OLD | NEW |
1 #!/usr/bin/env python | 1 #!/usr/bin/env python |
2 | 2 |
3 import sys | 3 import sys |
4 from scipy.stats import mannwhitneyu | 4 from scipy.stats import mannwhitneyu |
5 | 5 |
6 SIGNIFICANCE_THRESHOLD = 0.0001 | 6 SIGNIFICANCE_THRESHOLD = 0.0001 |
7 | 7 |
8 a,b = {},{} | 8 a,b = {},{} |
9 for (path, d) in [(sys.argv[1], a), (sys.argv[2], b)]: | 9 for (path, d) in [(sys.argv[1], a), (sys.argv[2], b)]: |
10 for line in open(path): | 10 for line in open(path): |
11 try: | 11 try: |
12 tokens = line.split() | 12 tokens = line.split() |
13 samples = tokens[:-1] | 13 if tokens[0] != "Samples:": |
14 label = tokens[-1] | 14 continue |
| 15 samples = tokens[1:-1] |
| 16 label = tokens[-1] |
15 d[label] = map(float, samples) | 17 d[label] = map(float, samples) |
16 except: | 18 except: |
17 pass | 19 pass |
18 | 20 |
19 common = set(a.keys()).intersection(b.keys()) | 21 common = set(a.keys()).intersection(b.keys()) |
20 | 22 |
21 ps = [] | 23 ps = [] |
22 for key in common: | 24 for key in common: |
23 _, p = mannwhitneyu(a[key], b[key]) # Non-parametric t-test. Doesn't ass
ume normal dist. | 25 _, p = mannwhitneyu(a[key], b[key]) # Non-parametric t-test. Doesn't ass
ume normal dist. |
24 am, bm = min(a[key]), min(b[key]) | 26 am, bm = min(a[key]), min(b[key]) |
25 ps.append((bm/am, p, key, am, bm)) | 27 ps.append((bm/am, p, key, am, bm)) |
26 ps.sort(reverse=True) | 28 ps.sort(reverse=True) |
27 | 29 |
28 def humanize(ns): | 30 def humanize(ns): |
29 for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]
: | 31 for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]
: |
30 if ns > threshold: | 32 if ns > threshold: |
31 return "%.3g%s" % (ns/threshold, suffix) | 33 return "%.3g%s" % (ns/threshold, suffix) |
32 | 34 |
33 maxlen = max(map(len, common)) | 35 maxlen = max(map(len, common)) |
34 | 36 |
35 # We print only signficant changes in benchmark timing distribution. | 37 # We print only signficant changes in benchmark timing distribution. |
36 bonferroni = SIGNIFICANCE_THRESHOLD / len(ps) # Adjust for the fact we've run m
ultiple tests. | 38 bonferroni = SIGNIFICANCE_THRESHOLD / len(ps) # Adjust for the fact we've run m
ultiple tests. |
37 for ratio, p, key, am, bm in ps: | 39 for ratio, p, key, am, bm in ps: |
38 if p < bonferroni: | 40 if p < bonferroni: |
39 str_ratio = ('%.2gx' if ratio < 1 else '%.3gx') % ratio | 41 str_ratio = ('%.2gx' if ratio < 1 else '%.3gx') % ratio |
40 print '%*s\t%6s -> %6s\t%s' % (maxlen, key, humanize(am), humanize(bm),
str_ratio) | 42 print '%*s\t%6s -> %6s\t%s' % (maxlen, key, humanize(am), humanize(bm),
str_ratio) |
OLD | NEW |