| Index: cc/tile_priority.cc
|
| diff --git a/cc/tile_priority.cc b/cc/tile_priority.cc
|
| index 1fde0bcdcae3698603a05bf4579d29a07e0959d4..3028cd0f8e896d31aeed7f22fdd7473670796a8d 100644
|
| --- a/cc/tile_priority.cc
|
| +++ b/cc/tile_priority.cc
|
| @@ -9,96 +9,86 @@ namespace {
|
| // TODO(qinmin): modify ui/range/Range.h to support template so that we
|
| // don't need to define this.
|
| struct Range {
|
| - Range(double start, double end) : start_(start), end_(end) {}
|
| - Range Intersects(const Range& other);
|
| + Range(float start, float end) : start_(start), end_(end) {}
|
| bool IsEmpty();
|
| - double start_;
|
| - double end_;
|
| + float start_;
|
| + float end_;
|
| };
|
|
|
| -Range Range::Intersects(const Range& other) {
|
| - start_ = std::max(start_, other.start_);
|
| - end_ = std::min(end_, other.end_);
|
| - return Range(start_, end_);
|
| +inline bool Intersects(const Range& a, const Range& b) {
|
| + return a.start_ < b.end_ && b.start_ < a.end_;
|
| +}
|
| +
|
| +inline Range Intersect(const Range& a, const Range& b) {
|
| + return Range(std::max(a.start_, b.start_), std::min(a.end_, b.end_));
|
| }
|
|
|
| bool Range::IsEmpty() {
|
| return start_ >= end_;
|
| }
|
|
|
| -// Calculate a time range that |value| will be larger than |threshold|
|
| -// given the velocity of its change.
|
| -Range TimeRangeValueLargerThanThreshold(
|
| - int value, int threshold, double velocity) {
|
| - double minimum_time = 0;
|
| - double maximum_time = cc::TilePriority::kMaxTimeToVisibleInSeconds;
|
| -
|
| - if (velocity > 0) {
|
| - if (value < threshold)
|
| - minimum_time = std::min(cc::TilePriority::kMaxTimeToVisibleInSeconds,
|
| - (threshold - value) / velocity);
|
| - } else if (velocity <= 0) {
|
| - if (value < threshold)
|
| - minimum_time = cc::TilePriority::kMaxTimeToVisibleInSeconds;
|
| - else if (velocity != 0)
|
| - maximum_time = std::min(maximum_time, (threshold - value) / velocity);
|
| - }
|
| -
|
| - return Range(minimum_time, maximum_time);
|
| +inline Range Intersect(const Range& previous, const Range& current, float time_delta, const Range& target)
|
| +{
|
| + // Calculate the scale factors.
|
| + float time_per_dist_start = time_delta/(current.start_-previous.start_);
|
| + float time_per_dist_end = time_delta/(current.end_ -previous.end_ );
|
| +
|
| + // Calcuate the 4 times of intersection.
|
| + float start_hit_start = (target.start_-current.start_)*time_per_dist_start;
|
| + float start_hit_end = (target.end_ -current.start_)*time_per_dist_start;
|
| + float end_hit_start = (target.start_-current.end_)*time_per_dist_end;
|
| + float end_hit_end = (target.end_ -current.end_)*time_per_dist_end;
|
| +
|
| + // Return the union of the for intersection times.
|
| + return Range(
|
| + std::min(
|
| + std::min(start_hit_start, start_hit_end),
|
| + std::min(end_hit_start, end_hit_end)),
|
| + std::max(
|
| + std::max(start_hit_start, start_hit_end),
|
| + std::max(end_hit_start, end_hit_end)));
|
| }
|
|
|
| } // namespace
|
|
|
| namespace cc {
|
|
|
| -const double TilePriority::kMaxTimeToVisibleInSeconds = 1000;
|
| -
|
| -int TilePriority::manhattanDistance(const gfx::RectF& a, const gfx::RectF& b) {
|
| - gfx::RectF c = gfx::UnionRects(a, b);
|
| - // Rects touching the edge of the screen should not be considered visible.
|
| - // So we add 1 pixel here to avoid that situation.
|
| - int x = static_cast<int>(
|
| - std::max(0.0f, c.width() - a.width() - b.width() + 1));
|
| - int y = static_cast<int>(
|
| - std::max(0.0f, c.height() - a.height() - b.height() + 1));
|
| - return (x + y);
|
| -}
|
| -
|
| -double TilePriority::TimeForBoundsToIntersect(gfx::RectF previous_bounds,
|
| - gfx::RectF current_bounds,
|
| - double time_delta,
|
| - gfx::RectF target_bounds) {
|
| - if (current_bounds.Intersects(target_bounds))
|
| - return 0;
|
| -
|
| - if (previous_bounds.Intersects(target_bounds) || time_delta == 0)
|
| +const float TilePriority::kMaxTimeToVisibleInSeconds = std::numeric_limits<float>::infinity();
|
| +
|
| +float TilePriority::TimeForBoundsToIntersect(const gfx::RectF& previous_bounds,
|
| + const gfx::RectF& current_bounds,
|
| + float time_delta,
|
| + const gfx::RectF& target_bounds) {
|
| + // Convert the rects to ranges.
|
| + Range previous_x_range(previous_bounds.x(), previous_bounds.right());
|
| + Range previous_y_range(previous_bounds.y(), previous_bounds.bottom());
|
| + Range current_x_range(current_bounds.x(), current_bounds.right());
|
| + Range current_y_range(current_bounds.y(), current_bounds.bottom());
|
| + Range target_x_range(current_bounds.x(), target_bounds.right());
|
| + Range target_y_range(current_bounds.y(), target_bounds.bottom());
|
| +
|
| + // Check to see if the tile is visible.
|
| + if (Intersects(current_x_range, target_x_range) &&
|
| + Intersects(current_y_range, target_y_range))
|
| + return 0.0f;
|
| +
|
| + // Check to see if the tile didn't move.
|
| + if (time_delta == 0.0f)
|
| return kMaxTimeToVisibleInSeconds;
|
|
|
| - // As we are trying to solve the case of both scaling and scrolling, using
|
| - // a single coordinate with velocity is not enough. The logic here is to
|
| - // calculate the velocity for each edge. Then we calculate the time range that
|
| - // each edge will stay on the same side of the target bounds. If there is an
|
| - // overlap between these time ranges, the bounds must have intersect with
|
| - // each other during that period of time.
|
| - double velocity =
|
| - (current_bounds.right() - previous_bounds.right()) / time_delta;
|
| - Range range = TimeRangeValueLargerThanThreshold(
|
| - current_bounds.right(), target_bounds.x(), velocity);
|
| + // Calculate the intersection time intervals in X and Y.
|
| + Range x_range = Intersect(
|
| + previous_x_range, current_x_range, time_delta, target_x_range);
|
| + Range y_range = Intersect(
|
| + previous_y_range, current_y_range, time_delta, target_y_range);
|
|
|
| - velocity = (current_bounds.x() - previous_bounds.x()) / time_delta;
|
| - range = range.Intersects(TimeRangeValueLargerThanThreshold(
|
| - -current_bounds.x(), -target_bounds.right(), -velocity));
|
| + // Intersect the X and Y intervals and clamp to positive range.
|
| + Range range = Intersect(x_range, y_range);
|
| + range.start_ = std::max(range.start_, 0.0f);
|
|
|
| -
|
| - velocity = (current_bounds.y() - previous_bounds.y()) / time_delta;
|
| - range = range.Intersects(TimeRangeValueLargerThanThreshold(
|
| - -current_bounds.y(), -target_bounds.bottom(), -velocity));
|
| -
|
| - velocity = (current_bounds.bottom() - previous_bounds.bottom()) / time_delta;
|
| - range = range.Intersects(TimeRangeValueLargerThanThreshold(
|
| - current_bounds.bottom(), target_bounds.y(), velocity));
|
| -
|
| - return range.IsEmpty() ? kMaxTimeToVisibleInSeconds : range.start_;
|
| + if (range.IsEmpty())
|
| + return kMaxTimeToVisibleInSeconds;
|
| + return range.start_;
|
| }
|
|
|
| } // namespace cc
|
|
|