bool _cx = x > other.x;
1437 bool _cy = y > other.y;
1438 bool _cz = z > other.z;
1439 bool _cw = w > other.w;
1440 return new NativeInt32x4._truncated(_cx ? -1 : 0,
1441 _cy ? -1 : 0,
1442 _cz ? -1 : 0,
1443 _cw ? -1 : 0);
1444 }
1445
1446 /// Relational greater than or equal.
1447 Int32x4 greaterThanOrEqual(Float32x4 other) {
1448 bool _cx = x >= other.x;
1449 bool _cy = y >= other.y;
1450 bool _cz = z >= other.z;
1451 bool _cw = w >= other.w;
1452 return new NativeInt32x4._truncated(_cx ? -1 : 0,
1453 _cy ? -1 : 0,
1454 _cz ? -1 : 0,
1455 _cw ? -1 : 0);
1456 }
1457
1458 /// Relational equal.
1459 Int32x4 equal(Float32x4 other) {
1460 bool _cx = x == other.x;
1461 bool _cy = y == other.y;
1462 bool _cz = z == other.z;
1463 bool _cw = w == other.w;
1464 return new NativeInt32x4._truncated(_cx ? -1 : 0,
1465 _cy ? -1 : 0,
1466 _cz ? -1 : 0,
1467 _cw ? -1 : 0);
1468 }
1469
1470 /// Relational not-equal.
1471 Int32x4 notEqual(Float32x4 other) {
1472 bool _cx = x != other.x;
1473 bool _cy = y != other.y;
1474 bool _cz = z != other.z;
1475 bool _cw = w != other.w;
1476 return new NativeInt32x4._truncated(_cx ? -1 : 0,
1477 _cy ? -1 : 0,
1478 _cz ? -1 : 0,
1479 _cw ? -1 : 0);
1480 }
1481
1482 /// Returns a copy of [this] each lane being scaled by [s].
1483 Float32x4 scale(double s) {
1484 double _x = s * x;
1485 double _y = s * y;
1486 double _z = s * z;
1487 double _w = s * w;
1488 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1489 }
1490
1491 /// Returns the absolute value of this [Float32x4].
1492 Float32x4 abs() {
1493 double _x = x.abs();
1494 double _y = y.abs();
1495 double _z = z.abs();
1496 double _w = w.abs();
1497 return new NativeFloat32x4._truncated(_x, _y, _z, _w);
1498 }
1499
1500 /// Clamps [this] to be in the range [lowerLimit]-[upperLimit].
1501 Float32x4 clamp(Float32x4 lowerLimit, Float32x4 upperLimit) {
1502 double _lx = lowerLimit.x;
1503 double _ly = lowerLimit.y;
1504 double _lz = lowerLimit.z;
1505 double _lw = lowerLimit.w;
1506 double _ux = upperLimit.x;
1507 double _uy = upperLimit.y;
1508 double _uz = upperLimit.z;
1509 double _uw = upperLimit.w;
1510 double _x = x;
1511 double _y = y;
1512 double _z = z;
1513 double _w = w;
1514 // MAX(MIN(self, upper), lower).
1515 _x = _x > _ux ? _ux : _x;
1516 _y = _y > _uy ? _uy : _y;
1517 _z = _z > _uz ? _uz : _z;
1518 _w = _w > _uw ? _uw : _w;
1519 _x = _x < _lx ? _lx : _x;
1520 _y = _y < _ly ? _ly : _y;
1521 _z = _z < _lz ? _lz : _z;
1522 _w = _w < _lw ? _lw : _w;
1523 return new NativeFloat32x4._truncated(_x, _y, _z, _w);
1524 }
1525
1526 /// Extract the sign bit from each lane return them in the first 4 bits.
1527 int get signMask {
1528 var view = _uint32view;
1529 var mx, my, mz, mw;
1530 _list[0] = x;
1531 _list[1] = y;
1532 _list[2] = z;
1533 _list[3] = w;
1534 // This is correct because dart2js uses the unsigned right shift.
1535 mx = (view[0] & 0x80000000) >> 31;
1536 my = (view[1] & 0x80000000) >> 30;
1537 mz = (view[2] & 0x80000000) >> 29;
1538 mw = (view[3] & 0x80000000) >> 28;
1539 return mx | my | mz | mw;
1540 }
1541
1542 /// Shuffle the lane values. [mask] must be one of the 256 shuffle constants.
1543 Float32x4 shuffle(int mask) {
1544 if ((mask < 0) || (mask > 255)) {
1545 throw new RangeError.range(mask, 0, 255, "mask");
1546 }
1547 _list[0] = x;
1548 _list[1] = y;
1549 _list[2] = z;
1550 _list[3] = w;
1551
1552 double _x = _list[mask & 0x3];
1553 double _y = _list[(mask >> 2) & 0x3];
1554 double _z = _list[(mask >> 4) & 0x3];
1555 double _w = _list[(mask >> 6) & 0x3];
1556 return new NativeFloat32x4._truncated(_x, _y, _z, _w);
1557 }
1558
1559 /// Shuffle the lane values in [this] and [other]. The returned
1560 /// Float32x4 will have XY lanes from [this] and ZW lanes from [other].
1561 /// Uses the same [mask] as [shuffle].
1562 Float32x4 shuffleMix(Float32x4 other, int mask) {
1563 if ((mask < 0) || (mask > 255)) {
1564 throw new RangeError.range(mask, 0, 255, "mask");
1565 }
1566 _list[0] = x;
1567 _list[1] = y;
1568 _list[2] = z;
1569 _list[3] = w;
1570 double _x = _list[mask & 0x3];
1571 double _y = _list[(mask >> 2) & 0x3];
1572
1573 _list[0] = other.x;
1574 _list[1] = other.y;
1575 _list[2] = other.z;
1576 _list[3] = other.w;
1577 double _z = _list[(mask >> 4) & 0x3];
1578 double _w = _list[(mask >> 6) & 0x3];
1579 return new NativeFloat32x4._truncated(_x, _y, _z, _w);
1580 }
1581
1582 /// Copy [this] and replace the [x] lane.
1583 Float32x4 withX(double newX) {
1584 return new NativeFloat32x4._truncated(_truncate(newX), y, z, w);
1585 }
1586
1587 /// Copy [this] and replace the [y] lane.
1588 Float32x4 withY(double newY) {
1589 return new NativeFloat32x4._truncated(x, _truncate(newY), z, w);
1590 }
1591
1592 /// Copy [this] and replace the [z] lane.
1593 Float32x4 withZ(double newZ) {
1594 return new NativeFloat32x4._truncated(x, y, _truncate(newZ), w);
1595 }
1596
1597 /// Copy [this] and replace the [w] lane.
1598 Float32x4 withW(double newW) {
1599 return new NativeFloat32x4._truncated(x, y, z, _truncate(newW));
1600 }
1601
1602 /// Returns the lane-wise minimum value in [this] or [other].
1603 Float32x4 min(Float32x4 other) {
1604 double _x = x < other.x ? x : other.x;
1605 double _y = y < other.y ? y : other.y;
1606 double _z = z < other.z ? z : other.z;
1607 double _w = w < other.w ? w : other.w;
1608 return new NativeFloat32x4._truncated(_x, _y, _z, _w);
1609 }
1610
1611 /// Returns the lane-wise maximum value in [this] or [other].
1612 Float32x4 max(Float32x4 other) {
1613 double _x = x > other.x ? x : other.x;
1614 double _y = y > other.y ? y : other.y;
1615 double _z = z > other.z ? z : other.z;
1616 double _w = w > other.w ? w : other.w;
1617 return new NativeFloat32x4._truncated(_x, _y, _z, _w);
1618 }
1619
1620 /// Returns the square root of [this].
1621 Float32x4 sqrt() {
1622 double _x = Math.sqrt(x);
1623 double _y = Math.sqrt(y);
1624 double _z = Math.sqrt(z);
1625 double _w = Math.sqrt(w);
1626 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1627 }
1628
1629 /// Returns the reciprocal of [this].
1630 Float32x4 reciprocal() {
1631 double _x = 1.0 / x;
1632 double _y = 1.0 / y;
1633 double _z = 1.0 / z;
1634 double _w = 1.0 / w;
1635 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1636 }
1637
1638 /// Returns the square root of the reciprocal of [this].
1639 Float32x4 reciprocalSqrt() {
1640 double _x = Math.sqrt(1.0 / x);
1641 double _y = Math.sqrt(1.0 / y);
1642 double _z = Math.sqrt(1.0 / z);
1643 double _w = Math.sqrt(1.0 / w);
1644 return new NativeFloat32x4._doubles(_x, _y, _z, _w);
1645 }
1646 }
1647
1648
1649 /**
1650 * Interface of Dart Int32x4 and operations.
1651 * Int32x4 stores 4 32-bit bit-masks in "lanes".
1652 * The lanes are "x", "y", "z", and "w" respectively.
1653 */
1654 class NativeInt32x4 implements Int32x4 {
1655 final int x;
1656 final int y;
1657 final int z;
1658 final int w;
1659
1660 static final _list = new NativeInt32List(4);
1661
1662 static _truncate(x) {
1663 _list[0] = x;
1664 return _list[0];
1665 }
1666
1667 NativeInt32x4(int x, int y, int z, int w)
1668 : this.x = _truncate(x),
1669 this.y = _truncate(y),
1670 this.z = _truncate(z),
1671 this.w = _truncate(w) {
1672 if (x != this.x && x is! int) throw new ArgumentError(x);
1673 if (y != this.y && y is! int) throw new ArgumentError(y);
1674 if (z != this.z && z is! int) throw new ArgumentError(z);
1675 if (w != this.w && w is! int) throw new ArgumentError(w);
1676 }
1677
1678 NativeInt32x4.bool(bool x, bool y, bool z, bool w)
1679 : this.x = x ? -1 : 0,
1680 this.y = y ? -1 : 0,
1681 this.z = z ? -1 : 0,
1682 this.w = w ? -1 : 0;
1683
1684 /// Returns a bit-wise copy of [f] as a Int32x4.
1685 factory NativeInt32x4.fromFloat32x4Bits(Float32x4 f) {
1686 NativeFloat32List floatList = NativeFloat32x4._list;
1687 floatList[0] = f.x;
1688 floatList[1] = f.y;
1689 floatList[2] = f.z;
1690 floatList[3] = f.w;
1691 NativeInt32List view = floatList.buffer.asInt32List();
1692 return new NativeInt32x4._truncated(view[0], view[1], view[2], view[3]);
1693 }
1694
1695 NativeInt32x4._truncated(this.x, this.y, this.z, this.w);
1696
1697 String toString() => '[$x, $y, $z, $w]';
1698
1699
1700 /// The bit-wise or operator.
1701 Int32x4 operator|(Int32x4 other) {
1702 // Dart2js uses unsigned results for bit-operations.
1703 // We use "JS" to fall back to the signed versions.
1704 return new NativeInt32x4._truncated(JS("int", "# | #", x, other.x),
1705 JS("int", "# | #", y, other.y),
1706 JS("int", "# | #", z, other.z),
1707 JS("int", "# | #", w, other.w));
1708 }
1709
1710 /// The bit-wise and operator.
1711 Int32x4 operator&(Int32x4 other) {
1712 // Dart2js uses unsigned results for bit-operations.
1713 // We use "JS" to fall back to the signed versions.
1714 return new NativeInt32x4._truncated(JS("int", "# & #", x, other.x),
1715 JS("int", "# & #", y, other.y),
1716 JS("int", "# & #", z, other.z),
1717 JS("int", "# & #", w, other.w));
1718 }
1719
1720 /// The bit-wise xor operator.
1721 Int32x4 operator^(Int32x4 other) {
1722 // Dart2js uses unsigned results for bit-operations.
1723 // We use "JS" to fall back to the signed versions.
1724 return new NativeInt32x4._truncated(JS("int", "# ^ #", x, other.x),
1725 JS("int", "# ^ #", y, other.y),
1726 JS("int", "# ^ #", z, other.z),
1727 JS("int", "# ^ #", w, other.w));
1728 }
1729
1730 Int32x4 operator+(Int32x4 other) {
1731 // Avoid going through the typed array by "| 0" the result.
1732 return new NativeInt32x4._truncated(JS("int", "(# + #) | 0", x, other.x),
1733 JS("int", "(# + #) | 0", y, other.y),
1734 JS("int", "(# + #) | 0", z, other.z),
1735 JS("int", "(# + #) | 0", w, other.w));
1736 }
1737
1738 Int32x4 operator-(Int32x4 other) {
1739 // Avoid going through the typed array by "| 0" the result.
1740 return new NativeInt32x4._truncated(JS("int", "(# - #) | 0", x, other.x),
1741 JS("int", "(# - #) | 0", y, other.y),
1742 JS("int", "(# - #) | 0", z, other.z),
1743 JS("int", "(# - #) | 0", w, other.w));
1744 }
1745
1746 Int32x4 operator-() {
1747 // Avoid going through the typed array by "| 0" the result.
1748 return new NativeInt32x4._truncated(JS("int", "(-#) | 0", x),
1749 JS("int", "(-#) | 0", y),
1750 JS("int", "(-#) | 0", z),
1751 JS("int", "(-#) | 0", w));
1752 }
1753
1754 /// Extract the top bit from each lane return them in the first 4 bits.
1755 int get signMask {
1756 int mx = (x & 0x80000000) >> 31;
1757 int my = (y & 0x80000000) >> 31;
1758 int mz = (z & 0x80000000) >> 31;
1759 int mw = (w & 0x80000000) >> 31;
1760 return mx | my << 1 | mz << 2 | mw << 3;
1761 }
1762
1763 /// Shuffle the lane values. [mask] must be one of the 256 shuffle constants.
1764 Int32x4 shuffle(int mask) {
1765 if ((mask < 0) || (mask > 255)) {
1766 throw new RangeError.range(mask, 0, 255, "mask");
1767 }
1768 _list[0] = x;
1769 _list[1] = y;
1770 _list[2] = z;
1771 _list[3] = w;
1772 int _x = _list[mask & 0x3];
1773 int _y = _list[(mask >> 2) & 0x3];
1774 int _z = _list[(mask >> 4) & 0x3];
1775 int _w = _list[(mask >> 6) & 0x3];
1776 return new NativeInt32x4._truncated(_x, _y, _z, _w);
1777 }
1778
1779 /// Shuffle the lane values in [this] and [other]. The returned
1780 /// Int32x4 will have XY lanes from [this] and ZW lanes from [other].
1781 /// Uses the same [mask] as [shuffle].
1782 Int32x4 shuffleMix(Int32x4 other, int mask) {
1783 if ((mask < 0) || (mask > 255)) {
1784 throw new RangeError.range(mask, 0, 255, "mask");
1785 }
1786 _list[0] = x;
1787 _list[1] = y;
1788 _list[2] = z;
1789 _list[3] = w;
1790 int _x = _list[mask & 0x3];
1791 int _y = _list[(mask >> 2) & 0x3];
1792
1793 _list[0] = other.x;
1794 _list[1] = other.y;
1795 _list[2] = other.z;
1796 _list[3] = other.w;
1797 int _z = _list[(mask >> 4) & 0x3];
1798 int _w = _list[(mask >> 6) & 0x3];
1799 return new NativeInt32x4._truncated(_x, _y, _z, _w);
1800 }
1801
1802 /// Returns a new [Int32x4] copied from [this] with a new x value.
1803 Int32x4 withX(int x) {
1804 int _x = _truncate(x);
1805 return new NativeInt32x4._truncated(_x, y, z, w);
1806 }
1807
1808 /// Returns a new [Int32x4] copied from [this] with a new y value.
1809 Int32x4 withY(int y) {
1810 int _y = _truncate(y);
1811 return new NativeInt32x4._truncated(x, _y, z, w);
1812 }
1813
1814 /// Returns a new [Int32x4] copied from [this] with a new z value.
1815 Int32x4 withZ(int z) {
1816 int _z = _truncate(z);
1817 return new NativeInt32x4._truncated(x, y, _z, w);
1818 }
1819
1820 /// Returns a new [Int32x4] copied from [this] with a new w value.
1821 Int32x4 withW(int w) {
1822 int _w = _truncate(w);
1823 return new NativeInt32x4._truncated(x, y, z, _w);
1824 }
1825
1826 /// Extracted x value. Returns `false` for 0, `true` for any other value.
1827 bool get flagX => x != 0;
1828 /// Extracted y value. Returns `false` for 0, `true` for any other value.
1829 bool get flagY => y != 0;
1830 /// Extracted z value. Returns `false` for 0, `true` for any other value.
1831 bool get flagZ => z != 0;
1832 /// Extracted w value. Returns `false` for 0, `true` for any other value.
1833 bool get flagW => w != 0;
1834
1835 /// Returns a new [Int32x4] copied from [this] with a new x value.
1836 Int32x4 withFlagX(bool flagX) {
1837 int _x = flagX ? -1 : 0;
1838 return new NativeInt32x4._truncated(_x, y, z, w);
1839 }
1840
1841 /// Returns a new [Int32x4] copied from [this] with a new y value.
1842 Int32x4 withFlagY(bool flagY) {
1843 int _y = flagY ? -1 : 0;
1844 return new NativeInt32x4._truncated(x, _y, z, w);
1845 }
1846
1847 /// Returns a new [Int32x4] copied from [this] with a new z value.
1848 Int32x4 withFlagZ(bool flagZ) {
1849 int _z = flagZ ? -1 : 0;
1850 return new NativeInt32x4._truncated(x, y, _z, w);
1851 }
1852
1853 /// Returns a new [Int32x4] copied from [this] with a new w value.
1854 Int32x4 withFlagW(bool flagW) {
1855 int _w = flagW ? -1 : 0;
1856 return new NativeInt32x4._truncated(x, y, z, _w);
1857 }
1858
1859 /// Merge [trueValue] and [falseValue] based on [this]' bit mask:
1860 /// Select bit from [trueValue] when bit in [this] is on.
1861 /// Select bit from [falseValue] when bit in [this] is off.
1862 Float32x4 select(Float32x4 trueValue, Float32x4 falseValue) {
1863 var floatList = NativeFloat32x4._list;
1864 var intView = NativeFloat32x4._uint32view;
1865
1866 floatList[0] = trueValue.x;
1867 floatList[1] = trueValue.y;
1868 floatList[2] = trueValue.z;
1869 floatList[3] = trueValue.w;
1870 int stx = intView[0];
1871 int sty = intView[1];
1872 int stz = intView[2];
1873 int stw = intView[3];
1874
1875 floatList[0] = falseValue.x;
1876 floatList[1] = falseValue.y;
1877 floatList[2] = falseValue.z;
1878 floatList[3] = falseValue.w;
1879 int sfx = intView[0];
1880 int sfy = intView[1];
1881 int sfz = intView[2];
1882 int sfw = intView[3];
1883 int _x = (x & stx) | (~x & sfx);
1884 int _y = (y & sty) | (~y & sfy);
1885 int _z = (z & stz) | (~z & sfz);
1886 int _w = (w & stw) | (~w & sfw);
1887 intView[0] = _x;
1888 intView[1] = _y;
1889 intView[2] = _z;
1890 intView[3] = _w;
1891 return new NativeFloat32x4._truncated(
1892 floatList[0], floatList[1], floatList[2], floatList[3]);
1893 }
1894 }
1895
1896 class NativeFloat64x2 implements Float64x2 {
1897 final double x;
1898 final double y;
1899
1900 static NativeFloat64List _list = new NativeFloat64List(2);
1901 static NativeUint32List _uint32View = _list.buffer.asUint32List();
1902
1903 NativeFloat64x2(this.x, this.y) {
1904 if (x is! num) throw new ArgumentError(x);
1905 if (y is! num) throw new ArgumentError(y);
1906 }
1907
1908 NativeFloat64x2.splat(double v) : this(v, v);
1909
1910 NativeFloat64x2.zero() : this.splat(0.0);
1911
1912 NativeFloat64x2.fromFloat32x4(Float32x4 v) : this(v.x, v.y);
1913
1914 /// Arguments [x] and [y] must be doubles.
1915 NativeFloat64x2._doubles(this.x, this.y);
1916
1917 String toString() => '[$x, $y]';
1918
1919 /// Addition operator.
1920 Float64x2 operator+(Float64x2 other) {
1921 return new NativeFloat64x2._doubles(x + other.x, y + other.y);
1922 }
1923
1924 /// Negate operator.
1925 Float64x2 operator-() {
1926 return new NativeFloat64x2._doubles(-x, -y);
1927 }
1928
1929 /// Subtraction operator.
1930 Float64x2 operator-(Float64x2 other) {
1931 return new NativeFloat64x2._doubles(x - other.x, y - other.y);
1932 }
1933 /// Multiplication operator.
1934 Float64x2 operator*(Float64x2 other) {
1935 return new NativeFloat64x2._doubles(x * other.x, y * other.y);
1936 }
1937 /// Division operator.
1938 Float64x2 operator/(Float64x2 other) {
1939 return new NativeFloat64x2._doubles(x / other.x, y / other.y);
1940 }
1941
1942 /// Returns a copy of [this] each lane being scaled by [s].
1943 Float64x2 scale(double s) {
1944 return new NativeFloat64x2._doubles(x * s, y * s);
1945 }
1946
1947 /// Returns the absolute value of this [Float64x2].
1948 Float64x2 abs() {
1949 return new NativeFloat64x2._doubles(x.abs(), y.abs());
1950 }
1951
1952 /// Clamps [this] to be in the range [lowerLimit]-[upperLimit].
1953 Float64x2 clamp(Float64x2 lowerLimit,
1954 Float64x2 upperLimit) {
1955 double _lx = lowerLimit.x;
1956 double _ly = lowerLimit.y;
1957 double _ux = upperLimit.x;
1958 double _uy = upperLimit.y;
1959 double _x = x;
1960 double _y = y;
1961 // MAX(MIN(self, upper), lower).
1962 _x = _x > _ux ? _ux : _x;
1963 _y = _y > _uy ? _uy : _y;
1964 _x = _x < _lx ? _lx : _x;
1965 _y = _y < _ly ? _ly : _y;
1966 return new NativeFloat64x2._doubles(_x, _y);
1967 }
1968
1969 /// Extract the sign bits from each lane return them in the first 2 bits.
1970 int get signMask {
1971 var view = _uint32View;
1972 _list[0] = x;
1973 _list[1] = y;
1974 var mx = (view[1] & 0x80000000) >> 31;
1975 var my = (view[3] & 0x80000000) >> 31;
1976 return mx | my << 1;
1977 }
1978
1979 /// Returns a new [Float64x2] copied from [this] with a new x value.
1980 Float64x2 withX(double x) {
1981 if (x is! num) throw new ArgumentError(x);
1982 return new NativeFloat64x2._doubles(x, y);
1983 }
1984
1985 /// Returns a new [Float64x2] copied from [this] with a new y value.
1986 Float64x2 withY(double y) {
1987 if (y is! num) throw new ArgumentError(y);
1988 return new NativeFloat64x2._doubles(x, y);
1989 }
1990
1991 /// Returns the lane-wise minimum value in [this] or [other].
1992 Float64x2 min(Float64x2 other) {
1993 return new NativeFloat64x2._doubles(x < other.x ? x : other.x,
1994 y < other.y ? y : other.y);
1995
1996 }
1997
1998 /// Returns the lane-wise maximum value in [this] or [other].
1999 Float64x2 max(Float64x2 other) {
2000 return new NativeFloat64x2._doubles(x > other.x ? x : other.x,
2001 y > other.y ? y : other.y);
2002 }
2003
2004 /// Returns the lane-wise square root of [this].
2005 Float64x2 sqrt() {
2006 return new NativeFloat64x2._doubles(Math.sqrt(x), Math.sqrt(y));
2007 }
2008 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698