| Index: cc/tile_priority.cc
|
| diff --git a/cc/tile_priority.cc b/cc/tile_priority.cc
|
| index ec77029abe66df355704cda51269899dac93f7f5..cb5e9563e10d45be66ac2c94e1a427f734ad876a 100644
|
| --- a/cc/tile_priority.cc
|
| +++ b/cc/tile_priority.cc
|
| @@ -11,50 +11,49 @@ namespace {
|
| // TODO(qinmin): modify ui/range/Range.h to support template so that we
|
| // don't need to define this.
|
| struct Range {
|
| - Range(double start, double end) : start_(start), end_(end) {}
|
| - Range Intersects(const Range& other);
|
| + Range(float start, float end) : start_(start), end_(end) {}
|
| bool IsEmpty();
|
| - double start_;
|
| - double end_;
|
| + float start_;
|
| + float end_;
|
| };
|
|
|
| -Range Range::Intersects(const Range& other) {
|
| - start_ = std::max(start_, other.start_);
|
| - end_ = std::min(end_, other.end_);
|
| - return Range(start_, end_);
|
| +inline bool Intersects(const Range& a, const Range& b) {
|
| + return a.start_ < b.end_ && b.start_ < a.end_;
|
| +}
|
| +
|
| +inline Range Intersect(const Range& a, const Range& b) {
|
| + return Range(std::max(a.start_, b.start_), std::min(a.end_, b.end_));
|
| }
|
|
|
| bool Range::IsEmpty() {
|
| return start_ >= end_;
|
| }
|
|
|
| -// Calculate a time range that |value| will be larger than |threshold|
|
| -// given the velocity of its change.
|
| -Range TimeRangeValueLargerThanThreshold(
|
| - int value, int threshold, double velocity) {
|
| - double minimum_time = 0;
|
| - double maximum_time = cc::TilePriority::kMaxTimeToVisibleInSeconds;
|
| -
|
| - if (velocity > 0) {
|
| - if (value < threshold)
|
| - minimum_time = std::min(cc::TilePriority::kMaxTimeToVisibleInSeconds,
|
| - (threshold - value) / velocity);
|
| - } else if (velocity <= 0) {
|
| - if (value < threshold)
|
| - minimum_time = cc::TilePriority::kMaxTimeToVisibleInSeconds;
|
| - else if (velocity != 0)
|
| - maximum_time = std::min(maximum_time, (threshold - value) / velocity);
|
| - }
|
| +inline void IntersectNegativeHalfplane(Range& out, float previous,
|
| + float current, float target, float time_delta) {
|
| + float time_per_dist = time_delta / (current - previous);
|
| + float t = (target - current) * time_per_dist;
|
| + if (time_per_dist > 0.0f)
|
| + out.start_ = std::max(out.start_, t);
|
| + else
|
| + out.end_ = std::min(out.end_, t);
|
| +}
|
|
|
| - return Range(minimum_time, maximum_time);
|
| +inline void IntersectPositiveHalfplane(Range& out, float previous,
|
| + float current, float target, float time_delta) {
|
| + float time_per_dist = time_delta / (current - previous);
|
| + float t = (target - current) * time_per_dist;
|
| + if (time_per_dist < 0.0f)
|
| + out.start_ = std::max(out.start_, t);
|
| + else
|
| + out.end_ = std::min(out.end_, t);
|
| }
|
|
|
| } // namespace
|
|
|
| namespace cc {
|
|
|
| -const double TilePriority::kMaxTimeToVisibleInSeconds = 1000.0;
|
| -const double TilePriority::kMaxDistanceInContentSpace = 4096.0;
|
| +const float TilePriority::kMaxDistanceInContentSpace = 4096.0f;
|
|
|
| scoped_ptr<base::Value> WhichTreeAsValue(WhichTree tree) {
|
| switch (tree) {
|
| @@ -71,25 +70,22 @@ scoped_ptr<base::Value> WhichTreeAsValue(WhichTree tree) {
|
| }
|
| }
|
|
|
| -int TilePriority::manhattanDistance(const gfx::RectF& a, const gfx::RectF& b) {
|
| - gfx::RectF c = gfx::UnionRects(a, b);
|
| - // Rects touching the edge of the screen should not be considered visible.
|
| - // So we add 1 pixel here to avoid that situation.
|
| - int x = static_cast<int>(
|
| - std::max(0.0f, c.width() - a.width() - b.width() + 1));
|
| - int y = static_cast<int>(
|
| - std::max(0.0f, c.height() - a.height() - b.height() + 1));
|
| - return (x + y);
|
| -}
|
|
|
| -double TilePriority::TimeForBoundsToIntersect(gfx::RectF previous_bounds,
|
| - gfx::RectF current_bounds,
|
| - double time_delta,
|
| - gfx::RectF target_bounds) {
|
| - if (current_bounds.Intersects(target_bounds))
|
| - return 0;
|
| +float TilePriority::TimeForBoundsToIntersect(const gfx::RectF& previous_bounds,
|
| + const gfx::RectF& current_bounds,
|
| + float time_delta,
|
| + const gfx::RectF& target_bounds) {
|
| + // Perform an intersection test explicitly between current and target.
|
| + if (current_bounds.x() < target_bounds.right() &&
|
| + current_bounds.y() < target_bounds.bottom() &&
|
| + target_bounds.x() < current_bounds.right() &&
|
| + target_bounds.y() < current_bounds.bottom())
|
| + return 0.0f;
|
| +
|
| + const float kMaxTimeToVisibleInSeconds =
|
| + std::numeric_limits<float>::infinity();
|
|
|
| - if (previous_bounds.Intersects(target_bounds) || time_delta == 0)
|
| + if (time_delta == 0.0f)
|
| return kMaxTimeToVisibleInSeconds;
|
|
|
| // As we are trying to solve the case of both scaling and scrolling, using
|
| @@ -98,24 +94,19 @@ double TilePriority::TimeForBoundsToIntersect(gfx::RectF previous_bounds,
|
| // each edge will stay on the same side of the target bounds. If there is an
|
| // overlap between these time ranges, the bounds must have intersect with
|
| // each other during that period of time.
|
| - double velocity =
|
| - (current_bounds.right() - previous_bounds.right()) / time_delta;
|
| - Range range = TimeRangeValueLargerThanThreshold(
|
| - current_bounds.right(), target_bounds.x(), velocity);
|
| -
|
| - velocity = (current_bounds.x() - previous_bounds.x()) / time_delta;
|
| - range = range.Intersects(TimeRangeValueLargerThanThreshold(
|
| - -current_bounds.x(), -target_bounds.right(), -velocity));
|
| -
|
| -
|
| - velocity = (current_bounds.y() - previous_bounds.y()) / time_delta;
|
| - range = range.Intersects(TimeRangeValueLargerThanThreshold(
|
| - -current_bounds.y(), -target_bounds.bottom(), -velocity));
|
| -
|
| - velocity = (current_bounds.bottom() - previous_bounds.bottom()) / time_delta;
|
| - range = range.Intersects(TimeRangeValueLargerThanThreshold(
|
| - current_bounds.bottom(), target_bounds.y(), velocity));
|
| -
|
| + Range range(0.0f, kMaxTimeToVisibleInSeconds);
|
| + IntersectPositiveHalfplane(
|
| + range, previous_bounds.x(), current_bounds.x(),
|
| + target_bounds.right(), time_delta);
|
| + IntersectNegativeHalfplane(
|
| + range, previous_bounds.right(), current_bounds.right(),
|
| + target_bounds.x(), time_delta);
|
| + IntersectPositiveHalfplane(
|
| + range, previous_bounds.y(), current_bounds.y(),
|
| + target_bounds.bottom(), time_delta);
|
| + IntersectNegativeHalfplane(
|
| + range, previous_bounds.bottom(), current_bounds.bottom(),
|
| + target_bounds.y(), time_delta);
|
| return range.IsEmpty() ? kMaxTimeToVisibleInSeconds : range.start_;
|
| }
|
|
|
|
|