Index: src/gpu/GrAAConvexTessellator.cpp |
diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp |
index 56a408d644d468c56fffe98e1b65e05018354385..85ce7ba9ed6bc17681cbc791d7134210861e0539 100644 |
--- a/src/gpu/GrAAConvexTessellator.cpp |
+++ b/src/gpu/GrAAConvexTessellator.cpp |
@@ -13,7 +13,6 @@ |
#include "GrPathUtils.h" |
// Next steps: |
-// use in AAConvexPathRenderer |
// add an interactive sample app slide |
// add debug check that all points are suitably far apart |
// test more degenerate cases |
@@ -22,10 +21,17 @@ |
static const SkScalar kClose = (SK_Scalar1 / 16); |
static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
+// tesselation tolerance values, in device space pixels |
+static const SkScalar kQuadTolerance = 0.2f; |
+static const SkScalar kCubicTolerance = 0.2f; |
+static const SkScalar kConicTolerance = 0.5f; |
+ |
+// dot product below which we use a round cap between curve segments |
+static const SkScalar kRoundCapThreshold = 0.8f; |
+ |
static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, |
const SkPoint& p1, const SkPoint& n1) { |
const SkPoint v = p1 - p0; |
- |
SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; |
return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; |
} |
@@ -52,13 +58,14 @@ |
int GrAAConvexTessellator::addPt(const SkPoint& pt, |
SkScalar depth, |
+ SkScalar coverage, |
bool movable, |
bool isCurve) { |
this->validate(); |
int index = fPts.count(); |
*fPts.push() = pt; |
- *fDepths.push() = depth; |
+ *fCoverages.push() = coverage; |
*fMovable.push() = movable; |
*fIsCurve.push() = isCurve; |
@@ -70,7 +77,7 @@ |
this->validate(); |
fPts.pop(); |
- fDepths.pop(); |
+ fCoverages.pop(); |
fMovable.pop(); |
this->validate(); |
@@ -80,7 +87,7 @@ |
this->validate(); |
fPts.removeShuffle(0); |
- fDepths.removeShuffle(0); |
+ fCoverages.removeShuffle(0); |
fMovable.removeShuffle(0); |
this->validate(); |
@@ -88,12 +95,13 @@ |
void GrAAConvexTessellator::updatePt(int index, |
const SkPoint& pt, |
- SkScalar depth) { |
+ SkScalar depth, |
+ SkScalar coverage) { |
this->validate(); |
SkASSERT(fMovable[index]); |
fPts[index] = pt; |
- fDepths[index] = depth; |
+ fCoverages[index] = coverage; |
} |
void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { |
@@ -108,7 +116,7 @@ |
void GrAAConvexTessellator::rewind() { |
fPts.rewind(); |
- fDepths.rewind(); |
+ fCoverages.rewind(); |
fMovable.rewind(); |
fIndices.rewind(); |
fNorms.rewind(); |
@@ -143,6 +151,44 @@ |
} |
} |
+// Create as many rings as we need to (up to a predefined limit) to reach the specified target |
+// depth. If we are in fill mode, the final ring will automatically be fanned. |
+bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth, |
+ SkScalar initialCoverage, SkScalar targetDepth, |
+ SkScalar targetCoverage, Ring** finalRing) { |
+ static const int kMaxNumRings = 8; |
+ |
+ if (previousRing.numPts() < 3) { |
+ return false; |
+ } |
+ Ring* currentRing = &previousRing; |
+ int i; |
+ for (i = 0; i < kMaxNumRings; ++i) { |
+ Ring* nextRing = this->getNextRing(currentRing); |
+ SkASSERT(nextRing != currentRing); |
+ |
+ bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage, |
+ targetDepth, targetCoverage, i == 0); |
+ currentRing = nextRing; |
+ if (done) { |
+ break; |
+ } |
+ currentRing->init(*this); |
+ } |
+ |
+ if (kMaxNumRings == i) { |
+ // Bail if we've exceeded the amount of time we want to throw at this. |
+ this->terminate(*currentRing); |
+ return false; |
+ } |
+ bool done = currentRing->numPts() >= 3; |
+ if (done) { |
+ currentRing->init(*this); |
+ } |
+ *finalRing = currentRing; |
+ return done; |
+} |
+ |
// The general idea here is to, conceptually, start with the original polygon and slide |
// the vertices along the bisectors until the first intersection. At that |
// point two of the edges collapse and the process repeats on the new polygon. |
@@ -150,46 +196,40 @@ |
// controls the iteration. The CandidateVerts holds the formative points for the |
// next ring. |
bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { |
- static const int kMaxNumRings = 8; |
- |
- SkDEBUGCODE(fShouldCheckDepths = true;) |
- |
if (!this->extractFromPath(m, path)) { |
return false; |
} |
- this->createOuterRing(); |
+ SkScalar coverage = 1.0f; |
+ if (fStrokeWidth >= 0.0f) { |
+ Ring outerStrokeRing; |
+ this->createOuterRing(fInitialRing, fStrokeWidth / 2 - kAntialiasingRadius, coverage, |
+ &outerStrokeRing); |
+ outerStrokeRing.init(*this); |
+ Ring outerAARing; |
+ this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing); |
+ } else { |
+ Ring outerAARing; |
+ this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing); |
+ } |
// the bisectors are only needed for the computation of the outer ring |
fBisectors.rewind(); |
- |
- Ring* lastRing = &fInitialRing; |
- int i; |
- for (i = 0; i < kMaxNumRings; ++i) { |
- Ring* nextRing = this->getNextRing(lastRing); |
- |
- if (this->createInsetRing(*lastRing, nextRing)) { |
- break; |
- } |
- |
- nextRing->init(*this); |
- lastRing = nextRing; |
- } |
- |
- if (kMaxNumRings == i) { |
- // If we've exceeded the amount of time we want to throw at this, set |
- // the depth of all points in the final ring to 'fTargetDepth' and |
- // create a fan. |
- this->terminate(*lastRing); |
- SkDEBUGCODE(fShouldCheckDepths = false;) |
- } |
- |
-#ifdef SK_DEBUG |
- this->validate(); |
- if (fShouldCheckDepths) { |
- SkDEBUGCODE(this->checkAllDepths();) |
- } |
-#endif |
+ if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) { |
+ Ring* insetStrokeRing; |
+ SkScalar strokeDepth = fStrokeWidth / 2 - kAntialiasingRadius; |
+ if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage, |
+ &insetStrokeRing)) { |
+ Ring* insetAARing; |
+ this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth + |
+ kAntialiasingRadius * 2, 0.0f, &insetAARing); |
+ } |
+ } else { |
+ Ring* insetAARing; |
+ this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing); |
+ } |
+ |
+ SkDEBUGCODE(this->validate();) |
return true; |
} |
@@ -198,7 +238,6 @@ |
SkPoint v = p - fPts[edgeIdx]; |
SkScalar depth = -fNorms[edgeIdx].dot(v); |
- SkASSERT(depth >= 0.0f); |
return depth; |
} |
@@ -213,13 +252,13 @@ |
// First find the point where the edge and the bisector intersect |
SkPoint newP; |
+ |
SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); |
if (SkScalarNearlyEqual(t, 0.0f)) { |
// the start point was one of the original ring points |
- SkASSERT(startIdx < fNorms.count()); |
+ SkASSERT(startIdx < fPts.count()); |
newP = fPts[startIdx]; |
- } else if (t > 0.0f) { |
- SkASSERT(t < 0.0f); |
+ } else if (t < 0.0f) { |
newP = bisector; |
newP.scale(t); |
newP += fPts[startIdx]; |
@@ -228,12 +267,11 @@ |
} |
// Then offset along the bisector from that point the correct distance |
- t = -desiredDepth / bisector.dot(norm); |
- SkASSERT(t > 0.0f); |
+ SkScalar dot = bisector.dot(norm); |
+ t = -desiredDepth / dot; |
*result = bisector; |
result->scale(t); |
*result += newP; |
- |
return true; |
} |
@@ -251,9 +289,6 @@ |
fIndices.setReserve(18*path.countPoints() + 6); |
fNorms.setReserve(path.countPoints()); |
- |
- SkDEBUGCODE(fMinCross = SK_ScalarMax;) |
- SkDEBUGCODE(fMaxCross = -SK_ScalarMax;) |
// TODO: is there a faster way to extract the points from the path? Perhaps |
// get all the points via a new entry point, transform them all in bulk |
@@ -282,7 +317,7 @@ |
} |
} |
- if (this->numPts() < 3) { |
+ if (this->numPts() < 2) { |
return false; |
} |
@@ -293,23 +328,20 @@ |
} |
SkASSERT(fPts.count() == fNorms.count()+1); |
- if (this->numPts() >= 3 && |
- abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { |
- // The last point is on the line from the second to last to the first point. |
- this->popLastPt(); |
- fNorms.pop(); |
- } |
- |
- if (this->numPts() < 3) { |
- return false; |
- } |
- |
- *fNorms.push() = fPts[0] - fPts.top(); |
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
- SkASSERT(len > 0.0f); |
- SkASSERT(fPts.count() == fNorms.count()); |
- |
- if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { |
+ if (this->numPts() >= 3) { |
+ if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { |
+ // The last point is on the line from the second to last to the first point. |
+ this->popLastPt(); |
+ fNorms.pop(); |
+ } |
+ |
+ *fNorms.push() = fPts[0] - fPts.top(); |
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
+ SkASSERT(len > 0.0f); |
+ SkASSERT(fPts.count() == fNorms.count()); |
+ } |
+ |
+ if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { |
// The first point is on the line from the last to the second. |
this->popFirstPtShuffle(); |
fNorms.removeShuffle(0); |
@@ -319,28 +351,44 @@ |
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); |
} |
- if (this->numPts() < 3) { |
+ if (this->numPts() >= 3) { |
+ // Check the cross product of the final trio |
+ SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
+ if (cross > 0.0f) { |
+ fSide = SkPoint::kRight_Side; |
+ } else { |
+ fSide = SkPoint::kLeft_Side; |
+ } |
+ |
+ // Make all the normals face outwards rather than along the edge |
+ for (int cur = 0; cur < fNorms.count(); ++cur) { |
+ fNorms[cur].setOrthog(fNorms[cur], fSide); |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
+ } |
+ |
+ this->computeBisectors(); |
+ } else if (this->numPts() == 2) { |
+ // We've got two points, so we're degenerate. |
+ if (fStrokeWidth < 0.0f) { |
+ // it's a fill, so we don't need to worry about degenerate paths |
+ return false; |
+ } |
+ // For stroking, we still need to process the degenerate path, so fix it up |
+ fSide = SkPoint::kLeft_Side; |
+ |
+ // Make all the normals face outwards rather than along the edge |
+ for (int cur = 0; cur < fNorms.count(); ++cur) { |
+ fNorms[cur].setOrthog(fNorms[cur], fSide); |
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
+ } |
+ |
+ fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY)); |
+ // we won't actually use the bisectors, so just push zeroes |
+ fBisectors.push(SkPoint::Make(0.0, 0.0)); |
+ fBisectors.push(SkPoint::Make(0.0, 0.0)); |
+ } else { |
return false; |
} |
- |
- // Check the cross product of the final trio |
- SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); |
- SkDEBUGCODE(fMaxCross = SkTMax(fMaxCross, cross)); |
- SkDEBUGCODE(fMinCross = SkTMin(fMinCross, cross)); |
- SkASSERT((fMaxCross >= 0.0f) == (fMinCross >= 0.0f)); |
- if (cross > 0.0f) { |
- fSide = SkPoint::kRight_Side; |
- } else { |
- fSide = SkPoint::kLeft_Side; |
- } |
- |
- // Make all the normals face outwards rather than along the edge |
- for (int cur = 0; cur < fNorms.count(); ++cur) { |
- fNorms[cur].setOrthog(fNorms[cur], fSide); |
- SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); |
- } |
- |
- this->computeBisectors(); |
fCandidateVerts.setReserve(this->numPts()); |
fInitialRing.setReserve(this->numPts()); |
@@ -370,138 +418,172 @@ |
void GrAAConvexTessellator::fanRing(const Ring& ring) { |
// fan out from point 0 |
- for (int cur = 1; cur < ring.numPts()-1; ++cur) { |
- this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1)); |
- } |
-} |
- |
-void GrAAConvexTessellator::createOuterRing() { |
- // For now, we're only generating one outer ring (at the start). This |
- // could be relaxed for stroking use cases. |
- SkASSERT(0 == fIndices.count()); |
- SkASSERT(fPts.count() == fNorms.count()); |
- |
- const int numPts = fPts.count(); |
+ int startIdx = ring.index(0); |
+ for (int cur = ring.numPts() - 2; cur >= 0; --cur) { |
+ this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); |
+ } |
+} |
+ |
+void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset, |
+ SkScalar coverage, Ring* nextRing) { |
+ const int numPts = previousRing.numPts(); |
+ if (numPts == 0) { |
+ return; |
+ } |
int prev = numPts - 1; |
- int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2; |
+ int lastPerpIdx = -1, firstPerpIdx = -1; |
+ |
+ const SkScalar outsetSq = SkScalarMul(outset, outset); |
+ SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit); |
+ miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq); |
for (int cur = 0; cur < numPts; ++cur) { |
- if (fIsCurve[cur]) { |
- // Inside a curve, we assume that the curvature is shallow enough (due to tesselation) |
- // that we only need one corner point. Mathematically, the distance the corner point |
- // gets shifted out should depend on the angle between the two line segments (as in |
- // mitering), but again due to tesselation we assume that this angle is small and |
- // therefore the correction factor is negligible and we do not bother with it. |
- |
- // The bisector outset point |
- SkPoint temp = fBisectors[cur]; |
- temp.scale(-fTargetDepth); // the bisectors point in |
- temp += fPts[cur]; |
- |
- // double-check our "sufficiently flat" assumption; we want the bisector point to be |
- // close to the normal point. |
- #define kFlatnessTolerance 1.0f |
- SkDEBUGCODE(SkPoint prevNormal = fNorms[prev];) |
- SkDEBUGCODE(prevNormal.scale(fTargetDepth);) |
- SkDEBUGCODE(prevNormal += fPts[cur];) |
- SkASSERT((temp - prevNormal).length() < kFlatnessTolerance); |
- |
- newIdx1 = this->addPt(temp, -fTargetDepth, false, true); |
- |
- if (0 == cur) { |
- // Store the index of the first perpendicular point to finish up |
- firstPerpIdx = newIdx1; |
- SkASSERT(-1 == lastPerpIdx); |
+ int originalIdx = previousRing.index(cur); |
+ // For each vertex of the original polygon we add at least two points to the |
+ // outset polygon - one extending perpendicular to each impinging edge. Connecting these |
+ // two points yields a bevel join. We need one additional point for a mitered join, and |
+ // a round join requires one or more points depending upon curvature. |
+ |
+ // The perpendicular point for the last edge |
+ SkPoint normal1 = previousRing.norm(prev); |
+ SkPoint perp1 = normal1; |
+ perp1.scale(outset); |
+ perp1 += this->point(originalIdx); |
+ |
+ // The perpendicular point for the next edge. |
+ SkPoint normal2 = previousRing.norm(cur); |
+ SkPoint perp2 = normal2; |
+ perp2.scale(outset); |
+ perp2 += fPts[originalIdx]; |
+ |
+ bool isCurve = fIsCurve[originalIdx]; |
+ |
+ // We know it isn't a duplicate of the prior point (since it and this |
+ // one are just perpendicular offsets from the non-merged polygon points) |
+ int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); |
+ nextRing->addIdx(perp1Idx, originalIdx); |
+ |
+ int perp2Idx; |
+ // For very shallow angles all the corner points could fuse. |
+ if (duplicate_pt(perp2, this->point(perp1Idx))) { |
+ perp2Idx = perp1Idx; |
+ } else { |
+ perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); |
+ } |
+ |
+ if (perp2Idx != perp1Idx) { |
+ if (isCurve) { |
+ // bevel or round depending upon curvature |
+ SkScalar dotProd = normal1.dot(normal2); |
+ if (dotProd < kRoundCapThreshold) { |
+ // Currently we "round" by creating a single extra point, which produces |
+ // good results for common cases. For thick strokes with high curvature, we will |
+ // need to add more points; for the time being we simply fall back to software |
+ // rendering for thick strokes. |
+ SkPoint miter = previousRing.bisector(cur); |
+ miter.setLength(-outset); |
+ miter += fPts[originalIdx]; |
+ |
+ // For very shallow angles all the corner points could fuse |
+ if (!duplicate_pt(miter, this->point(perp1Idx))) { |
+ int miterIdx; |
+ miterIdx = this->addPt(miter, -outset, coverage, false, false); |
+ nextRing->addIdx(miterIdx, originalIdx); |
+ // The two triangles for the corner |
+ this->addTri(originalIdx, perp1Idx, miterIdx); |
+ this->addTri(originalIdx, miterIdx, perp2Idx); |
+ } |
+ } else { |
+ this->addTri(originalIdx, perp1Idx, perp2Idx); |
+ } |
} else { |
- // The triangles for the previous edge |
- this->addTri(prev, newIdx1, cur); |
- this->addTri(prev, lastPerpIdx, newIdx1); |
+ switch (fJoin) { |
+ case SkPaint::Join::kMiter_Join: { |
+ // The bisector outset point |
+ SkPoint miter = previousRing.bisector(cur); |
+ SkScalar dotProd = normal1.dot(normal2); |
+ SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd); |
+ SkScalar lengthSq = outsetSq / sinHalfAngleSq; |
+ if (lengthSq > miterLimitSq) { |
+ // just bevel it |
+ this->addTri(originalIdx, perp1Idx, perp2Idx); |
+ break; |
+ } |
+ miter.setLength(-SkScalarSqrt(lengthSq)); |
+ miter += fPts[originalIdx]; |
+ |
+ // For very shallow angles all the corner points could fuse |
+ if (!duplicate_pt(miter, this->point(perp1Idx))) { |
+ int miterIdx; |
+ miterIdx = this->addPt(miter, -outset, coverage, false, false); |
+ nextRing->addIdx(miterIdx, originalIdx); |
+ // The two triangles for the corner |
+ this->addTri(originalIdx, perp1Idx, miterIdx); |
+ this->addTri(originalIdx, miterIdx, perp2Idx); |
+ } |
+ break; |
+ } |
+ case SkPaint::Join::kBevel_Join: |
+ this->addTri(originalIdx, perp1Idx, perp2Idx); |
+ break; |
+ default: |
+ // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is |
+ // only willing to draw mitered or beveled, so we should never get here. |
+ SkASSERT(false); |
+ } |
} |
- prev = cur; |
- // Track the last perpendicular outset point so we can construct the |
- // trailing edge triangles. |
- lastPerpIdx = newIdx1; |
- } |
- else { |
- // For each vertex of the original polygon we add three points to the |
- // outset polygon - one extending perpendicular to each impinging edge |
- // and one along the bisector. Two triangles are added for each corner |
- // and two are added along each edge. |
- |
- // The perpendicular point for the last edge |
- SkPoint temp = fNorms[prev]; |
- temp.scale(fTargetDepth); |
- temp += fPts[cur]; |
- |
- // We know it isn't a duplicate of the prior point (since it and this |
- // one are just perpendicular offsets from the non-merged polygon points) |
- newIdx0 = this->addPt(temp, -fTargetDepth, false, false); |
- |
- // The bisector outset point |
- temp = fBisectors[cur]; |
- temp.scale(-fTargetDepth); // the bisectors point in |
- temp += fPts[cur]; |
- |
- // For very shallow angles all the corner points could fuse |
- if (duplicate_pt(temp, this->point(newIdx0))) { |
- newIdx1 = newIdx0; |
- } else { |
- newIdx1 = this->addPt(temp, -fTargetDepth, false, false); |
- } |
- |
- // The perpendicular point for the next edge. |
- temp = fNorms[cur]; |
- temp.scale(fTargetDepth); |
- temp += fPts[cur]; |
- |
- // For very shallow angles all the corner points could fuse. |
- if (duplicate_pt(temp, this->point(newIdx1))) { |
- newIdx2 = newIdx1; |
- } else { |
- newIdx2 = this->addPt(temp, -fTargetDepth, false, false); |
- } |
- |
- if (0 == cur) { |
- // Store the index of the first perpendicular point to finish up |
- firstPerpIdx = newIdx0; |
- SkASSERT(-1 == lastPerpIdx); |
- } else { |
- // The triangles for the previous edge |
- this->addTri(prev, newIdx0, cur); |
- this->addTri(prev, lastPerpIdx, newIdx0); |
- } |
- |
- // The two triangles for the corner |
- this->addTri(cur, newIdx0, newIdx1); |
- this->addTri(cur, newIdx1, newIdx2); |
- |
- prev = cur; |
- // Track the last perpendicular outset point so we can construct the |
- // trailing edge triangles. |
- lastPerpIdx = newIdx2; |
- } |
+ nextRing->addIdx(perp2Idx, originalIdx); |
+ } |
+ |
+ if (0 == cur) { |
+ // Store the index of the first perpendicular point to finish up |
+ firstPerpIdx = perp1Idx; |
+ SkASSERT(-1 == lastPerpIdx); |
+ } else { |
+ // The triangles for the previous edge |
+ int prevIdx = previousRing.index(prev); |
+ this->addTri(prevIdx, perp1Idx, originalIdx); |
+ this->addTri(prevIdx, lastPerpIdx, perp1Idx); |
+ } |
+ |
+ // Track the last perpendicular outset point so we can construct the |
+ // trailing edge triangles. |
+ lastPerpIdx = perp2Idx; |
+ prev = cur; |
} |
// pick up the final edge rect |
- this->addTri(numPts - 1, firstPerpIdx, 0); |
- this->addTri(numPts - 1, lastPerpIdx, firstPerpIdx); |
+ int lastIdx = previousRing.index(numPts - 1); |
+ this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); |
+ this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); |
this->validate(); |
} |
-// Something went wrong in the creation of the next ring. Mark the last good |
-// ring as being at the desired depth and fan it. |
+// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead |
+// and fan it. |
void GrAAConvexTessellator::terminate(const Ring& ring) { |
- for (int i = 0; i < ring.numPts(); ++i) { |
- fDepths[ring.index(i)] = fTargetDepth; |
- } |
- |
- this->fanRing(ring); |
+ if (fStrokeWidth < 0.0f) { |
+ this->fanRing(ring); |
+ } |
+} |
+ |
+static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage, |
+ SkScalar targetDepth, SkScalar targetCoverage) { |
+ if (SkScalarNearlyEqual(initialDepth, targetDepth)) { |
+ return targetCoverage; |
+ } |
+ SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) * |
+ (targetCoverage - initialCoverage) + initialCoverage; |
+ return SkScalarClampMax(result, 1.0f); |
} |
// return true when processing is complete |
-bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) { |
+bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing, |
+ SkScalar initialDepth, SkScalar initialCoverage, |
+ SkScalar targetDepth, SkScalar targetCoverage, |
+ bool forceNew) { |
bool done = false; |
fCandidateVerts.rewind(); |
@@ -512,7 +594,6 @@ |
for (int cur = 0; cur < lastRing.numPts(); ++cur) { |
int next = (cur + 1) % lastRing.numPts(); |
- |
SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur), |
this->point(lastRing.index(next)), lastRing.bisector(next)); |
SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); |
@@ -524,15 +605,18 @@ |
} |
} |
+ if (minEdgeIdx == -1) { |
+ return false; |
+ } |
SkPoint newPt = lastRing.bisector(minEdgeIdx); |
newPt.scale(minT); |
newPt += this->point(lastRing.index(minEdgeIdx)); |
SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); |
- if (depth >= fTargetDepth) { |
+ if (depth >= targetDepth) { |
// None of the bisectors intersect before reaching the desired depth. |
// Just step them all to the desired depth |
- depth = fTargetDepth; |
+ depth = targetDepth; |
done = true; |
} |
@@ -547,7 +631,6 @@ |
lastRing.origEdgeID(0), |
depth, &newPt)) { |
this->terminate(lastRing); |
- SkDEBUGCODE(fShouldCheckDepths = false;) |
return true; |
} |
dst[0] = fCandidateVerts.addNewPt(newPt, |
@@ -561,7 +644,6 @@ |
lastRing.origEdgeID(cur), |
depth, &newPt)) { |
this->terminate(lastRing); |
- SkDEBUGCODE(fShouldCheckDepths = false;) |
return true; |
} |
if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { |
@@ -580,7 +662,6 @@ |
lastRing.origEdgeID(cur), |
depth, &newPt)) { |
this->terminate(lastRing); |
- SkDEBUGCODE(fShouldCheckDepths = false;) |
return true; |
} |
bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); |
@@ -607,14 +688,17 @@ |
// Fold the new ring's points into the global pool |
for (int i = 0; i < fCandidateVerts.numPts(); ++i) { |
int newIdx; |
- if (fCandidateVerts.needsToBeNew(i)) { |
+ if (fCandidateVerts.needsToBeNew(i) || forceNew) { |
// if the originating index is still valid then this point wasn't |
// fused (and is thus movable) |
- newIdx = this->addPt(fCandidateVerts.point(i), depth, |
+ SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage, |
+ targetDepth, targetCoverage); |
+ newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, |
fCandidateVerts.originatingIdx(i) != -1, false); |
} else { |
SkASSERT(fCandidateVerts.originatingIdx(i) != -1); |
- this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth); |
+ this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth, |
+ targetCoverage); |
newIdx = fCandidateVerts.originatingIdx(i); |
} |
@@ -634,19 +718,18 @@ |
this->addTri(lastRing.index(cur), dst[next], dst[cur]); |
} |
- if (done) { |
+ if (done && fStrokeWidth < 0.0f) { |
+ // fill |
this->fanRing(*nextRing); |
} |
if (nextRing->numPts() < 3) { |
done = true; |
} |
- |
return done; |
} |
void GrAAConvexTessellator::validate() const { |
- SkASSERT(fPts.count() == fDepths.count()); |
SkASSERT(fPts.count() == fMovable.count()); |
SkASSERT(0 == (fIndices.count() % 3)); |
} |
@@ -655,7 +738,6 @@ |
void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { |
this->computeNormals(tess); |
this->computeBisectors(tess); |
- SkASSERT(this->isConvex(tess)); |
} |
void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, |
@@ -672,11 +754,8 @@ |
int next = (cur + 1) % fPts.count(); |
fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); |
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm); |
- SkASSERT(len > 0.0f); |
+ SkPoint::Normalize(&fPts[cur].fNorm); |
fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); |
- |
- SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length())); |
} |
} |
@@ -694,9 +773,7 @@ |
} else { |
fPts[cur].fBisector.negate(); // make the bisector face in |
} |
- |
- SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length())); |
- } |
+ } |
} |
////////////////////////////////////////////////////////////////////////////// |
@@ -704,7 +781,7 @@ |
// Is this ring convex? |
bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { |
if (fPts.count() < 3) { |
- return false; |
+ return true; |
} |
SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); |
@@ -725,74 +802,18 @@ |
prev = cur; |
} |
- return (maxDot > 0.0f) == (minDot >= 0.0f); |
-} |
- |
-static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1, |
- const SkPoint& test, SkPoint::Side side, |
- int* sign) { |
- *sign = -1; |
- SkPoint edge = p1 - p0; |
- SkScalar len = SkPoint::Normalize(&edge); |
- |
- SkPoint testVec = test - p0; |
- |
- SkScalar d0 = edge.dot(testVec); |
- if (d0 < 0.0f) { |
- return SkPoint::Distance(p0, test); |
- } |
- if (d0 > len) { |
- return SkPoint::Distance(p1, test); |
- } |
- |
- SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY; |
- if (SkPoint::kRight_Side == side) { |
- perpDist = -perpDist; |
- } |
- |
- if (perpDist < 0.0f) { |
- perpDist = -perpDist; |
- } else { |
- *sign = 1; |
- } |
- return perpDist; |
-} |
- |
-SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const { |
- SkScalar minDist = SK_ScalarMax; |
- int closestSign, sign; |
- |
- for (int edge = 0; edge < fNorms.count(); ++edge) { |
- SkScalar dist = capsule_depth(this->point(edge), |
- this->point((edge+1) % fNorms.count()), |
- p, fSide, &sign); |
- SkASSERT(dist >= 0.0f); |
- |
- if (minDist > dist) { |
- minDist = dist; |
- closestSign = sign; |
- } |
- } |
- |
- return closestSign * minDist; |
-} |
- |
-// Verify that the incrementally computed depths are close to the actual depths. |
-void GrAAConvexTessellator::checkAllDepths() const { |
- for (int cur = 0; cur < this->numPts(); ++cur) { |
- SkScalar realDepth = this->computeRealDepth(this->point(cur)); |
- SkScalar computedDepth = this->depth(cur); |
- SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f)); |
- } |
-} |
+ if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { |
+ maxDot = 0; |
+ } |
+ if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { |
+ minDot = 0; |
+ } |
+ return (maxDot >= 0.0f) == (minDot >= 0.0f); |
+} |
+ |
#endif |
-#define kQuadTolerance 0.2f |
-#define kCubicTolerance 0.2f |
-#define kConicTolerance 0.5f |
- |
-void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { |
- m.mapPoints(&p, 1); |
+void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { |
if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { |
return; |
} |
@@ -805,24 +826,22 @@ |
fNorms.pop(); |
fIsCurve.pop(); |
} |
- this->addPt(p, 0.0f, false, isCurve); |
+ SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; |
+ this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); |
if (this->numPts() > 1) { |
*fNorms.push() = fPts.top() - fPts[fPts.count()-2]; |
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); |
SkASSERT(len > 0.0f); |
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); |
} |
- SkDEBUGCODE( |
- if (this->numPts() >= 3) { |
- int cur = this->numPts()-1; |
- SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]); |
- fMaxCross = SkTMax(fMaxCross, cross); |
- fMinCross = SkTMin(fMinCross, cross); |
- } |
- ) |
-} |
- |
-void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { |
+} |
+ |
+void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { |
+ m.mapPoints(&p, 1); |
+ this->lineTo(p, isCurve); |
+} |
+ |
+void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { |
int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
fPointBuffer.setReserve(maxCount); |
SkPoint* target = fPointBuffer.begin(); |
@@ -830,11 +849,21 @@ |
kQuadTolerance, &target, maxCount); |
fPointBuffer.setCount(count); |
for (int i = 0; i < count; i++) { |
- lineTo(m, fPointBuffer[i], true); |
- } |
+ lineTo(fPointBuffer[i], true); |
+ } |
+} |
+ |
+void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { |
+ SkPoint transformed[3]; |
+ transformed[0] = pts[0]; |
+ transformed[1] = pts[1]; |
+ transformed[2] = pts[2]; |
+ m.mapPoints(transformed, 3); |
+ quadTo(transformed); |
} |
void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { |
+ m.mapPoints(pts, 4); |
int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
fPointBuffer.setReserve(maxCount); |
SkPoint* target = fPointBuffer.begin(); |
@@ -842,14 +871,15 @@ |
kCubicTolerance, &target, maxCount); |
fPointBuffer.setCount(count); |
for (int i = 0; i < count; i++) { |
- lineTo(m, fPointBuffer[i], true); |
+ lineTo(fPointBuffer[i], true); |
} |
} |
// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h |
#include "SkGeometry.h" |
-void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w) { |
+void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) { |
+ m.mapPoints(pts, 3); |
SkAutoConicToQuads quadder; |
const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
SkPoint lastPoint = *(quads++); |
@@ -859,7 +889,7 @@ |
quadPts[0] = lastPoint; |
quadPts[1] = quads[0]; |
quadPts[2] = i == count - 1 ? pts[2] : quads[1]; |
- quadTo(m, quadPts); |
+ quadTo(quadPts); |
lastPoint = quadPts[2]; |
quads += 2; |
} |
@@ -965,13 +995,13 @@ |
for (int i = 0; i < this->numPts(); ++i) { |
draw_point(canvas, |
- this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)), |
+ this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)), |
!this->movable(i)); |
SkPaint paint; |
paint.setTextSize(kPointTextSize); |
paint.setTextAlign(SkPaint::kCenter_Align); |
- if (this->depth(i) <= -fTargetDepth) { |
+ if (this->depth(i) <= -kAntialiasingRadius) { |
paint.setColor(SK_ColorWHITE); |
} |