OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "ui/gfx/matrix3_f.h" | |
6 | |
7 #include <algorithm> | |
8 #include <cmath> | |
9 #include <limits> | |
10 | |
11 #ifndef M_PI | |
12 #define M_PI 3.14159265358979323846f | |
13 #endif | |
14 | |
15 namespace { | |
16 | |
17 // This is only to make accessing indices self-explanatory. | |
18 enum MatrixCoordinates { | |
19 M00, | |
20 M01, | |
21 M02, | |
22 M10, | |
23 M11, | |
24 M12, | |
25 M20, | |
26 M21, | |
27 M22, | |
28 M_END | |
29 }; | |
30 | |
31 template<typename T> | |
32 double Determinant3x3(T data[M_END]) { | |
33 // This routine is separated from the Matrix3F::Determinant because in | |
34 // computing inverse we do want higher precision afforded by the explicit | |
35 // use of 'double'. | |
36 return | |
37 static_cast<double>(data[M00]) * ( | |
38 static_cast<double>(data[M11]) * data[M22] - | |
39 static_cast<double>(data[M12]) * data[M21]) + | |
40 static_cast<double>(data[M01]) * ( | |
41 static_cast<double>(data[M12]) * data[M20] - | |
42 static_cast<double>(data[M10]) * data[M22]) + | |
43 static_cast<double>(data[M02]) * ( | |
44 static_cast<double>(data[M10]) * data[M21] - | |
45 static_cast<double>(data[M11]) * data[M20]); | |
46 } | |
47 | |
48 } // namespace | |
49 | |
50 namespace gfx { | |
51 | |
52 Matrix3F::Matrix3F() { | |
53 } | |
54 | |
55 Matrix3F::Matrix3F(const Matrix3F& rhs) { | |
56 memcpy(data_, rhs.data_, sizeof(data_)); | |
57 } | |
58 | |
59 Matrix3F::~Matrix3F() { | |
60 } | |
61 | |
62 bool Matrix3F::IsEqual(const Matrix3F& rhs) const { | |
63 return 0 == memcmp(data_, rhs.data_, sizeof(data_)); | |
64 } | |
65 | |
66 bool Matrix3F::IsNear(const Matrix3F& rhs, float precision) const { | |
67 DCHECK(precision >= 0); | |
68 for (int i = 0; i < M_END; ++i) { | |
69 if (std::abs(data_[i] - rhs.data_[i]) > precision) | |
70 return false; | |
71 } | |
72 return true; | |
73 } | |
74 | |
75 void Matrix3F::set(float m00, float m01, float m02, | |
76 float m10, float m11, float m12, | |
77 float m20, float m21, float m22) { | |
danakj
2013/02/01 00:02:34
oh, missed this. i think this belongs in the heade
motek.
2013/02/01 00:14:02
Done.
| |
78 data_[0] = m00; | |
79 data_[1] = m01; | |
80 data_[2] = m02; | |
81 data_[3] = m10; | |
82 data_[4] = m11; | |
83 data_[5] = m12; | |
84 data_[6] = m20; | |
85 data_[7] = m21; | |
86 data_[8] = m22; | |
87 } | |
88 | |
89 Matrix3F Matrix3F::Inverse() const { | |
90 Matrix3F inverse = Matrix3F::Zeros(); | |
91 double determinant = Determinant3x3(data_); | |
92 if (std::numeric_limits<float>::epsilon() > std::abs(determinant)) | |
93 return inverse; // Singular matrix. Return Zeros(). | |
94 | |
95 inverse.set( | |
96 (data_[M11] * data_[M22] - data_[M12] * data_[M21]) / determinant, | |
97 (data_[M02] * data_[M21] - data_[M01] * data_[M22]) / determinant, | |
98 (data_[M01] * data_[M12] - data_[M02] * data_[M11]) / determinant, | |
99 (data_[M12] * data_[M20] - data_[M10] * data_[M22]) / determinant, | |
100 (data_[M00] * data_[M22] - data_[M02] * data_[M20]) / determinant, | |
101 (data_[M02] * data_[M10] - data_[M00] * data_[M12]) / determinant, | |
102 (data_[M10] * data_[M21] - data_[M11] * data_[M20]) / determinant, | |
103 (data_[M01] * data_[M20] - data_[M00] * data_[M21]) / determinant, | |
104 (data_[M00] * data_[M11] - data_[M01] * data_[M10]) / determinant); | |
105 return inverse; | |
106 } | |
107 | |
108 float Matrix3F::Determinant() const { | |
109 return static_cast<float>(Determinant3x3(data_)); | |
110 } | |
111 | |
112 Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const { | |
113 // The matrix must be symmetric. | |
114 const float epsilon = std::numeric_limits<float>::epsilon(); | |
115 if (std::abs(data_[M01] - data_[M10]) > epsilon || | |
116 std::abs(data_[M02] - data_[M02]) > epsilon || | |
117 std::abs(data_[M12] - data_[M21]) > epsilon) { | |
118 NOTREACHED(); | |
119 return Vector3dF(); | |
120 } | |
121 | |
122 float eigenvalues[3]; | |
123 float p = | |
124 data_[M01] * data_[M01] + | |
125 data_[M02] * data_[M02] + | |
126 data_[M12] * data_[M12]; | |
127 | |
128 bool diagonal = std::abs(p) < epsilon; | |
129 if (diagonal) { | |
130 eigenvalues[0] = data_[M00]; | |
131 eigenvalues[1] = data_[M11]; | |
132 eigenvalues[2] = data_[M22]; | |
133 } else { | |
134 float q = Trace() / 3.0f; | |
135 p = (data_[M00] - q) * (data_[M00] - q) + | |
136 (data_[M11] - q) * (data_[M11] - q) + | |
137 (data_[M22] - q) * (data_[M22] - q) + | |
138 2 * p; | |
139 p = sqrt(p / 6); | |
danakj
2013/02/01 00:02:34
nit: std::sqrt
motek.
2013/02/01 00:14:02
Done.
| |
140 | |
141 // The computation below puts B as (A - qI) / p, where A is *this. | |
142 Matrix3F matrix_B(*this); | |
danakj
2013/02/01 00:02:34
nit: matrix_b
motek.
2013/02/01 00:14:02
Done.
| |
143 matrix_B.data_[M00] -= q; | |
144 matrix_B.data_[M11] -= q; | |
145 matrix_B.data_[M22] -= q; | |
146 for (int i = 0; i < M_END; ++i) | |
147 matrix_B.data_[i] /= p; | |
148 | |
149 float half_det_b = matrix_B.Determinant() / 2.0f; | |
150 // half_det_b should be in <-1, 1>, but beware of rounding error. | |
151 float phi = 0.0f; | |
152 if (half_det_b <= -1.0f) | |
153 phi = M_PI / 3; | |
154 else if (half_det_b < 1.0f) | |
155 phi = acos(half_det_b) / 3; | |
156 | |
157 eigenvalues[0] = q + 2 * p * cos(phi); | |
158 eigenvalues[2] = q + 2 * p * cos(phi + 2.0f * M_PI / 3.0f); | |
159 eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2]; | |
160 } | |
161 | |
162 // Put eigenvalues in the descending order. | |
163 int indices[3] = {0, 1, 2}; | |
164 if (eigenvalues[2] > eigenvalues[1]) { | |
165 std::swap(eigenvalues[2], eigenvalues[1]); | |
166 std::swap(indices[2], indices[1]); | |
167 } | |
168 | |
169 if (eigenvalues[1] > eigenvalues[0]) { | |
170 std::swap(eigenvalues[1], eigenvalues[0]); | |
171 std::swap(indices[1], indices[0]); | |
172 } | |
173 | |
174 if (eigenvalues[2] > eigenvalues[1]) { | |
175 std::swap(eigenvalues[2], eigenvalues[1]); | |
176 std::swap(indices[2], indices[1]); | |
177 } | |
178 | |
179 if (eigenvectors != NULL && diagonal) { | |
180 // Eigenvectors are e-vectors, just need to be sorted accordingly. | |
181 *eigenvectors = Zeros(); | |
182 for (int i = 0; i < 3; ++i) | |
183 eigenvectors->set(indices[i], i, 1.0f); | |
184 } else if (eigenvectors != NULL) { | |
185 // Consult the following for a detailed discussion: | |
186 // Joachim Kopp | |
187 // Numerical diagonalization of hermitian 3x3 matrices | |
188 // arXiv.org preprint: physics/0610206 | |
189 // Int. J. Mod. Phys. C19 (2008) 523-548 | |
190 | |
191 // TODO(motek): expand to handle correctly negative and multiple | |
192 // eigenvalues. | |
193 for (int i = 0; i < 3; ++i) { | |
194 float l = eigenvalues[i]; | |
195 // B = A - l * I | |
196 Matrix3F matrix_B(*this); | |
197 matrix_B.data_[M00] -= l; | |
198 matrix_B.data_[M11] -= l; | |
199 matrix_B.data_[M22] -= l; | |
200 Vector3dF e1 = CrossProduct(matrix_B.get_column(0), | |
201 matrix_B.get_column(1)); | |
202 Vector3dF e2 = CrossProduct(matrix_B.get_column(1), | |
203 matrix_B.get_column(2)); | |
204 Vector3dF e3 = CrossProduct(matrix_B.get_column(2), | |
205 matrix_B.get_column(0)); | |
206 | |
207 // e1, e2 and e3 should point in the same direction. | |
208 if (DotProduct(e1, e2) < 0) { | |
209 e2.set_x(-e2.x()); | |
danakj
2013/02/01 00:02:34
can use e2 = -e2; ?
motek.
2013/02/01 00:14:02
Ah, didn't notice the op. Cool. Done.
| |
210 e2.set_y(-e2.y()); | |
211 e2.set_z(-e2.z()); | |
212 } | |
213 | |
214 if (DotProduct(e1, e3) < 0) { | |
215 e3.set_x(-e3.x()); | |
danakj
2013/02/01 00:02:34
e3 = -e3; ?
motek.
2013/02/01 00:14:02
Done.
| |
216 e3.set_y(-e3.y()); | |
217 e3.set_z(-e3.z()); | |
218 } | |
219 | |
220 Vector3dF eigvec = e1 + e2 + e3; | |
221 // Normalize. | |
222 eigvec.Scale(1.0f / eigvec.Length()); | |
223 eigenvectors->set_column(i, eigvec); | |
224 } | |
225 } | |
226 | |
227 return Vector3dF(eigenvalues[0], eigenvalues[1], eigenvalues[2]); | |
228 } | |
229 | |
230 // static | |
231 Matrix3F Matrix3F::Zeros() { | |
232 Matrix3F matrix; | |
233 matrix.set(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f); | |
234 return matrix; | |
235 } | |
236 | |
237 // static | |
238 Matrix3F Matrix3F::Ones() { | |
239 Matrix3F matrix; | |
240 matrix.set(1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f); | |
241 return matrix; | |
242 } | |
243 | |
244 // static | |
245 Matrix3F Matrix3F::Identity() { | |
246 Matrix3F matrix; | |
247 matrix.set(1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f); | |
248 return matrix; | |
249 } | |
250 | |
251 // static | |
252 Matrix3F Matrix3F::FromOuterProduct(const Vector3dF& a, const Vector3dF& bt) { | |
253 Matrix3F matrix; | |
254 matrix.set(a.x() * bt.x(), a.x() * bt.y(), a.x() * bt.z(), | |
255 a.y() * bt.x(), a.y() * bt.y(), a.y() * bt.z(), | |
256 a.z() * bt.x(), a.z() * bt.y(), a.z() * bt.z()); | |
257 return matrix; | |
258 } | |
259 | |
260 } // namespace gfx | |
OLD | NEW |