| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 part of _interceptors; | |
| 6 | |
| 7 /** | |
| 8 * The super interceptor class for [JSInt] and [JSDouble]. The compiler | |
| 9 * recognizes this class as an interceptor, and changes references to | |
| 10 * [:this:] to actually use the receiver of the method, which is | |
| 11 * generated as an extra argument added to each member. | |
| 12 * | |
| 13 * Note that none of the methods here delegate to a method defined on JSInt or | |
| 14 * JSDouble. This is exploited in [tryComputeConstantInterceptor]. | |
| 15 */ | |
| 16 class JSNumber extends Interceptor implements num { | |
| 17 const JSNumber(); | |
| 18 | |
| 19 int compareTo(num b) { | |
| 20 if (b is! num) throw argumentErrorValue(b); | |
| 21 if (this < b) { | |
| 22 return -1; | |
| 23 } else if (this > b) { | |
| 24 return 1; | |
| 25 } else if (this == b) { | |
| 26 if (this == 0) { | |
| 27 bool bIsNegative = b.isNegative; | |
| 28 if (isNegative == bIsNegative) return 0; | |
| 29 if (isNegative) return -1; | |
| 30 return 1; | |
| 31 } | |
| 32 return 0; | |
| 33 } else if (isNaN) { | |
| 34 if (b.isNaN) { | |
| 35 return 0; | |
| 36 } | |
| 37 return 1; | |
| 38 } else { | |
| 39 return -1; | |
| 40 } | |
| 41 } | |
| 42 | |
| 43 bool get isNegative => (this == 0) ? (1 / this) < 0 : this < 0; | |
| 44 | |
| 45 bool get isNaN => JS('bool', r'isNaN(#)', this); | |
| 46 | |
| 47 bool get isInfinite { | |
| 48 return JS('bool', r'# == (1/0)', this) | |
| 49 || JS('bool', r'# == (-1/0)', this); | |
| 50 } | |
| 51 | |
| 52 bool get isFinite => JS('bool', r'isFinite(#)', this); | |
| 53 | |
| 54 num remainder(num b) { | |
| 55 if (b is! num) throw argumentErrorValue(b); | |
| 56 return JS('num', r'# % #', this, b); | |
| 57 } | |
| 58 | |
| 59 num abs() => JS('returns:num;effects:none;depends:none;throws:never', | |
| 60 r'Math.abs(#)', this); | |
| 61 | |
| 62 num get sign => this > 0 ? 1 : this < 0 ? -1 : this; | |
| 63 | |
| 64 static const int _MIN_INT32 = -0x80000000; | |
| 65 static const int _MAX_INT32 = 0x7FFFFFFF; | |
| 66 | |
| 67 int toInt() { | |
| 68 if (this >= _MIN_INT32 && this <= _MAX_INT32) { | |
| 69 return JS('int', '# | 0', this); | |
| 70 } | |
| 71 if (JS('bool', r'isFinite(#)', this)) { | |
| 72 return JS('int', r'# + 0', truncateToDouble()); // Converts -0.0 to +0.0. | |
| 73 } | |
| 74 // This is either NaN, Infinity or -Infinity. | |
| 75 throw new UnsupportedError(JS("String", '"" + #', this)); | |
| 76 } | |
| 77 | |
| 78 int truncate() => toInt(); | |
| 79 | |
| 80 int ceil() => ceilToDouble().toInt(); | |
| 81 | |
| 82 int floor() => floorToDouble().toInt(); | |
| 83 | |
| 84 int round() { | |
| 85 if (this > 0) { | |
| 86 // This path excludes the special cases -0.0, NaN and -Infinity, leaving | |
| 87 // only +Infinity, for which a direct test is faster than [isFinite]. | |
| 88 if (JS('bool', r'# !== (1/0)', this)) { | |
| 89 return JS('int', r'Math.round(#)', this); | |
| 90 } | |
| 91 } else if (JS('bool', '# > (-1/0)', this)) { | |
| 92 // This test excludes NaN and -Infinity, leaving only -0.0. | |
| 93 // | |
| 94 // Subtraction from zero rather than negation forces -0.0 to 0.0 so code | |
| 95 // inside Math.round and code to handle result never sees -0.0, which on | |
| 96 // some JavaScript VMs can be a slow path. | |
| 97 return JS('int', r'0 - Math.round(0 - #)', this); | |
| 98 } | |
| 99 // This is either NaN, Infinity or -Infinity. | |
| 100 throw new UnsupportedError(JS("String", '"" + #', this)); | |
| 101 } | |
| 102 | |
| 103 double ceilToDouble() => JS('num', r'Math.ceil(#)', this); | |
| 104 | |
| 105 double floorToDouble() => JS('num', r'Math.floor(#)', this); | |
| 106 | |
| 107 double roundToDouble() { | |
| 108 if (this < 0) { | |
| 109 return JS('num', r'-Math.round(-#)', this); | |
| 110 } else { | |
| 111 return JS('num', r'Math.round(#)', this); | |
| 112 } | |
| 113 } | |
| 114 | |
| 115 double truncateToDouble() => this < 0 ? ceilToDouble() : floorToDouble(); | |
| 116 | |
| 117 num clamp(lowerLimit, upperLimit) { | |
| 118 if (lowerLimit is! num) throw argumentErrorValue(lowerLimit); | |
| 119 if (upperLimit is! num) throw argumentErrorValue(upperLimit); | |
| 120 if (lowerLimit.compareTo(upperLimit) > 0) { | |
| 121 throw argumentErrorValue(lowerLimit); | |
| 122 } | |
| 123 if (this.compareTo(lowerLimit) < 0) return lowerLimit; | |
| 124 if (this.compareTo(upperLimit) > 0) return upperLimit; | |
| 125 return this; | |
| 126 } | |
| 127 | |
| 128 // The return type is intentionally omitted to avoid type checker warnings | |
| 129 // from assigning JSNumber to double. | |
| 130 toDouble() => this; | |
| 131 | |
| 132 String toStringAsFixed(int fractionDigits) { | |
| 133 checkInt(fractionDigits); | |
| 134 if (fractionDigits < 0 || fractionDigits > 20) { | |
| 135 throw new RangeError(fractionDigits); | |
| 136 } | |
| 137 String result = JS('String', r'#.toFixed(#)', this, fractionDigits); | |
| 138 if (this == 0 && isNegative) return "-$result"; | |
| 139 return result; | |
| 140 } | |
| 141 | |
| 142 String toStringAsExponential([int fractionDigits]) { | |
| 143 String result; | |
| 144 if (fractionDigits != null) { | |
| 145 checkInt(fractionDigits); | |
| 146 if (fractionDigits < 0 || fractionDigits > 20) { | |
| 147 throw new RangeError(fractionDigits); | |
| 148 } | |
| 149 result = JS('String', r'#.toExponential(#)', this, fractionDigits); | |
| 150 } else { | |
| 151 result = JS('String', r'#.toExponential()', this); | |
| 152 } | |
| 153 if (this == 0 && isNegative) return "-$result"; | |
| 154 return result; | |
| 155 } | |
| 156 | |
| 157 String toStringAsPrecision(int precision) { | |
| 158 checkInt(precision); | |
| 159 if (precision < 1 || precision > 21) { | |
| 160 throw new RangeError(precision); | |
| 161 } | |
| 162 String result = JS('String', r'#.toPrecision(#)', | |
| 163 this, precision); | |
| 164 if (this == 0 && isNegative) return "-$result"; | |
| 165 return result; | |
| 166 } | |
| 167 | |
| 168 String toRadixString(int radix) { | |
| 169 checkInt(radix); | |
| 170 if (radix < 2 || radix > 36) { | |
| 171 throw new RangeError.range(radix, 2, 36, "radix"); | |
| 172 } | |
| 173 String result = JS('String', r'#.toString(#)', this, radix); | |
| 174 const int rightParenCode = 0x29; | |
| 175 if (result.codeUnitAt(result.length - 1) != rightParenCode) { | |
| 176 return result; | |
| 177 } | |
| 178 return _handleIEtoString(result); | |
| 179 } | |
| 180 | |
| 181 static String _handleIEtoString(String result) { | |
| 182 // Result is probably IE's untraditional format for large numbers, | |
| 183 // e.g., "8.0000000000008(e+15)" for 0x8000000000000800.toString(16). | |
| 184 var match = JS('List|Null', | |
| 185 r'/^([\da-z]+)(?:\.([\da-z]+))?\(e\+(\d+)\)$/.exec(#)', | |
| 186 result); | |
| 187 if (match == null) { | |
| 188 // Then we don't know how to handle it at all. | |
| 189 throw new UnsupportedError("Unexpected toString result: $result"); | |
| 190 } | |
| 191 String result = JS('String', '#', match[1]); | |
| 192 int exponent = JS("int", "+#", match[3]); | |
| 193 if (match[2] != null) { | |
| 194 result = JS('String', '# + #', result, match[2]); | |
| 195 exponent -= JS('int', '#.length', match[2]); | |
| 196 } | |
| 197 return result + "0" * exponent; | |
| 198 } | |
| 199 | |
| 200 // Note: if you change this, also change the function [S]. | |
| 201 String toString() { | |
| 202 if (this == 0 && JS('bool', '(1 / #) < 0', this)) { | |
| 203 return '-0.0'; | |
| 204 } else { | |
| 205 return JS('String', r'"" + (#)', this); | |
| 206 } | |
| 207 } | |
| 208 | |
| 209 int get hashCode => JS('int', '# & 0x1FFFFFFF', this); | |
| 210 | |
| 211 num operator -() => JS('num', r'-#', this); | |
| 212 | |
| 213 num operator +(num other) { | |
| 214 if (other is !num) throw argumentErrorValue(other); | |
| 215 return JS('num', '# + #', this, other); | |
| 216 } | |
| 217 | |
| 218 num operator -(num other) { | |
| 219 if (other is !num) throw argumentErrorValue(other); | |
| 220 return JS('num', '# - #', this, other); | |
| 221 } | |
| 222 | |
| 223 num operator /(num other) { | |
| 224 if (other is !num) throw argumentErrorValue(other); | |
| 225 return JS('num', '# / #', this, other); | |
| 226 } | |
| 227 | |
| 228 num operator *(num other) { | |
| 229 if (other is !num) throw argumentErrorValue(other); | |
| 230 return JS('num', '# * #', this, other); | |
| 231 } | |
| 232 | |
| 233 num operator %(num other) { | |
| 234 if (other is !num) throw argumentErrorValue(other); | |
| 235 // Euclidean Modulo. | |
| 236 num result = JS('num', r'# % #', this, other); | |
| 237 if (result == 0) return 0; // Make sure we don't return -0.0. | |
| 238 if (result > 0) return result; | |
| 239 if (JS('num', '#', other) < 0) { | |
| 240 return result - JS('num', '#', other); | |
| 241 } else { | |
| 242 return result + JS('num', '#', other); | |
| 243 } | |
| 244 } | |
| 245 | |
| 246 bool _isInt32(value) => JS('bool', '(# | 0) === #', value, value); | |
| 247 | |
| 248 int operator ~/(num other) { | |
| 249 if (false) _tdivFast(other); // Ensure resolution. | |
| 250 if (_isInt32(this) && _isInt32(other) && 0 != other && -1 != other) { | |
| 251 return JS('int', r'(# / #) | 0', this, other); | |
| 252 } else { | |
| 253 return _tdivSlow(other); | |
| 254 } | |
| 255 } | |
| 256 | |
| 257 int _tdivFast(num other) { | |
| 258 return _isInt32(this) | |
| 259 ? JS('int', r'(# / #) | 0', this, other) | |
| 260 : (JS('num', r'# / #', this, other)).toInt(); | |
| 261 } | |
| 262 | |
| 263 int _tdivSlow(num other) { | |
| 264 if (other is !num) throw argumentErrorValue(other); | |
| 265 return (JS('num', r'# / #', this, other)).toInt(); | |
| 266 } | |
| 267 | |
| 268 // TODO(ngeoffray): Move the bit operations below to [JSInt] and | |
| 269 // make them take an int. Because this will make operations slower, | |
| 270 // we define these methods on number for now but we need to decide | |
| 271 // the grain at which we do the type checks. | |
| 272 | |
| 273 num operator <<(num other) { | |
| 274 if (other is !num) throw argumentErrorValue(other); | |
| 275 if (JS('num', '#', other) < 0) throw argumentErrorValue(other); | |
| 276 return _shlPositive(other); | |
| 277 } | |
| 278 | |
| 279 num _shlPositive(num other) { | |
| 280 // JavaScript only looks at the last 5 bits of the shift-amount. Shifting | |
| 281 // by 33 is hence equivalent to a shift by 1. | |
| 282 return JS('bool', r'# > 31', other) | |
| 283 ? 0 | |
| 284 : JS('JSUInt32', r'(# << #) >>> 0', this, other); | |
| 285 } | |
| 286 | |
| 287 num operator >>(num other) { | |
| 288 if (false) _shrReceiverPositive(other); | |
| 289 if (other is !num) throw argumentErrorValue(other); | |
| 290 if (JS('num', '#', other) < 0) throw argumentErrorValue(other); | |
| 291 return _shrOtherPositive(other); | |
| 292 } | |
| 293 | |
| 294 num _shrOtherPositive(num other) { | |
| 295 return JS('num', '#', this) > 0 | |
| 296 ? _shrBothPositive(other) | |
| 297 // For negative numbers we just clamp the shift-by amount. | |
| 298 // `this` could be negative but not have its 31st bit set. | |
| 299 // The ">>" would then shift in 0s instead of 1s. Therefore | |
| 300 // we cannot simply return 0xFFFFFFFF. | |
| 301 : JS('JSUInt32', r'(# >> #) >>> 0', this, other > 31 ? 31 : other); | |
| 302 } | |
| 303 | |
| 304 num _shrReceiverPositive(num other) { | |
| 305 if (JS('num', '#', other) < 0) throw argumentErrorValue(other); | |
| 306 return _shrBothPositive(other); | |
| 307 } | |
| 308 | |
| 309 num _shrBothPositive(num other) { | |
| 310 return JS('bool', r'# > 31', other) | |
| 311 // JavaScript only looks at the last 5 bits of the shift-amount. In JS | |
| 312 // shifting by 33 is hence equivalent to a shift by 1. Shortcut the | |
| 313 // computation when that happens. | |
| 314 ? 0 | |
| 315 // Given that `this` is positive we must not use '>>'. Otherwise a | |
| 316 // number that has the 31st bit set would be treated as negative and | |
| 317 // shift in ones. | |
| 318 : JS('JSUInt32', r'# >>> #', this, other); | |
| 319 } | |
| 320 | |
| 321 num operator &(num other) { | |
| 322 if (other is !num) throw argumentErrorValue(other); | |
| 323 return JS('JSUInt32', r'(# & #) >>> 0', this, other); | |
| 324 } | |
| 325 | |
| 326 num operator |(num other) { | |
| 327 if (other is !num) throw argumentErrorValue(other); | |
| 328 return JS('JSUInt32', r'(# | #) >>> 0', this, other); | |
| 329 } | |
| 330 | |
| 331 num operator ^(num other) { | |
| 332 if (other is !num) throw argumentErrorValue(other); | |
| 333 return JS('JSUInt32', r'(# ^ #) >>> 0', this, other); | |
| 334 } | |
| 335 | |
| 336 bool operator <(num other) { | |
| 337 if (other is !num) throw argumentErrorValue(other); | |
| 338 return JS('bool', '# < #', this, other); | |
| 339 } | |
| 340 | |
| 341 bool operator >(num other) { | |
| 342 if (other is !num) throw argumentErrorValue(other); | |
| 343 return JS('bool', '# > #', this, other); | |
| 344 } | |
| 345 | |
| 346 bool operator <=(num other) { | |
| 347 if (other is !num) throw argumentErrorValue(other); | |
| 348 return JS('bool', '# <= #', this, other); | |
| 349 } | |
| 350 | |
| 351 bool operator >=(num other) { | |
| 352 if (other is !num) throw argumentErrorValue(other); | |
| 353 return JS('bool', '# >= #', this, other); | |
| 354 } | |
| 355 | |
| 356 Type get runtimeType => num; | |
| 357 } | |
| 358 | |
| 359 /** | |
| 360 * The interceptor class for [int]s. | |
| 361 * | |
| 362 * This class implements double since in JavaScript all numbers are doubles, so | |
| 363 * while we want to treat `2.0` as an integer for some operations, its | |
| 364 * interceptor should answer `true` to `is double`. | |
| 365 */ | |
| 366 class JSInt extends JSNumber implements int, double { | |
| 367 const JSInt(); | |
| 368 | |
| 369 bool get isEven => (this & 1) == 0; | |
| 370 | |
| 371 bool get isOdd => (this & 1) == 1; | |
| 372 | |
| 373 int toUnsigned(int width) { | |
| 374 return this & ((1 << width) - 1); | |
| 375 } | |
| 376 | |
| 377 int toSigned(int width) { | |
| 378 int signMask = 1 << (width - 1); | |
| 379 return (this & (signMask - 1)) - (this & signMask); | |
| 380 } | |
| 381 | |
| 382 int get bitLength { | |
| 383 int nonneg = this < 0 ? -this - 1 : this; | |
| 384 if (nonneg >= 0x100000000) { | |
| 385 nonneg = nonneg ~/ 0x100000000; | |
| 386 return _bitCount(_spread(nonneg)) + 32; | |
| 387 } | |
| 388 return _bitCount(_spread(nonneg)); | |
| 389 } | |
| 390 | |
| 391 // Returns pow(this, e) % m. | |
| 392 int modPow(int e, int m) { | |
| 393 if (e is! int) throw argumentErrorValue(e); | |
| 394 if (m is! int) throw argumentErrorValue(m); | |
| 395 if (e < 0) throw new RangeError(e); | |
| 396 if (m <= 0) throw new RangeError(m); | |
| 397 if (e == 0) return 1; | |
| 398 int b = this; | |
| 399 if (b < 0 || b > m) { | |
| 400 b %= m; | |
| 401 } | |
| 402 int r = 1; | |
| 403 while (e > 0) { | |
| 404 if (e.isOdd) { | |
| 405 r = (r * b) % m; | |
| 406 } | |
| 407 e ~/= 2; | |
| 408 b = (b * b) % m; | |
| 409 } | |
| 410 return r; | |
| 411 } | |
| 412 | |
| 413 // If inv is false, returns gcd(x, y). | |
| 414 // If inv is true and gcd(x, y) = 1, returns d, so that c*x + d*y = 1. | |
| 415 // If inv is true and gcd(x, y) != 1, throws RangeError("Not coprime"). | |
| 416 static int _binaryGcd(int x, int y, bool inv) { | |
| 417 int s = 1; | |
| 418 if (!inv) { | |
| 419 while (x.isEven && y.isEven) { | |
| 420 x ~/= 2; | |
| 421 y ~/= 2; | |
| 422 s *= 2; | |
| 423 } | |
| 424 if (y.isOdd) { | |
| 425 var t = x; | |
| 426 x = y; | |
| 427 y = t; | |
| 428 } | |
| 429 } | |
| 430 final bool ac = x.isEven; | |
| 431 int u = x; | |
| 432 int v = y; | |
| 433 int a = 1, | |
| 434 b = 0, | |
| 435 c = 0, | |
| 436 d = 1; | |
| 437 do { | |
| 438 while (u.isEven) { | |
| 439 u ~/= 2; | |
| 440 if (ac) { | |
| 441 if (!a.isEven || !b.isEven) { | |
| 442 a += y; | |
| 443 b -= x; | |
| 444 } | |
| 445 a ~/= 2; | |
| 446 } else if (!b.isEven) { | |
| 447 b -= x; | |
| 448 } | |
| 449 b ~/= 2; | |
| 450 } | |
| 451 while (v.isEven) { | |
| 452 v ~/= 2; | |
| 453 if (ac) { | |
| 454 if (!c.isEven || !d.isEven) { | |
| 455 c += y; | |
| 456 d -= x; | |
| 457 } | |
| 458 c ~/= 2; | |
| 459 } else if (!d.isEven) { | |
| 460 d -= x; | |
| 461 } | |
| 462 d ~/= 2; | |
| 463 } | |
| 464 if (u >= v) { | |
| 465 u -= v; | |
| 466 if (ac) a -= c; | |
| 467 b -= d; | |
| 468 } else { | |
| 469 v -= u; | |
| 470 if (ac) c -= a; | |
| 471 d -= b; | |
| 472 } | |
| 473 } while (u != 0); | |
| 474 if (!inv) return s*v; | |
| 475 if (v != 1) throw new RangeError("Not coprime"); | |
| 476 if (d < 0) { | |
| 477 d += x; | |
| 478 if (d < 0) d += x; | |
| 479 } else if (d > x) { | |
| 480 d -= x; | |
| 481 if (d > x) d -= x; | |
| 482 } | |
| 483 return d; | |
| 484 } | |
| 485 | |
| 486 // Returns 1/this % m, with m > 0. | |
| 487 int modInverse(int m) { | |
| 488 if (m is! int) throw new ArgumentError(m); | |
| 489 if (m <= 0) throw new RangeError(m); | |
| 490 if (m == 1) return 0; | |
| 491 int t = this; | |
| 492 if ((t < 0) || (t >= m)) t %= m; | |
| 493 if (t == 1) return 1; | |
| 494 if ((t == 0) || (t.isEven && m.isEven)) throw new RangeError("Not coprime"); | |
| 495 return _binaryGcd(m, t, true); | |
| 496 } | |
| 497 | |
| 498 // Returns gcd of abs(this) and abs(other), with this != 0 and other !=0. | |
| 499 int gcd(int other) { | |
| 500 if (other is! int) throw new ArgumentError(other); | |
| 501 if ((this == 0) || (other == 0)) throw new RangeError(0); | |
| 502 int x = this.abs(); | |
| 503 int y = other.abs(); | |
| 504 if ((x == 1) || (y == 1)) return 1; | |
| 505 return _binaryGcd(x, y, false); | |
| 506 } | |
| 507 | |
| 508 // Assumes i is <= 32-bit and unsigned. | |
| 509 static int _bitCount(int i) { | |
| 510 // See "Hacker's Delight", section 5-1, "Counting 1-Bits". | |
| 511 | |
| 512 // The basic strategy is to use "divide and conquer" to | |
| 513 // add pairs (then quads, etc.) of bits together to obtain | |
| 514 // sub-counts. | |
| 515 // | |
| 516 // A straightforward approach would look like: | |
| 517 // | |
| 518 // i = (i & 0x55555555) + ((i >> 1) & 0x55555555); | |
| 519 // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); | |
| 520 // i = (i & 0x0F0F0F0F) + ((i >> 4) & 0x0F0F0F0F); | |
| 521 // i = (i & 0x00FF00FF) + ((i >> 8) & 0x00FF00FF); | |
| 522 // i = (i & 0x0000FFFF) + ((i >> 16) & 0x0000FFFF); | |
| 523 // | |
| 524 // The code below removes unnecessary &'s and uses a | |
| 525 // trick to remove one instruction in the first line. | |
| 526 | |
| 527 i = _shru(i, 0) - (_shru(i, 1) & 0x55555555); | |
| 528 i = (i & 0x33333333) + (_shru(i, 2) & 0x33333333); | |
| 529 i = 0x0F0F0F0F & (i + _shru(i, 4)); | |
| 530 i += _shru(i, 8); | |
| 531 i += _shru(i, 16); | |
| 532 return (i & 0x0000003F); | |
| 533 } | |
| 534 | |
| 535 static _shru(int value, int shift) => JS('int', '# >>> #', value, shift); | |
| 536 static _shrs(int value, int shift) => JS('int', '# >> #', value, shift); | |
| 537 static _ors(int a, int b) => JS('int', '# | #', a, b); | |
| 538 | |
| 539 // Assumes i is <= 32-bit | |
| 540 static int _spread(int i) { | |
| 541 i = _ors(i, _shrs(i, 1)); | |
| 542 i = _ors(i, _shrs(i, 2)); | |
| 543 i = _ors(i, _shrs(i, 4)); | |
| 544 i = _ors(i, _shrs(i, 8)); | |
| 545 i = _shru(_ors(i, _shrs(i, 16)), 0); | |
| 546 return i; | |
| 547 } | |
| 548 | |
| 549 Type get runtimeType => int; | |
| 550 | |
| 551 int operator ~() => JS('JSUInt32', r'(~#) >>> 0', this); | |
| 552 } | |
| 553 | |
| 554 class JSDouble extends JSNumber implements double { | |
| 555 const JSDouble(); | |
| 556 Type get runtimeType => double; | |
| 557 } | |
| 558 | |
| 559 class JSPositiveInt extends JSInt {} | |
| 560 class JSUInt32 extends JSPositiveInt {} | |
| 561 class JSUInt31 extends JSUInt32 {} | |
| OLD | NEW |