Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(182)

Unified Diff: src/gpu/GrAAConvexTessellator.cpp

Issue 1209003004: Revert of Revert of added stroking support to GrAALinearizingConvexPathRenderer (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/gpu/GrAAConvexTessellator.h ('k') | src/gpu/GrAALinearizingConvexPathRenderer.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/gpu/GrAAConvexTessellator.cpp
diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp
index 56a408d644d468c56fffe98e1b65e05018354385..85ce7ba9ed6bc17681cbc791d7134210861e0539 100644
--- a/src/gpu/GrAAConvexTessellator.cpp
+++ b/src/gpu/GrAAConvexTessellator.cpp
@@ -13,7 +13,6 @@
#include "GrPathUtils.h"
// Next steps:
-// use in AAConvexPathRenderer
// add an interactive sample app slide
// add debug check that all points are suitably far apart
// test more degenerate cases
@@ -22,10 +21,17 @@
static const SkScalar kClose = (SK_Scalar1 / 16);
static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
+// tesselation tolerance values, in device space pixels
+static const SkScalar kQuadTolerance = 0.2f;
+static const SkScalar kCubicTolerance = 0.2f;
+static const SkScalar kConicTolerance = 0.5f;
+
+// dot product below which we use a round cap between curve segments
+static const SkScalar kRoundCapThreshold = 0.8f;
+
static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& n1) {
const SkPoint v = p1 - p0;
-
SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
}
@@ -52,13 +58,14 @@
int GrAAConvexTessellator::addPt(const SkPoint& pt,
SkScalar depth,
+ SkScalar coverage,
bool movable,
bool isCurve) {
this->validate();
int index = fPts.count();
*fPts.push() = pt;
- *fDepths.push() = depth;
+ *fCoverages.push() = coverage;
*fMovable.push() = movable;
*fIsCurve.push() = isCurve;
@@ -70,7 +77,7 @@
this->validate();
fPts.pop();
- fDepths.pop();
+ fCoverages.pop();
fMovable.pop();
this->validate();
@@ -80,7 +87,7 @@
this->validate();
fPts.removeShuffle(0);
- fDepths.removeShuffle(0);
+ fCoverages.removeShuffle(0);
fMovable.removeShuffle(0);
this->validate();
@@ -88,12 +95,13 @@
void GrAAConvexTessellator::updatePt(int index,
const SkPoint& pt,
- SkScalar depth) {
+ SkScalar depth,
+ SkScalar coverage) {
this->validate();
SkASSERT(fMovable[index]);
fPts[index] = pt;
- fDepths[index] = depth;
+ fCoverages[index] = coverage;
}
void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
@@ -108,7 +116,7 @@
void GrAAConvexTessellator::rewind() {
fPts.rewind();
- fDepths.rewind();
+ fCoverages.rewind();
fMovable.rewind();
fIndices.rewind();
fNorms.rewind();
@@ -143,6 +151,44 @@
}
}
+// Create as many rings as we need to (up to a predefined limit) to reach the specified target
+// depth. If we are in fill mode, the final ring will automatically be fanned.
+bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
+ SkScalar initialCoverage, SkScalar targetDepth,
+ SkScalar targetCoverage, Ring** finalRing) {
+ static const int kMaxNumRings = 8;
+
+ if (previousRing.numPts() < 3) {
+ return false;
+ }
+ Ring* currentRing = &previousRing;
+ int i;
+ for (i = 0; i < kMaxNumRings; ++i) {
+ Ring* nextRing = this->getNextRing(currentRing);
+ SkASSERT(nextRing != currentRing);
+
+ bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
+ targetDepth, targetCoverage, i == 0);
+ currentRing = nextRing;
+ if (done) {
+ break;
+ }
+ currentRing->init(*this);
+ }
+
+ if (kMaxNumRings == i) {
+ // Bail if we've exceeded the amount of time we want to throw at this.
+ this->terminate(*currentRing);
+ return false;
+ }
+ bool done = currentRing->numPts() >= 3;
+ if (done) {
+ currentRing->init(*this);
+ }
+ *finalRing = currentRing;
+ return done;
+}
+
// The general idea here is to, conceptually, start with the original polygon and slide
// the vertices along the bisectors until the first intersection. At that
// point two of the edges collapse and the process repeats on the new polygon.
@@ -150,46 +196,40 @@
// controls the iteration. The CandidateVerts holds the formative points for the
// next ring.
bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
- static const int kMaxNumRings = 8;
-
- SkDEBUGCODE(fShouldCheckDepths = true;)
-
if (!this->extractFromPath(m, path)) {
return false;
}
- this->createOuterRing();
+ SkScalar coverage = 1.0f;
+ if (fStrokeWidth >= 0.0f) {
+ Ring outerStrokeRing;
+ this->createOuterRing(fInitialRing, fStrokeWidth / 2 - kAntialiasingRadius, coverage,
+ &outerStrokeRing);
+ outerStrokeRing.init(*this);
+ Ring outerAARing;
+ this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
+ } else {
+ Ring outerAARing;
+ this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
+ }
// the bisectors are only needed for the computation of the outer ring
fBisectors.rewind();
-
- Ring* lastRing = &fInitialRing;
- int i;
- for (i = 0; i < kMaxNumRings; ++i) {
- Ring* nextRing = this->getNextRing(lastRing);
-
- if (this->createInsetRing(*lastRing, nextRing)) {
- break;
- }
-
- nextRing->init(*this);
- lastRing = nextRing;
- }
-
- if (kMaxNumRings == i) {
- // If we've exceeded the amount of time we want to throw at this, set
- // the depth of all points in the final ring to 'fTargetDepth' and
- // create a fan.
- this->terminate(*lastRing);
- SkDEBUGCODE(fShouldCheckDepths = false;)
- }
-
-#ifdef SK_DEBUG
- this->validate();
- if (fShouldCheckDepths) {
- SkDEBUGCODE(this->checkAllDepths();)
- }
-#endif
+ if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) {
+ Ring* insetStrokeRing;
+ SkScalar strokeDepth = fStrokeWidth / 2 - kAntialiasingRadius;
+ if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
+ &insetStrokeRing)) {
+ Ring* insetAARing;
+ this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
+ kAntialiasingRadius * 2, 0.0f, &insetAARing);
+ }
+ } else {
+ Ring* insetAARing;
+ this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
+ }
+
+ SkDEBUGCODE(this->validate();)
return true;
}
@@ -198,7 +238,6 @@
SkPoint v = p - fPts[edgeIdx];
SkScalar depth = -fNorms[edgeIdx].dot(v);
- SkASSERT(depth >= 0.0f);
return depth;
}
@@ -213,13 +252,13 @@
// First find the point where the edge and the bisector intersect
SkPoint newP;
+
SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
if (SkScalarNearlyEqual(t, 0.0f)) {
// the start point was one of the original ring points
- SkASSERT(startIdx < fNorms.count());
+ SkASSERT(startIdx < fPts.count());
newP = fPts[startIdx];
- } else if (t > 0.0f) {
- SkASSERT(t < 0.0f);
+ } else if (t < 0.0f) {
newP = bisector;
newP.scale(t);
newP += fPts[startIdx];
@@ -228,12 +267,11 @@
}
// Then offset along the bisector from that point the correct distance
- t = -desiredDepth / bisector.dot(norm);
- SkASSERT(t > 0.0f);
+ SkScalar dot = bisector.dot(norm);
+ t = -desiredDepth / dot;
*result = bisector;
result->scale(t);
*result += newP;
-
return true;
}
@@ -251,9 +289,6 @@
fIndices.setReserve(18*path.countPoints() + 6);
fNorms.setReserve(path.countPoints());
-
- SkDEBUGCODE(fMinCross = SK_ScalarMax;)
- SkDEBUGCODE(fMaxCross = -SK_ScalarMax;)
// TODO: is there a faster way to extract the points from the path? Perhaps
// get all the points via a new entry point, transform them all in bulk
@@ -282,7 +317,7 @@
}
}
- if (this->numPts() < 3) {
+ if (this->numPts() < 2) {
return false;
}
@@ -293,23 +328,20 @@
}
SkASSERT(fPts.count() == fNorms.count()+1);
- if (this->numPts() >= 3 &&
- abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
- // The last point is on the line from the second to last to the first point.
- this->popLastPt();
- fNorms.pop();
- }
-
- if (this->numPts() < 3) {
- return false;
- }
-
- *fNorms.push() = fPts[0] - fPts.top();
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
- SkASSERT(len > 0.0f);
- SkASSERT(fPts.count() == fNorms.count());
-
- if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
+ if (this->numPts() >= 3) {
+ if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
+ // The last point is on the line from the second to last to the first point.
+ this->popLastPt();
+ fNorms.pop();
+ }
+
+ *fNorms.push() = fPts[0] - fPts.top();
+ SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
+ SkASSERT(len > 0.0f);
+ SkASSERT(fPts.count() == fNorms.count());
+ }
+
+ if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
// The first point is on the line from the last to the second.
this->popFirstPtShuffle();
fNorms.removeShuffle(0);
@@ -319,28 +351,44 @@
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
}
- if (this->numPts() < 3) {
+ if (this->numPts() >= 3) {
+ // Check the cross product of the final trio
+ SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
+ if (cross > 0.0f) {
+ fSide = SkPoint::kRight_Side;
+ } else {
+ fSide = SkPoint::kLeft_Side;
+ }
+
+ // Make all the normals face outwards rather than along the edge
+ for (int cur = 0; cur < fNorms.count(); ++cur) {
+ fNorms[cur].setOrthog(fNorms[cur], fSide);
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
+ }
+
+ this->computeBisectors();
+ } else if (this->numPts() == 2) {
+ // We've got two points, so we're degenerate.
+ if (fStrokeWidth < 0.0f) {
+ // it's a fill, so we don't need to worry about degenerate paths
+ return false;
+ }
+ // For stroking, we still need to process the degenerate path, so fix it up
+ fSide = SkPoint::kLeft_Side;
+
+ // Make all the normals face outwards rather than along the edge
+ for (int cur = 0; cur < fNorms.count(); ++cur) {
+ fNorms[cur].setOrthog(fNorms[cur], fSide);
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
+ }
+
+ fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
+ // we won't actually use the bisectors, so just push zeroes
+ fBisectors.push(SkPoint::Make(0.0, 0.0));
+ fBisectors.push(SkPoint::Make(0.0, 0.0));
+ } else {
return false;
}
-
- // Check the cross product of the final trio
- SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
- SkDEBUGCODE(fMaxCross = SkTMax(fMaxCross, cross));
- SkDEBUGCODE(fMinCross = SkTMin(fMinCross, cross));
- SkASSERT((fMaxCross >= 0.0f) == (fMinCross >= 0.0f));
- if (cross > 0.0f) {
- fSide = SkPoint::kRight_Side;
- } else {
- fSide = SkPoint::kLeft_Side;
- }
-
- // Make all the normals face outwards rather than along the edge
- for (int cur = 0; cur < fNorms.count(); ++cur) {
- fNorms[cur].setOrthog(fNorms[cur], fSide);
- SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
- }
-
- this->computeBisectors();
fCandidateVerts.setReserve(this->numPts());
fInitialRing.setReserve(this->numPts());
@@ -370,138 +418,172 @@
void GrAAConvexTessellator::fanRing(const Ring& ring) {
// fan out from point 0
- for (int cur = 1; cur < ring.numPts()-1; ++cur) {
- this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1));
- }
-}
-
-void GrAAConvexTessellator::createOuterRing() {
- // For now, we're only generating one outer ring (at the start). This
- // could be relaxed for stroking use cases.
- SkASSERT(0 == fIndices.count());
- SkASSERT(fPts.count() == fNorms.count());
-
- const int numPts = fPts.count();
+ int startIdx = ring.index(0);
+ for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
+ this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
+ }
+}
+
+void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
+ SkScalar coverage, Ring* nextRing) {
+ const int numPts = previousRing.numPts();
+ if (numPts == 0) {
+ return;
+ }
int prev = numPts - 1;
- int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2;
+ int lastPerpIdx = -1, firstPerpIdx = -1;
+
+ const SkScalar outsetSq = SkScalarMul(outset, outset);
+ SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit);
+ miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq);
for (int cur = 0; cur < numPts; ++cur) {
- if (fIsCurve[cur]) {
- // Inside a curve, we assume that the curvature is shallow enough (due to tesselation)
- // that we only need one corner point. Mathematically, the distance the corner point
- // gets shifted out should depend on the angle between the two line segments (as in
- // mitering), but again due to tesselation we assume that this angle is small and
- // therefore the correction factor is negligible and we do not bother with it.
-
- // The bisector outset point
- SkPoint temp = fBisectors[cur];
- temp.scale(-fTargetDepth); // the bisectors point in
- temp += fPts[cur];
-
- // double-check our "sufficiently flat" assumption; we want the bisector point to be
- // close to the normal point.
- #define kFlatnessTolerance 1.0f
- SkDEBUGCODE(SkPoint prevNormal = fNorms[prev];)
- SkDEBUGCODE(prevNormal.scale(fTargetDepth);)
- SkDEBUGCODE(prevNormal += fPts[cur];)
- SkASSERT((temp - prevNormal).length() < kFlatnessTolerance);
-
- newIdx1 = this->addPt(temp, -fTargetDepth, false, true);
-
- if (0 == cur) {
- // Store the index of the first perpendicular point to finish up
- firstPerpIdx = newIdx1;
- SkASSERT(-1 == lastPerpIdx);
+ int originalIdx = previousRing.index(cur);
+ // For each vertex of the original polygon we add at least two points to the
+ // outset polygon - one extending perpendicular to each impinging edge. Connecting these
+ // two points yields a bevel join. We need one additional point for a mitered join, and
+ // a round join requires one or more points depending upon curvature.
+
+ // The perpendicular point for the last edge
+ SkPoint normal1 = previousRing.norm(prev);
+ SkPoint perp1 = normal1;
+ perp1.scale(outset);
+ perp1 += this->point(originalIdx);
+
+ // The perpendicular point for the next edge.
+ SkPoint normal2 = previousRing.norm(cur);
+ SkPoint perp2 = normal2;
+ perp2.scale(outset);
+ perp2 += fPts[originalIdx];
+
+ bool isCurve = fIsCurve[originalIdx];
+
+ // We know it isn't a duplicate of the prior point (since it and this
+ // one are just perpendicular offsets from the non-merged polygon points)
+ int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve);
+ nextRing->addIdx(perp1Idx, originalIdx);
+
+ int perp2Idx;
+ // For very shallow angles all the corner points could fuse.
+ if (duplicate_pt(perp2, this->point(perp1Idx))) {
+ perp2Idx = perp1Idx;
+ } else {
+ perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve);
+ }
+
+ if (perp2Idx != perp1Idx) {
+ if (isCurve) {
+ // bevel or round depending upon curvature
+ SkScalar dotProd = normal1.dot(normal2);
+ if (dotProd < kRoundCapThreshold) {
+ // Currently we "round" by creating a single extra point, which produces
+ // good results for common cases. For thick strokes with high curvature, we will
+ // need to add more points; for the time being we simply fall back to software
+ // rendering for thick strokes.
+ SkPoint miter = previousRing.bisector(cur);
+ miter.setLength(-outset);
+ miter += fPts[originalIdx];
+
+ // For very shallow angles all the corner points could fuse
+ if (!duplicate_pt(miter, this->point(perp1Idx))) {
+ int miterIdx;
+ miterIdx = this->addPt(miter, -outset, coverage, false, false);
+ nextRing->addIdx(miterIdx, originalIdx);
+ // The two triangles for the corner
+ this->addTri(originalIdx, perp1Idx, miterIdx);
+ this->addTri(originalIdx, miterIdx, perp2Idx);
+ }
+ } else {
+ this->addTri(originalIdx, perp1Idx, perp2Idx);
+ }
} else {
- // The triangles for the previous edge
- this->addTri(prev, newIdx1, cur);
- this->addTri(prev, lastPerpIdx, newIdx1);
+ switch (fJoin) {
+ case SkPaint::Join::kMiter_Join: {
+ // The bisector outset point
+ SkPoint miter = previousRing.bisector(cur);
+ SkScalar dotProd = normal1.dot(normal2);
+ SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
+ SkScalar lengthSq = outsetSq / sinHalfAngleSq;
+ if (lengthSq > miterLimitSq) {
+ // just bevel it
+ this->addTri(originalIdx, perp1Idx, perp2Idx);
+ break;
+ }
+ miter.setLength(-SkScalarSqrt(lengthSq));
+ miter += fPts[originalIdx];
+
+ // For very shallow angles all the corner points could fuse
+ if (!duplicate_pt(miter, this->point(perp1Idx))) {
+ int miterIdx;
+ miterIdx = this->addPt(miter, -outset, coverage, false, false);
+ nextRing->addIdx(miterIdx, originalIdx);
+ // The two triangles for the corner
+ this->addTri(originalIdx, perp1Idx, miterIdx);
+ this->addTri(originalIdx, miterIdx, perp2Idx);
+ }
+ break;
+ }
+ case SkPaint::Join::kBevel_Join:
+ this->addTri(originalIdx, perp1Idx, perp2Idx);
+ break;
+ default:
+ // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
+ // only willing to draw mitered or beveled, so we should never get here.
+ SkASSERT(false);
+ }
}
- prev = cur;
- // Track the last perpendicular outset point so we can construct the
- // trailing edge triangles.
- lastPerpIdx = newIdx1;
- }
- else {
- // For each vertex of the original polygon we add three points to the
- // outset polygon - one extending perpendicular to each impinging edge
- // and one along the bisector. Two triangles are added for each corner
- // and two are added along each edge.
-
- // The perpendicular point for the last edge
- SkPoint temp = fNorms[prev];
- temp.scale(fTargetDepth);
- temp += fPts[cur];
-
- // We know it isn't a duplicate of the prior point (since it and this
- // one are just perpendicular offsets from the non-merged polygon points)
- newIdx0 = this->addPt(temp, -fTargetDepth, false, false);
-
- // The bisector outset point
- temp = fBisectors[cur];
- temp.scale(-fTargetDepth); // the bisectors point in
- temp += fPts[cur];
-
- // For very shallow angles all the corner points could fuse
- if (duplicate_pt(temp, this->point(newIdx0))) {
- newIdx1 = newIdx0;
- } else {
- newIdx1 = this->addPt(temp, -fTargetDepth, false, false);
- }
-
- // The perpendicular point for the next edge.
- temp = fNorms[cur];
- temp.scale(fTargetDepth);
- temp += fPts[cur];
-
- // For very shallow angles all the corner points could fuse.
- if (duplicate_pt(temp, this->point(newIdx1))) {
- newIdx2 = newIdx1;
- } else {
- newIdx2 = this->addPt(temp, -fTargetDepth, false, false);
- }
-
- if (0 == cur) {
- // Store the index of the first perpendicular point to finish up
- firstPerpIdx = newIdx0;
- SkASSERT(-1 == lastPerpIdx);
- } else {
- // The triangles for the previous edge
- this->addTri(prev, newIdx0, cur);
- this->addTri(prev, lastPerpIdx, newIdx0);
- }
-
- // The two triangles for the corner
- this->addTri(cur, newIdx0, newIdx1);
- this->addTri(cur, newIdx1, newIdx2);
-
- prev = cur;
- // Track the last perpendicular outset point so we can construct the
- // trailing edge triangles.
- lastPerpIdx = newIdx2;
- }
+ nextRing->addIdx(perp2Idx, originalIdx);
+ }
+
+ if (0 == cur) {
+ // Store the index of the first perpendicular point to finish up
+ firstPerpIdx = perp1Idx;
+ SkASSERT(-1 == lastPerpIdx);
+ } else {
+ // The triangles for the previous edge
+ int prevIdx = previousRing.index(prev);
+ this->addTri(prevIdx, perp1Idx, originalIdx);
+ this->addTri(prevIdx, lastPerpIdx, perp1Idx);
+ }
+
+ // Track the last perpendicular outset point so we can construct the
+ // trailing edge triangles.
+ lastPerpIdx = perp2Idx;
+ prev = cur;
}
// pick up the final edge rect
- this->addTri(numPts - 1, firstPerpIdx, 0);
- this->addTri(numPts - 1, lastPerpIdx, firstPerpIdx);
+ int lastIdx = previousRing.index(numPts - 1);
+ this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
+ this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
this->validate();
}
-// Something went wrong in the creation of the next ring. Mark the last good
-// ring as being at the desired depth and fan it.
+// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
+// and fan it.
void GrAAConvexTessellator::terminate(const Ring& ring) {
- for (int i = 0; i < ring.numPts(); ++i) {
- fDepths[ring.index(i)] = fTargetDepth;
- }
-
- this->fanRing(ring);
+ if (fStrokeWidth < 0.0f) {
+ this->fanRing(ring);
+ }
+}
+
+static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
+ SkScalar targetDepth, SkScalar targetCoverage) {
+ if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
+ return targetCoverage;
+ }
+ SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
+ (targetCoverage - initialCoverage) + initialCoverage;
+ return SkScalarClampMax(result, 1.0f);
}
// return true when processing is complete
-bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) {
+bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
+ SkScalar initialDepth, SkScalar initialCoverage,
+ SkScalar targetDepth, SkScalar targetCoverage,
+ bool forceNew) {
bool done = false;
fCandidateVerts.rewind();
@@ -512,7 +594,6 @@
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
int next = (cur + 1) % lastRing.numPts();
-
SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
this->point(lastRing.index(next)), lastRing.bisector(next));
SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
@@ -524,15 +605,18 @@
}
}
+ if (minEdgeIdx == -1) {
+ return false;
+ }
SkPoint newPt = lastRing.bisector(minEdgeIdx);
newPt.scale(minT);
newPt += this->point(lastRing.index(minEdgeIdx));
SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
- if (depth >= fTargetDepth) {
+ if (depth >= targetDepth) {
// None of the bisectors intersect before reaching the desired depth.
// Just step them all to the desired depth
- depth = fTargetDepth;
+ depth = targetDepth;
done = true;
}
@@ -547,7 +631,6 @@
lastRing.origEdgeID(0),
depth, &newPt)) {
this->terminate(lastRing);
- SkDEBUGCODE(fShouldCheckDepths = false;)
return true;
}
dst[0] = fCandidateVerts.addNewPt(newPt,
@@ -561,7 +644,6 @@
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
- SkDEBUGCODE(fShouldCheckDepths = false;)
return true;
}
if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
@@ -580,7 +662,6 @@
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
- SkDEBUGCODE(fShouldCheckDepths = false;)
return true;
}
bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
@@ -607,14 +688,17 @@
// Fold the new ring's points into the global pool
for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
int newIdx;
- if (fCandidateVerts.needsToBeNew(i)) {
+ if (fCandidateVerts.needsToBeNew(i) || forceNew) {
// if the originating index is still valid then this point wasn't
// fused (and is thus movable)
- newIdx = this->addPt(fCandidateVerts.point(i), depth,
+ SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
+ targetDepth, targetCoverage);
+ newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
fCandidateVerts.originatingIdx(i) != -1, false);
} else {
SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
- this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth);
+ this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
+ targetCoverage);
newIdx = fCandidateVerts.originatingIdx(i);
}
@@ -634,19 +718,18 @@
this->addTri(lastRing.index(cur), dst[next], dst[cur]);
}
- if (done) {
+ if (done && fStrokeWidth < 0.0f) {
+ // fill
this->fanRing(*nextRing);
}
if (nextRing->numPts() < 3) {
done = true;
}
-
return done;
}
void GrAAConvexTessellator::validate() const {
- SkASSERT(fPts.count() == fDepths.count());
SkASSERT(fPts.count() == fMovable.count());
SkASSERT(0 == (fIndices.count() % 3));
}
@@ -655,7 +738,6 @@
void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
this->computeNormals(tess);
this->computeBisectors(tess);
- SkASSERT(this->isConvex(tess));
}
void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
@@ -672,11 +754,8 @@
int next = (cur + 1) % fPts.count();
fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
- SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm);
- SkASSERT(len > 0.0f);
+ SkPoint::Normalize(&fPts[cur].fNorm);
fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
-
- SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length()));
}
}
@@ -694,9 +773,7 @@
} else {
fPts[cur].fBisector.negate(); // make the bisector face in
}
-
- SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length()));
- }
+ }
}
//////////////////////////////////////////////////////////////////////////////
@@ -704,7 +781,7 @@
// Is this ring convex?
bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
if (fPts.count() < 3) {
- return false;
+ return true;
}
SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
@@ -725,74 +802,18 @@
prev = cur;
}
- return (maxDot > 0.0f) == (minDot >= 0.0f);
-}
-
-static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1,
- const SkPoint& test, SkPoint::Side side,
- int* sign) {
- *sign = -1;
- SkPoint edge = p1 - p0;
- SkScalar len = SkPoint::Normalize(&edge);
-
- SkPoint testVec = test - p0;
-
- SkScalar d0 = edge.dot(testVec);
- if (d0 < 0.0f) {
- return SkPoint::Distance(p0, test);
- }
- if (d0 > len) {
- return SkPoint::Distance(p1, test);
- }
-
- SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY;
- if (SkPoint::kRight_Side == side) {
- perpDist = -perpDist;
- }
-
- if (perpDist < 0.0f) {
- perpDist = -perpDist;
- } else {
- *sign = 1;
- }
- return perpDist;
-}
-
-SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const {
- SkScalar minDist = SK_ScalarMax;
- int closestSign, sign;
-
- for (int edge = 0; edge < fNorms.count(); ++edge) {
- SkScalar dist = capsule_depth(this->point(edge),
- this->point((edge+1) % fNorms.count()),
- p, fSide, &sign);
- SkASSERT(dist >= 0.0f);
-
- if (minDist > dist) {
- minDist = dist;
- closestSign = sign;
- }
- }
-
- return closestSign * minDist;
-}
-
-// Verify that the incrementally computed depths are close to the actual depths.
-void GrAAConvexTessellator::checkAllDepths() const {
- for (int cur = 0; cur < this->numPts(); ++cur) {
- SkScalar realDepth = this->computeRealDepth(this->point(cur));
- SkScalar computedDepth = this->depth(cur);
- SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f));
- }
-}
+ if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
+ maxDot = 0;
+ }
+ if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
+ minDot = 0;
+ }
+ return (maxDot >= 0.0f) == (minDot >= 0.0f);
+}
+
#endif
-#define kQuadTolerance 0.2f
-#define kCubicTolerance 0.2f
-#define kConicTolerance 0.5f
-
-void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
- m.mapPoints(&p, 1);
+void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) {
if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
return;
}
@@ -805,24 +826,22 @@
fNorms.pop();
fIsCurve.pop();
}
- this->addPt(p, 0.0f, false, isCurve);
+ SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f;
+ this->addPt(p, 0.0f, initialRingCoverage, false, isCurve);
if (this->numPts() > 1) {
*fNorms.push() = fPts.top() - fPts[fPts.count()-2];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
}
- SkDEBUGCODE(
- if (this->numPts() >= 3) {
- int cur = this->numPts()-1;
- SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
- fMaxCross = SkTMax(fMaxCross, cross);
- fMinCross = SkTMin(fMinCross, cross);
- }
- )
-}
-
-void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
+}
+
+void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
+ m.mapPoints(&p, 1);
+ this->lineTo(p, isCurve);
+}
+
+void GrAAConvexTessellator::quadTo(SkPoint pts[3]) {
int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
@@ -830,11 +849,21 @@
kQuadTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
- lineTo(m, fPointBuffer[i], true);
- }
+ lineTo(fPointBuffer[i], true);
+ }
+}
+
+void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
+ SkPoint transformed[3];
+ transformed[0] = pts[0];
+ transformed[1] = pts[1];
+ transformed[2] = pts[2];
+ m.mapPoints(transformed, 3);
+ quadTo(transformed);
}
void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
+ m.mapPoints(pts, 4);
int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
@@ -842,14 +871,15 @@
kCubicTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
- lineTo(m, fPointBuffer[i], true);
+ lineTo(fPointBuffer[i], true);
}
}
// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
#include "SkGeometry.h"
-void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w) {
+void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
+ m.mapPoints(pts, 3);
SkAutoConicToQuads quadder;
const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
SkPoint lastPoint = *(quads++);
@@ -859,7 +889,7 @@
quadPts[0] = lastPoint;
quadPts[1] = quads[0];
quadPts[2] = i == count - 1 ? pts[2] : quads[1];
- quadTo(m, quadPts);
+ quadTo(quadPts);
lastPoint = quadPts[2];
quads += 2;
}
@@ -965,13 +995,13 @@
for (int i = 0; i < this->numPts(); ++i) {
draw_point(canvas,
- this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)),
+ this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
!this->movable(i));
SkPaint paint;
paint.setTextSize(kPointTextSize);
paint.setTextAlign(SkPaint::kCenter_Align);
- if (this->depth(i) <= -fTargetDepth) {
+ if (this->depth(i) <= -kAntialiasingRadius) {
paint.setColor(SK_ColorWHITE);
}
« no previous file with comments | « src/gpu/GrAAConvexTessellator.h ('k') | src/gpu/GrAALinearizingConvexPathRenderer.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698