Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1255)

Side by Side Diff: patches/nss-curve-p256.patch

Issue 12042100: Add an optimized 32-bit implementation of the NIST P-256 elliptic curve. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/nss/
Patch Set: Created 7 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 Index: mozilla/security/nss/lib/freebl/ecl/ecl.c
2 ===================================================================
3 RCS file: /cvsroot/mozilla/security/nss/lib/freebl/ecl/ecl.c,v
4 retrieving revision 1.13
5 diff -p -u -r1.13 ecl.c
6 --- mozilla/security/nss/lib/freebl/ecl/ecl.c 25 Apr 2012 14:49:44 -0000 1.13
7 +++ mozilla/security/nss/lib/freebl/ecl/ecl.c 25 Jan 2013 00:17:14 -0000
8 @@ -215,8 +215,8 @@ ecgroup_fromNameAndHex(const ECCurveName
9
10 /* determine which optimizations (if any) to use */
11 if (params->field == ECField_GFp) {
12 -#ifdef NSS_ECC_MORE_THAN_SUITE_B
13 switch (name) {
14 +#ifdef NSS_ECC_MORE_THAN_SUITE_B
15 #ifdef ECL_USE_FP
16 case ECCurve_SECG_PRIME_160R1:
17 group =
18 @@ -256,29 +256,29 @@ ecgroup_fromNameAndHex(const ECCurveName
19 MP_CHECKOK(ec_group_set_gfp224(group, name));
20 #endif
21 break;
22 - case ECCurve_SECG_PRIME_256R1:
23 + case ECCurve_SECG_PRIME_521R1:
24 group =
25 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, & geny,
26 &order, params-> cofactor);
27 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
28 - MP_CHECKOK(ec_group_set_gfp256(group, name));
29 + MP_CHECKOK(ec_group_set_gfp521(group, name));
30 break;
31 - case ECCurve_SECG_PRIME_521R1:
32 +#endif /* NSS_ECC_MORE_THAN_SUITE_B */
33 + case ECCurve_SECG_PRIME_256R1:
34 group =
35 ECGroup_consGFp(&irr, &curvea, &curveb, &genx, & geny,
36 &order, params-> cofactor);
37 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
38 - MP_CHECKOK(ec_group_set_gfp521(group, name));
39 + MP_CHECKOK(ec_group_set_gfp256(group, name));
40 break;
41 default:
42 /* use generic arithmetic */
43 -#endif
44 group =
45 ECGroup_consGFp_mont(&irr, &curvea, &curveb, &ge nx, &geny,
46 &order, params->cofactor);
47 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
48 -#ifdef NSS_ECC_MORE_THAN_SUITE_B
49 }
50 +#ifdef NSS_ECC_MORE_THAN_SUITE_B
51 } else if (params->field == ECField_GF2m) {
52 group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &g eny, &order, params->cofactor);
53 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
54 Index: mozilla/security/nss/lib/freebl/ecl/ecp_256.c
55 ===================================================================
56 RCS file: /cvsroot/mozilla/security/nss/lib/freebl/ecl/ecp_256.c,v
57 retrieving revision 1.3
58 diff -p -u -r1.3 ecp_256.c
59 --- mozilla/security/nss/lib/freebl/ecl/ecp_256.c 25 Apr 2012 14:49:44 -00 00 1.3
60 +++ mozilla/security/nss/lib/freebl/ecl/ecp_256.c 25 Jan 2013 00:17:14 -00 00
61 @@ -6,6 +6,7 @@
62 #include "mpi.h"
63 #include "mplogic.h"
64 #include "mpi-priv.h"
65 +#include "prcpucfg.h"
66 #include <stdlib.h>
67
68 /* Fast modular reduction for p256 = 2^256 - 2^224 + 2^192+ 2^96 - 1. a can be r.
69 @@ -381,6 +382,26 @@ ec_GFp_nistp256_mul(const mp_int *a, con
70 return res;
71 }
72
73 +#ifdef IS_LITTLE_ENDIAN
74 +/* These are defined in ecp_256_32.c */
75 +extern mp_err ec_GFp_nistp256_base_point_mul(
76 + const mp_int *n,
77 + mp_int *out_x, mp_int *out_y,
78 + const ECGroup *group);
79 +
80 +extern mp_err ec_GFp_nistp256_point_mul(
81 + const mp_int *n,
82 + const mp_int *in_x, const mp_int *in_y,
83 + mp_int *out_x, mp_int *out_y,
84 + const ECGroup *group);
85 +
86 +extern mp_err ec_GFp_nistp256_points_mul_vartime(
87 + const mp_int *n1, const mp_int *n2,
88 + const mp_int *in_x, const mp_int *in_y,
89 + mp_int *out_x, mp_int *out_y,
90 + const ECGroup *group);
91 +#endif
92 +
93 /* Wire in fast field arithmetic and precomputation of base point for
94 * named curves. */
95 mp_err
96 @@ -390,6 +411,11 @@ ec_group_set_gfp256(ECGroup *group, ECCu
97 group->meth->field_mod = &ec_GFp_nistp256_mod;
98 group->meth->field_mul = &ec_GFp_nistp256_mul;
99 group->meth->field_sqr = &ec_GFp_nistp256_sqr;
100 +#ifdef IS_LITTLE_ENDIAN
101 + group->base_point_mul = &ec_GFp_nistp256_base_point_mul;
102 + group->point_mul = &ec_GFp_nistp256_point_mul;
103 + group->points_mul = &ec_GFp_nistp256_points_mul_vartime;
104 +#endif
105 }
106 return MP_OKAY;
107 }
108 Index: mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c
109 ===================================================================
110 RCS file: mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c
111 diff -N mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c
112 --- /dev/null 1 Jan 1970 00:00:00 -0000
113 +++ mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c 25 Jan 2013 00:17:14 -00 00
114 @@ -0,0 +1,1459 @@
115 +/* This Source Code Form is subject to the terms of the Mozilla Public
116 + * License, v. 2.0. If a copy of the MPL was not distributed with this
117 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
118 +
119 +/* A 32-bit implementation of the NIST P-256 elliptic curve. */
120 +
121 +#include <string.h>
122 +
123 +#include "prtypes.h"
124 +#include "mpi.h"
125 +#include "mpi-priv.h"
126 +#include "ecp.h"
127 +
128 +typedef PRUint8 u8;
129 +typedef PRUint32 u32;
130 +typedef PRInt32 s32;
131 +typedef PRUint64 u64;
132 +
133 +/* Our field elements are represented as nine, unsigned 32-bit words. Freebl's
134 + * MPI library calls them digits, but here they are called limbs, which is
135 + * GMP's terminology.
136 + *
137 + * The value of an felem (field element) is:
138 + * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
139 + *
140 + * That is, each limb is alternately 29 or 28-bits wide in little-endian
141 + * order.
142 + *
143 + * This means that an felem hits 2**257, rather than 2**256 as we would like. A
144 + * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
145 + * when multiplying as terms end up one bit short of a limb which would require
146 + * much bit-shifting to correct.
147 + *
148 + * Finally, the values stored in an felem are in Montgomery form. So the value
149 + * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
150 + */
151 +typedef u32 limb;
152 +#define NLIMBS 9
153 +typedef limb felem[NLIMBS];
154 +
155 +static const limb kBottom28Bits = 0xfffffff;
156 +static const limb kBottom29Bits = 0x1fffffff;
157 +
158 +/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
159 + * 28-bit words.
160 + */
161 +static const felem kOne = {
162 + 2, 0, 0, 0xffff800,
163 + 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
164 + 0
165 +};
166 +static const felem kZero = {0};
167 +static const felem kP = {
168 + 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
169 + 0, 0, 0x200000, 0xf000000,
170 + 0xfffffff
171 +};
172 +static const felem k2P = {
173 + 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
174 + 0, 0, 0x400000, 0xe000000,
175 + 0x1fffffff
176 +};
177 +
178 +/* kPrecomputed contains precomputed values to aid the calculation of scalar
179 + * multiples of the base point, G. It's actually two, equal length, tables
180 + * concatenated.
181 + *
182 + * The first table contains (x,y) felem pairs for 16 multiples of the base
183 + * point, G.
184 + *
185 + * Index | Index (binary) | Value
186 + * 0 | 0000 | 0G (all zeros, omitted)
187 + * 1 | 0001 | G
188 + * 2 | 0010 | 2**64G
189 + * 3 | 0011 | 2**64G + G
190 + * 4 | 0100 | 2**128G
191 + * 5 | 0101 | 2**128G + G
192 + * 6 | 0110 | 2**128G + 2**64G
193 + * 7 | 0111 | 2**128G + 2**64G + G
194 + * 8 | 1000 | 2**192G
195 + * 9 | 1001 | 2**192G + G
196 + * 10 | 1010 | 2**192G + 2**64G
197 + * 11 | 1011 | 2**192G + 2**64G + G
198 + * 12 | 1100 | 2**192G + 2**128G
199 + * 13 | 1101 | 2**192G + 2**128G + G
200 + * 14 | 1110 | 2**192G + 2**128G + 2**64G
201 + * 15 | 1111 | 2**192G + 2**128G + 2**64G + G
202 + *
203 + * The second table follows the same style, but the terms are 2**32G,
204 + * 2**96G, 2**160G, 2**224G.
205 + *
206 + * This is ~2KB of data.
207 + */
208 +static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
209 + 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7 edc, 0xd4a6eab, 0x3120bee,
210 + 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154b a21, 0x14b10bb, 0xae3fe3,
211 + 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe490 73, 0x3fa36cc, 0x5ebcd2c,
212 + 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea124 46, 0xe1ade1e, 0xec91f22,
213 + 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c710 9, 0xa267a00, 0xb57c050,
214 + 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
215 + 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96 a5a9, 0x843a649, 0xc3ab0fa,
216 + 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e1 1, 0x58c43df, 0xf423fc2,
217 + 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db 40f, 0x83e277d, 0xb0dd609,
218 + 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f 5, 0xe10c9e, 0x33ab581,
219 + 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9 f, 0x48764cd, 0x76dbcca,
220 + 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b 20, 0x4ba3173, 0xc168c33,
221 + 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c 0, 0x65dd7ff, 0x3a1e4f6,
222 + 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f0 77, 0xa6add89, 0x4894acd,
223 + 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a , 0x69a8556, 0x7e7c0,
224 + 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825 c, 0xda0cf5b, 0x812e881,
225 + 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c5 1, 0xc22be3e, 0xe35e65a,
226 + 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e 9, 0x1c5a839, 0x47a1e26,
227 + 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c 502, 0x2f32042, 0xa17769b,
228 + 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06 a02, 0x3fc93, 0x5620023,
229 + 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513 c, 0x407f75c, 0xbaab133,
230 + 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469e a7, 0x3293ac0, 0xcdc98aa,
231 + 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16 , 0x2b6fcc7, 0xf5a4e29,
232 + 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f7 2, 0x73e1c35, 0xee70fbc,
233 + 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de8 5, 0x27de188, 0x66f70b8,
234 + 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154a e914, 0x2f3ec51, 0x3826b59,
235 + 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0 x823d9d2, 0x8213f39,
236 + 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a 4a, 0xf5ddc3d, 0x3786689,
237 + 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a7 29, 0x4be3499, 0x52b23aa,
238 + 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048 035, 0xe31de66, 0xc6ecaa3,
239 + 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a75 29, 0xcb7beb1, 0xb2a78a1,
240 + 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff 658, 0xe3d6511, 0xc7d76f,
241 + 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c , 0x50daa90, 0xb13f72,
242 + 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d324 11, 0xb04a838, 0xd760d2d,
243 + 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e1 1e, 0x20bca9a, 0x66f496b,
244 + 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d , 0xbe985f7, 0x1acbc1a,
245 + 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa5 6ff, 0x65ef930, 0x21dc4a,
246 + 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac1 5f, 0x624e62e, 0xa90ae2f,
247 + 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x72552 2b, 0xdc78583, 0x40eeabb,
248 + 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef 34, 0xae2a960, 0x91b8bdc,
249 + 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
250 + 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e763 3, 0x7c91952, 0xd806dce,
251 + 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef 73, 0x8956f34, 0xe4b5cf2,
252 + 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed 7, 0x627b614, 0x7371cca,
253 + 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3ed c9, 0x9c19bf2, 0x5882229,
254 + 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5 b3, 0xe85ff25, 0x408ef57,
255 + 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa03811 3, 0xa4a1769, 0x11fbc6c,
256 + 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60 b7, 0x4acbad9, 0x5efc5fa,
257 + 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142c c, 0x7bf0fa9, 0x957651,
258 + 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57 , 0xf2ecaac, 0xca86dec,
259 + 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c 12d, 0xf20bd46, 0x1951fa7,
260 + 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc7 4, 0x99bb618, 0x2db944c,
261 + 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e747 79, 0x576138, 0x9587927,
262 + 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d0778 2d, 0xfc72e0b, 0x701b298,
263 + 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f 5d8, 0xf858d3a, 0x942eea8,
264 + 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7 a1, 0x8395659, 0x52ed4e2,
265 + 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146 c0, 0x6bdf55a, 0x4e4457d,
266 + 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x40474 7b, 0x878558d, 0x7d29aa4,
267 + 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55 d7, 0xa5bef68, 0xb7b30d8,
268 + 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f519 51, 0x9d0c177, 0x1c49a78,
269 +};
270 +
271 +/* Field element operations:
272 + */
273 +
274 +/* NON_ZERO_TO_ALL_ONES returns:
275 + * 0xffffffff for 0 < x <= 2**31
276 + * 0 for x == 0 or x > 2**31.
277 + *
278 + * This macro assumes that right-shifting a signed number shifts in the MSB on
279 + * the left. This is not ensured by the C standard, but is true on the CPUs
280 + * that we're targetting with this code (x86 and ARM).
281 + */
282 +#define NON_ZERO_TO_ALL_ONES(x) (~((u32) (((s32) ((x)-1)) >> 31)))
283 +
284 +/* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
285 + * which is a term at 2**257.
286 + *
287 + * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
288 + * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
289 + */
290 +static void felem_reduce_carry(felem inout, limb carry)
291 +{
292 + const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);
293 +
294 + inout[0] += carry << 1;
295 + inout[3] += 0x10000000 & carry_mask;
296 + /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
297 + * previous line therefore this doesn't underflow.
298 + */
299 + inout[3] -= carry << 11;
300 + inout[4] += (0x20000000 - 1) & carry_mask;
301 + inout[5] += (0x10000000 - 1) & carry_mask;
302 + inout[6] += (0x20000000 - 1) & carry_mask;
303 + inout[6] -= carry << 22;
304 + /* This may underflow if carry is non-zero but, if so, we'll fix it in the
305 + * next line.
306 + */
307 + inout[7] -= 1 & carry_mask;
308 + inout[7] += carry << 25;
309 +}
310 +
311 +/* felem_sum sets out = in+in2.
312 + *
313 + * On entry, in[i]+in2[i] must not overflow a 32-bit word.
314 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
315 + */
316 +static void felem_sum(felem out, const felem in, const felem in2)
317 +{
318 + limb carry = 0;
319 + unsigned int i;
320 + for (i = 0;; i++) {
321 + out[i] = in[i] + in2[i];
322 + out[i] += carry;
323 + carry = out[i] >> 29;
324 + out[i] &= kBottom29Bits;
325 +
326 + i++;
327 + if (i == NLIMBS)
328 + break;
329 +
330 + out[i] = in[i] + in2[i];
331 + out[i] += carry;
332 + carry = out[i] >> 28;
333 + out[i] &= kBottom28Bits;
334 + }
335 +
336 + felem_reduce_carry(out, carry);
337 +}
338 +
339 +#define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
340 +#define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
341 +#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
342 +#define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
343 +#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
344 +#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)
345 +
346 +/* zero31 is 0 mod p.
347 + */
348 +static const felem zero31 = {
349 + two31m3, two30m2, two31m2, two30p13m2,
350 + two31m2, two30m2, two31p24m2, two30m27m2,
351 + two31m2
352 +};
353 +
354 +/* felem_diff sets out = in-in2.
355 + *
356 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
357 + * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
358 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
359 + */
360 +static void felem_diff(felem out, const felem in, const felem in2)
361 +{
362 + limb carry = 0;
363 + unsigned int i;
364 +
365 + for (i = 0;; i++) {
366 + out[i] = in[i] - in2[i];
367 + out[i] += zero31[i];
368 + out[i] += carry;
369 + carry = out[i] >> 29;
370 + out[i] &= kBottom29Bits;
371 +
372 + i++;
373 + if (i == NLIMBS)
374 + break;
375 +
376 + out[i] = in[i] - in2[i];
377 + out[i] += zero31[i];
378 + out[i] += carry;
379 + carry = out[i] >> 28;
380 + out[i] &= kBottom28Bits;
381 + }
382 +
383 + felem_reduce_carry(out, carry);
384 +}
385 +
386 +/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
387 + * with the same 29,28,... bit positions as an felem.
388 + *
389 + * The values in felems are in Montgomery form: x*R mod p where R = 2**257.
390 + * Since we just multiplied two Montgomery values together, the result is
391 + * x*y*R*R mod p. We wish to divide by R in order for the result also to be
392 + * in Montgomery form.
393 + *
394 + * On entry: tmp[i] < 2**64
395 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
396 + */
397 +static void felem_reduce_degree(felem out, u64 tmp[17])
398 +{
399 + /* The following table may be helpful when reading this code:
400 + *
401 + * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
402 + * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
403 + * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
404 + * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
405 + */
406 + limb tmp2[18], carry, x, xMask;
407 + unsigned int i;
408 +
409 + /* tmp contains 64-bit words with the same 29,28,29-bit positions as an
410 + * felem. So the top of an element of tmp might overlap with another
411 + * element two positions down. The following loop eliminates this
412 + * overlap.
413 + */
414 + tmp2[0] = tmp[0] & kBottom29Bits;
415 +
416 + /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
417 + * and hint to the compiler that it can do a single-word shift by selecting
418 + * the right register rather than doing a double-word shift and truncating
419 + * afterwards.
420 + */
421 + tmp2[1] = ((limb) tmp[0]) >> 29;
422 + tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits;
423 + tmp2[1] += ((limb) tmp[1]) & kBottom28Bits;
424 + carry = tmp2[1] >> 28;
425 + tmp2[1] &= kBottom28Bits;
426 +
427 + for (i = 2; i < 17; i++) {
428 + tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
429 + tmp2[i] += ((limb) (tmp[i - 1])) >> 28;
430 + tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
431 + tmp2[i] += ((limb) tmp[i]) & kBottom29Bits;
432 + tmp2[i] += carry;
433 + carry = tmp2[i] >> 29;
434 + tmp2[i] &= kBottom29Bits;
435 +
436 + i++;
437 + if (i == 17)
438 + break;
439 + tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
440 + tmp2[i] += ((limb) (tmp[i - 1])) >> 29;
441 + tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
442 + tmp2[i] += ((limb) tmp[i]) & kBottom28Bits;
443 + tmp2[i] += carry;
444 + carry = tmp2[i] >> 28;
445 + tmp2[i] &= kBottom28Bits;
446 + }
447 +
448 + tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25;
449 + tmp2[17] += ((limb) (tmp[16])) >> 29;
450 + tmp2[17] += (((limb) (tmp[16] >> 32)) << 3);
451 + tmp2[17] += carry;
452 +
453 + /* Montgomery elimination of terms:
454 + *
455 + * Since R is 2**257, we can divide by R with a bitwise shift if we can
456 + * ensure that the right-most 257 bits are all zero. We can make that true
457 + * by adding multiplies of p without affecting the value.
458 + *
459 + * So we eliminate limbs from right to left. Since the bottom 29 bits of p
460 + * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
461 + * We can do that for 8 further limbs and then right shift to eliminate the
462 + * extra factor of R.
463 + */
464 + for (i = 0;; i += 2) {
465 + tmp2[i + 1] += tmp2[i] >> 29;
466 + x = tmp2[i] & kBottom29Bits;
467 + xMask = NON_ZERO_TO_ALL_ONES(x);
468 + tmp2[i] = 0;
469 +
470 + /* The bounds calculations for this loop are tricky. Each iteration of
471 + * the loop eliminates two words by adding values to words to their
472 + * right.
473 + *
474 + * The following table contains the amounts added to each word (as an
475 + * offset from the value of i at the top of the loop). The amounts are
476 + * accounted for from the first and second half of the loop separately
477 + * and are written as, for example, 28 to mean a value <2**28.
478 + *
479 + * Word: 3 4 5 6 7 8 9 10
480 + * Added in top half: 28 11 29 21 29 28
481 + * 28 29
482 + * 29
483 + * Added in bottom half: 29 10 28 21 28 28
484 + * 29
485 + *
486 + * The value that is currently offset 7 will be offset 5 for the next
487 + * iteration and then offset 3 for the iteration after that. Therefore
488 + * the total value added will be the values added at 7, 5 and 3.
489 + *
490 + * The following table accumulates these values. The sums at the bottom
491 + * are written as, for example, 29+28, to mean a value < 2**29+2**28.
492 + *
493 + * Word: 3 4 5 6 7 8 9 10 11 12 13
494 + * 28 11 10 29 21 29 28 28 28 28 28
495 + * 29 28 11 28 29 28 29 28 29 28
496 + * 29 28 21 21 29 21 29 21
497 + * 10 29 28 21 28 21 28
498 + * 28 29 28 29 28 29 28
499 + * 11 10 29 10 29 10
500 + * 29 28 11 28 11
501 + * 29 29
502 + * --------------------------------------------
503 + * 30+ 31+ 30+ 31+ 30+
504 + * 28+ 29+ 28+ 29+ 21+
505 + * 21+ 28+ 21+ 28+ 10
506 + * 10 21+ 10 21+
507 + * 11 11
508 + *
509 + * So the greatest amount is added to tmp2[10] and tmp2[12]. If
510 + * tmp2[10/12] has an initial value of <2**29, then the maximum value
511 + * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
512 + * as required.
513 + */
514 + tmp2[i + 3] += (x << 10) & kBottom28Bits;
515 + tmp2[i + 4] += (x >> 18);
516 +
517 + tmp2[i + 6] += (x << 21) & kBottom29Bits;
518 + tmp2[i + 7] += x >> 8;
519 +
520 + /* At position 200, which is the starting bit position for word 7, we
521 + * have a factor of 0xf000000 = 2**28 - 2**24.
522 + */
523 + tmp2[i + 7] += 0x10000000 & xMask;
524 + /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
525 + tmp2[i + 8] += (x - 1) & xMask;
526 + tmp2[i + 7] -= (x << 24) & kBottom28Bits;
527 + tmp2[i + 8] -= x >> 4;
528 +
529 + tmp2[i + 8] += 0x20000000 & xMask;
530 + tmp2[i + 8] -= x;
531 + tmp2[i + 8] += (x << 28) & kBottom29Bits;
532 + tmp2[i + 9] += ((x >> 1) - 1) & xMask;
533 +
534 + if (i+1 == NLIMBS)
535 + break;
536 + tmp2[i + 2] += tmp2[i + 1] >> 28;
537 + x = tmp2[i + 1] & kBottom28Bits;
538 + xMask = NON_ZERO_TO_ALL_ONES(x);
539 + tmp2[i + 1] = 0;
540 +
541 + tmp2[i + 4] += (x << 11) & kBottom29Bits;
542 + tmp2[i + 5] += (x >> 18);
543 +
544 + tmp2[i + 7] += (x << 21) & kBottom28Bits;
545 + tmp2[i + 8] += x >> 7;
546 +
547 + /* At position 199, which is the starting bit of the 8th word when
548 + * dealing with a context starting on an odd word, we have a factor of
549 + * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
550 + * word from i+1 is i+8.
551 + */
552 + tmp2[i + 8] += 0x20000000 & xMask;
553 + tmp2[i + 9] += (x - 1) & xMask;
554 + tmp2[i + 8] -= (x << 25) & kBottom29Bits;
555 + tmp2[i + 9] -= x >> 4;
556 +
557 + tmp2[i + 9] += 0x10000000 & xMask;
558 + tmp2[i + 9] -= x;
559 + tmp2[i + 10] += (x - 1) & xMask;
560 + }
561 +
562 + /* We merge the right shift with a carry chain. The words above 2**257 have
563 + * widths of 28,29,... which we need to correct when copying them down.
564 + */
565 + carry = 0;
566 + for (i = 0; i < 8; i++) {
567 + /* The maximum value of tmp2[i + 9] occurs on the first iteration and
568 + * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
569 + * therefore safe.
570 + */
571 + out[i] = tmp2[i + 9];
572 + out[i] += carry;
573 + out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
574 + carry = out[i] >> 29;
575 + out[i] &= kBottom29Bits;
576 +
577 + i++;
578 + out[i] = tmp2[i + 9] >> 1;
579 + out[i] += carry;
580 + carry = out[i] >> 28;
581 + out[i] &= kBottom28Bits;
582 + }
583 +
584 + out[8] = tmp2[17];
585 + out[8] += carry;
586 + carry = out[8] >> 29;
587 + out[8] &= kBottom29Bits;
588 +
589 + felem_reduce_carry(out, carry);
590 +}
591 +
592 +/* felem_square sets out=in*in.
593 + *
594 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
595 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
596 + */
597 +static void felem_square(felem out, const felem in)
598 +{
599 + u64 tmp[17];
600 +
601 + tmp[0] = ((u64) in[0]) * in[0];
602 + tmp[1] = ((u64) in[0]) * (in[1] << 1);
603 + tmp[2] = ((u64) in[0]) * (in[2] << 1) +
604 + ((u64) in[1]) * (in[1] << 1);
605 + tmp[3] = ((u64) in[0]) * (in[3] << 1) +
606 + ((u64) in[1]) * (in[2] << 1);
607 + tmp[4] = ((u64) in[0]) * (in[4] << 1) +
608 + ((u64) in[1]) * (in[3] << 2) +
609 + ((u64) in[2]) * in[2];
610 + tmp[5] = ((u64) in[0]) * (in[5] << 1) +
611 + ((u64) in[1]) * (in[4] << 1) +
612 + ((u64) in[2]) * (in[3] << 1);
613 + tmp[6] = ((u64) in[0]) * (in[6] << 1) +
614 + ((u64) in[1]) * (in[5] << 2) +
615 + ((u64) in[2]) * (in[4] << 1) +
616 + ((u64) in[3]) * (in[3] << 1);
617 + tmp[7] = ((u64) in[0]) * (in[7] << 1) +
618 + ((u64) in[1]) * (in[6] << 1) +
619 + ((u64) in[2]) * (in[5] << 1) +
620 + ((u64) in[3]) * (in[4] << 1);
621 + /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
622 + * which is < 2**64 as required.
623 + */
624 + tmp[8] = ((u64) in[0]) * (in[8] << 1) +
625 + ((u64) in[1]) * (in[7] << 2) +
626 + ((u64) in[2]) * (in[6] << 1) +
627 + ((u64) in[3]) * (in[5] << 2) +
628 + ((u64) in[4]) * in[4];
629 + tmp[9] = ((u64) in[1]) * (in[8] << 1) +
630 + ((u64) in[2]) * (in[7] << 1) +
631 + ((u64) in[3]) * (in[6] << 1) +
632 + ((u64) in[4]) * (in[5] << 1);
633 + tmp[10] = ((u64) in[2]) * (in[8] << 1) +
634 + ((u64) in[3]) * (in[7] << 2) +
635 + ((u64) in[4]) * (in[6] << 1) +
636 + ((u64) in[5]) * (in[5] << 1);
637 + tmp[11] = ((u64) in[3]) * (in[8] << 1) +
638 + ((u64) in[4]) * (in[7] << 1) +
639 + ((u64) in[5]) * (in[6] << 1);
640 + tmp[12] = ((u64) in[4]) * (in[8] << 1) +
641 + ((u64) in[5]) * (in[7] << 2) +
642 + ((u64) in[6]) * in[6];
643 + tmp[13] = ((u64) in[5]) * (in[8] << 1) +
644 + ((u64) in[6]) * (in[7] << 1);
645 + tmp[14] = ((u64) in[6]) * (in[8] << 1) +
646 + ((u64) in[7]) * (in[7] << 1);
647 + tmp[15] = ((u64) in[7]) * (in[8] << 1);
648 + tmp[16] = ((u64) in[8]) * in[8];
649 +
650 + felem_reduce_degree(out, tmp);
651 +}
652 +
653 +/* felem_mul sets out=in*in2.
654 + *
655 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
656 + * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
657 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
658 + */
659 +static void felem_mul(felem out, const felem in, const felem in2)
660 +{
661 + u64 tmp[17];
662 +
663 + tmp[0] = ((u64) in[0]) * in2[0];
664 + tmp[1] = ((u64) in[0]) * (in2[1] << 0) +
665 + ((u64) in[1]) * (in2[0] << 0);
666 + tmp[2] = ((u64) in[0]) * (in2[2] << 0) +
667 + ((u64) in[1]) * (in2[1] << 1) +
668 + ((u64) in[2]) * (in2[0] << 0);
669 + tmp[3] = ((u64) in[0]) * (in2[3] << 0) +
670 + ((u64) in[1]) * (in2[2] << 0) +
671 + ((u64) in[2]) * (in2[1] << 0) +
672 + ((u64) in[3]) * (in2[0] << 0);
673 + tmp[4] = ((u64) in[0]) * (in2[4] << 0) +
674 + ((u64) in[1]) * (in2[3] << 1) +
675 + ((u64) in[2]) * (in2[2] << 0) +
676 + ((u64) in[3]) * (in2[1] << 1) +
677 + ((u64) in[4]) * (in2[0] << 0);
678 + tmp[5] = ((u64) in[0]) * (in2[5] << 0) +
679 + ((u64) in[1]) * (in2[4] << 0) +
680 + ((u64) in[2]) * (in2[3] << 0) +
681 + ((u64) in[3]) * (in2[2] << 0) +
682 + ((u64) in[4]) * (in2[1] << 0) +
683 + ((u64) in[5]) * (in2[0] << 0);
684 + tmp[6] = ((u64) in[0]) * (in2[6] << 0) +
685 + ((u64) in[1]) * (in2[5] << 1) +
686 + ((u64) in[2]) * (in2[4] << 0) +
687 + ((u64) in[3]) * (in2[3] << 1) +
688 + ((u64) in[4]) * (in2[2] << 0) +
689 + ((u64) in[5]) * (in2[1] << 1) +
690 + ((u64) in[6]) * (in2[0] << 0);
691 + tmp[7] = ((u64) in[0]) * (in2[7] << 0) +
692 + ((u64) in[1]) * (in2[6] << 0) +
693 + ((u64) in[2]) * (in2[5] << 0) +
694 + ((u64) in[3]) * (in2[4] << 0) +
695 + ((u64) in[4]) * (in2[3] << 0) +
696 + ((u64) in[5]) * (in2[2] << 0) +
697 + ((u64) in[6]) * (in2[1] << 0) +
698 + ((u64) in[7]) * (in2[0] << 0);
699 + /* tmp[8] has the greatest value but doesn't overflow. See logic in
700 + * felem_square.
701 + */
702 + tmp[8] = ((u64) in[0]) * (in2[8] << 0) +
703 + ((u64) in[1]) * (in2[7] << 1) +
704 + ((u64) in[2]) * (in2[6] << 0) +
705 + ((u64) in[3]) * (in2[5] << 1) +
706 + ((u64) in[4]) * (in2[4] << 0) +
707 + ((u64) in[5]) * (in2[3] << 1) +
708 + ((u64) in[6]) * (in2[2] << 0) +
709 + ((u64) in[7]) * (in2[1] << 1) +
710 + ((u64) in[8]) * (in2[0] << 0);
711 + tmp[9] = ((u64) in[1]) * (in2[8] << 0) +
712 + ((u64) in[2]) * (in2[7] << 0) +
713 + ((u64) in[3]) * (in2[6] << 0) +
714 + ((u64) in[4]) * (in2[5] << 0) +
715 + ((u64) in[5]) * (in2[4] << 0) +
716 + ((u64) in[6]) * (in2[3] << 0) +
717 + ((u64) in[7]) * (in2[2] << 0) +
718 + ((u64) in[8]) * (in2[1] << 0);
719 + tmp[10] = ((u64) in[2]) * (in2[8] << 0) +
720 + ((u64) in[3]) * (in2[7] << 1) +
721 + ((u64) in[4]) * (in2[6] << 0) +
722 + ((u64) in[5]) * (in2[5] << 1) +
723 + ((u64) in[6]) * (in2[4] << 0) +
724 + ((u64) in[7]) * (in2[3] << 1) +
725 + ((u64) in[8]) * (in2[2] << 0);
726 + tmp[11] = ((u64) in[3]) * (in2[8] << 0) +
727 + ((u64) in[4]) * (in2[7] << 0) +
728 + ((u64) in[5]) * (in2[6] << 0) +
729 + ((u64) in[6]) * (in2[5] << 0) +
730 + ((u64) in[7]) * (in2[4] << 0) +
731 + ((u64) in[8]) * (in2[3] << 0);
732 + tmp[12] = ((u64) in[4]) * (in2[8] << 0) +
733 + ((u64) in[5]) * (in2[7] << 1) +
734 + ((u64) in[6]) * (in2[6] << 0) +
735 + ((u64) in[7]) * (in2[5] << 1) +
736 + ((u64) in[8]) * (in2[4] << 0);
737 + tmp[13] = ((u64) in[5]) * (in2[8] << 0) +
738 + ((u64) in[6]) * (in2[7] << 0) +
739 + ((u64) in[7]) * (in2[6] << 0) +
740 + ((u64) in[8]) * (in2[5] << 0);
741 + tmp[14] = ((u64) in[6]) * (in2[8] << 0) +
742 + ((u64) in[7]) * (in2[7] << 1) +
743 + ((u64) in[8]) * (in2[6] << 0);
744 + tmp[15] = ((u64) in[7]) * (in2[8] << 0) +
745 + ((u64) in[8]) * (in2[7] << 0);
746 + tmp[16] = ((u64) in[8]) * (in2[8] << 0);
747 +
748 + felem_reduce_degree(out, tmp);
749 +}
750 +
751 +static void felem_assign(felem out, const felem in)
752 +{
753 + memcpy(out, in, sizeof(felem));
754 +}
755 +
756 +/* felem_inv calculates |out| = |in|^{-1}
757 + *
758 + * Based on Fermat's Little Theorem:
759 + * a^p = a (mod p)
760 + * a^{p-1} = 1 (mod p)
761 + * a^{p-2} = a^{-1} (mod p)
762 + */
763 +static void felem_inv(felem out, const felem in)
764 +{
765 + felem ftmp, ftmp2;
766 + /* each e_I will hold |in|^{2^I - 1} */
767 + felem e2, e4, e8, e16, e32, e64;
768 + unsigned int i;
769 +
770 + felem_square(ftmp, in); /* 2^1 */
771 + felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */
772 + felem_assign(e2, ftmp);
773 + felem_square(ftmp, ftmp); /* 2^3 - 2^1 */
774 + felem_square(ftmp, ftmp); /* 2^4 - 2^2 */
775 + felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */
776 + felem_assign(e4, ftmp);
777 + felem_square(ftmp, ftmp); /* 2^5 - 2^1 */
778 + felem_square(ftmp, ftmp); /* 2^6 - 2^2 */
779 + felem_square(ftmp, ftmp); /* 2^7 - 2^3 */
780 + felem_square(ftmp, ftmp); /* 2^8 - 2^4 */
781 + felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */
782 + felem_assign(e8, ftmp);
783 + for (i = 0; i < 8; i++) {
784 + felem_square(ftmp, ftmp);
785 + } /* 2^16 - 2^8 */
786 + felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */
787 + felem_assign(e16, ftmp);
788 + for (i = 0; i < 16; i++) {
789 + felem_square(ftmp, ftmp);
790 + } /* 2^32 - 2^16 */
791 + felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */
792 + felem_assign(e32, ftmp);
793 + for (i = 0; i < 32; i++) {
794 + felem_square(ftmp, ftmp);
795 + } /* 2^64 - 2^32 */
796 + felem_assign(e64, ftmp);
797 + felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */
798 + for (i = 0; i < 192; i++) {
799 + felem_square(ftmp, ftmp);
800 + } /* 2^256 - 2^224 + 2^192 */
801 +
802 + felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */
803 + for (i = 0; i < 16; i++) {
804 + felem_square(ftmp2, ftmp2);
805 + } /* 2^80 - 2^16 */
806 + felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */
807 + for (i = 0; i < 8; i++) {
808 + felem_square(ftmp2, ftmp2);
809 + } /* 2^88 - 2^8 */
810 + felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */
811 + for (i = 0; i < 4; i++) {
812 + felem_square(ftmp2, ftmp2);
813 + } /* 2^92 - 2^4 */
814 + felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */
815 + felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */
816 + felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */
817 + felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */
818 + felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */
819 + felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */
820 + felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */
821 +
822 + felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
823 +}
824 +
825 +/* felem_scalar_3 sets out=3*out.
826 + *
827 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
828 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
829 + */
830 +static void felem_scalar_3(felem out)
831 +{
832 + limb carry = 0;
833 + unsigned int i;
834 +
835 + for (i = 0;; i++) {
836 + out[i] *= 3;
837 + out[i] += carry;
838 + carry = out[i] >> 29;
839 + out[i] &= kBottom29Bits;
840 +
841 + i++;
842 + if (i == NLIMBS)
843 + break;
844 +
845 + out[i] *= 3;
846 + out[i] += carry;
847 + carry = out[i] >> 28;
848 + out[i] &= kBottom28Bits;
849 + }
850 +
851 + felem_reduce_carry(out, carry);
852 +}
853 +
854 +/* felem_scalar_4 sets out=4*out.
855 + *
856 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
857 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
858 + */
859 +static void felem_scalar_4(felem out)
860 +{
861 + limb carry = 0, next_carry;
862 + unsigned int i;
863 +
864 + for (i = 0;; i++) {
865 + next_carry = out[i] >> 27;
866 + out[i] <<= 2;
867 + out[i] &= kBottom29Bits;
868 + out[i] += carry;
869 + carry = next_carry + (out[i] >> 29);
870 + out[i] &= kBottom29Bits;
871 +
872 + i++;
873 + if (i == NLIMBS)
874 + break;
875 + next_carry = out[i] >> 26;
876 + out[i] <<= 2;
877 + out[i] &= kBottom28Bits;
878 + out[i] += carry;
879 + carry = next_carry + (out[i] >> 28);
880 + out[i] &= kBottom28Bits;
881 + }
882 +
883 + felem_reduce_carry(out, carry);
884 +}
885 +
886 +/* felem_scalar_8 sets out=8*out.
887 + *
888 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
889 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
890 + */
891 +static void felem_scalar_8(felem out)
892 +{
893 + limb carry = 0, next_carry;
894 + unsigned int i;
895 +
896 + for (i = 0;; i++) {
897 + next_carry = out[i] >> 26;
898 + out[i] <<= 3;
899 + out[i] &= kBottom29Bits;
900 + out[i] += carry;
901 + carry = next_carry + (out[i] >> 29);
902 + out[i] &= kBottom29Bits;
903 +
904 + i++;
905 + if (i == NLIMBS)
906 + break;
907 + next_carry = out[i] >> 25;
908 + out[i] <<= 3;
909 + out[i] &= kBottom28Bits;
910 + out[i] += carry;
911 + carry = next_carry + (out[i] >> 28);
912 + out[i] &= kBottom28Bits;
913 + }
914 +
915 + felem_reduce_carry(out, carry);
916 +}
917 +
918 +/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
919 + * time depending on the value of |in|.
920 + */
921 +static char felem_is_zero_vartime(const felem in)
922 +{
923 + limb carry;
924 + int i;
925 + limb tmp[NLIMBS];
926 + felem_assign(tmp, in);
927 +
928 + /* First, reduce tmp to a minimal form.
929 + */
930 + do {
931 + carry = 0;
932 + for (i = 0;; i++) {
933 + tmp[i] += carry;
934 + carry = tmp[i] >> 29;
935 + tmp[i] &= kBottom29Bits;
936 +
937 + i++;
938 + if (i == NLIMBS)
939 + break;
940 +
941 + tmp[i] += carry;
942 + carry = tmp[i] >> 28;
943 + tmp[i] &= kBottom28Bits;
944 + }
945 +
946 + felem_reduce_carry(tmp, carry);
947 + } while (carry);
948 +
949 + /* tmp < 2**257, so the only possible zero values are 0, p and 2p.
950 + */
951 + return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
952 + memcmp(tmp, kP, sizeof(tmp)) == 0 ||
953 + memcmp(tmp, k2P, sizeof(tmp)) == 0;
954 +}
955 +
956 +/* Group operations:
957 + *
958 + * Elements of the elliptic curve group are represented in Jacobian
959 + * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
960 + * Jacobian form.
961 + */
962 +
963 +/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
964 + *
965 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doublin g-dbl-2009-l
966 + */
967 +static void point_double(felem x_out, felem y_out, felem z_out,
968 + const felem x, const felem y, const felem z)
969 +{
970 + felem delta, gamma, alpha, beta, tmp, tmp2;
971 +
972 + felem_square(delta, z);
973 + felem_square(gamma, y);
974 + felem_mul(beta, x, gamma);
975 +
976 + felem_sum(tmp, x, delta);
977 + felem_diff(tmp2, x, delta);
978 + felem_mul(alpha, tmp, tmp2);
979 + felem_scalar_3(alpha);
980 +
981 + felem_sum(tmp, y, z);
982 + felem_square(tmp, tmp);
983 + felem_diff(tmp, tmp, gamma);
984 + felem_diff(z_out, tmp, delta);
985 +
986 + felem_scalar_4(beta);
987 + felem_square(x_out, alpha);
988 + felem_diff(x_out, x_out, beta);
989 + felem_diff(x_out, x_out, beta);
990 +
991 + felem_diff(tmp, beta, x_out);
992 + felem_mul(tmp, alpha, tmp);
993 + felem_square(tmp2, gamma);
994 + felem_scalar_8(tmp2);
995 + felem_diff(y_out, tmp, tmp2);
996 +}
997 +
998 +/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
999 + * (i.e. the second point is affine.)
1000 + *
1001 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio n-add-2007-bl
1002 + *
1003 + * Note that this function does not handle P+P, infinity+P nor P+infinity
1004 + * correctly.
1005 + */
1006 +static void point_add_mixed(felem x_out, felem y_out, felem z_out,
1007 + const felem x1, const felem y1, const felem z1,
1008 + const felem x2, const felem y2)
1009 +{
1010 + felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;
1011 +
1012 + felem_square(z1z1, z1);
1013 + felem_sum(tmp, z1, z1);
1014 +
1015 + felem_mul(u2, x2, z1z1);
1016 + felem_mul(z1z1z1, z1, z1z1);
1017 + felem_mul(s2, y2, z1z1z1);
1018 + felem_diff(h, u2, x1);
1019 + felem_sum(i, h, h);
1020 + felem_square(i, i);
1021 + felem_mul(j, h, i);
1022 + felem_diff(r, s2, y1);
1023 + felem_sum(r, r, r);
1024 + felem_mul(v, x1, i);
1025 +
1026 + felem_mul(z_out, tmp, h);
1027 + felem_square(rr, r);
1028 + felem_diff(x_out, rr, j);
1029 + felem_diff(x_out, x_out, v);
1030 + felem_diff(x_out, x_out, v);
1031 +
1032 + felem_diff(tmp, v, x_out);
1033 + felem_mul(y_out, tmp, r);
1034 + felem_mul(tmp, y1, j);
1035 + felem_diff(y_out, y_out, tmp);
1036 + felem_diff(y_out, y_out, tmp);
1037 +}
1038 +
1039 +/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
1040 + *
1041 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio n-add-2007-bl
1042 + *
1043 + * Note that this function does not handle P+P, infinity+P nor P+infinity
1044 + * correctly.
1045 + */
1046 +static void point_add(felem x_out, felem y_out, felem z_out,
1047 + const felem x1, const felem y1, const felem z1,
1048 + const felem x2, const felem y2, const felem z2)
1049 +{
1050 + felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
1051 +
1052 + felem_square(z1z1, z1);
1053 + felem_square(z2z2, z2);
1054 + felem_mul(u1, x1, z2z2);
1055 +
1056 + felem_sum(tmp, z1, z2);
1057 + felem_square(tmp, tmp);
1058 + felem_diff(tmp, tmp, z1z1);
1059 + felem_diff(tmp, tmp, z2z2);
1060 +
1061 + felem_mul(z2z2z2, z2, z2z2);
1062 + felem_mul(s1, y1, z2z2z2);
1063 +
1064 + felem_mul(u2, x2, z1z1);
1065 + felem_mul(z1z1z1, z1, z1z1);
1066 + felem_mul(s2, y2, z1z1z1);
1067 + felem_diff(h, u2, u1);
1068 + felem_sum(i, h, h);
1069 + felem_square(i, i);
1070 + felem_mul(j, h, i);
1071 + felem_diff(r, s2, s1);
1072 + felem_sum(r, r, r);
1073 + felem_mul(v, u1, i);
1074 +
1075 + felem_mul(z_out, tmp, h);
1076 + felem_square(rr, r);
1077 + felem_diff(x_out, rr, j);
1078 + felem_diff(x_out, x_out, v);
1079 + felem_diff(x_out, x_out, v);
1080 +
1081 + felem_diff(tmp, v, x_out);
1082 + felem_mul(y_out, tmp, r);
1083 + felem_mul(tmp, s1, j);
1084 + felem_diff(y_out, y_out, tmp);
1085 + felem_diff(y_out, y_out, tmp);
1086 +}
1087 +
1088 +/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
1089 + * {x2,y2,z2}.
1090 + *
1091 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio n-add-2007-bl
1092 + *
1093 + * This function handles the case where {x1,y1,z1}={x2,y2,z2}.
1094 + */
1095 +static void point_add_or_double_vartime(
1096 + felem x_out, felem y_out, felem z_out,
1097 + const felem x1, const felem y1, const felem z1,
1098 + const felem x2, const felem y2, const felem z2)
1099 +{
1100 + felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
1101 + char x_equal, y_equal;
1102 +
1103 + felem_square(z1z1, z1);
1104 + felem_square(z2z2, z2);
1105 + felem_mul(u1, x1, z2z2);
1106 +
1107 + felem_sum(tmp, z1, z2);
1108 + felem_square(tmp, tmp);
1109 + felem_diff(tmp, tmp, z1z1);
1110 + felem_diff(tmp, tmp, z2z2);
1111 +
1112 + felem_mul(z2z2z2, z2, z2z2);
1113 + felem_mul(s1, y1, z2z2z2);
1114 +
1115 + felem_mul(u2, x2, z1z1);
1116 + felem_mul(z1z1z1, z1, z1z1);
1117 + felem_mul(s2, y2, z1z1z1);
1118 + felem_diff(h, u2, u1);
1119 + x_equal = felem_is_zero_vartime(h);
1120 + felem_sum(i, h, h);
1121 + felem_square(i, i);
1122 + felem_mul(j, h, i);
1123 + felem_diff(r, s2, s1);
1124 + y_equal = felem_is_zero_vartime(r);
1125 + if (x_equal && y_equal) {
1126 + point_double(x_out, y_out, z_out, x1, y1, z1);
1127 + return;
1128 + }
1129 + felem_sum(r, r, r);
1130 + felem_mul(v, u1, i);
1131 +
1132 + felem_mul(z_out, tmp, h);
1133 + felem_square(rr, r);
1134 + felem_diff(x_out, rr, j);
1135 + felem_diff(x_out, x_out, v);
1136 + felem_diff(x_out, x_out, v);
1137 +
1138 + felem_diff(tmp, v, x_out);
1139 + felem_mul(y_out, tmp, r);
1140 + felem_mul(tmp, s1, j);
1141 + felem_diff(y_out, y_out, tmp);
1142 + felem_diff(y_out, y_out, tmp);
1143 +}
1144 +
1145 +/* copy_conditional sets out=in if mask = 0xffffffff in constant time.
1146 + *
1147 + * On entry: mask is either 0 or 0xffffffff.
1148 + */
1149 +static void copy_conditional(felem out, const felem in, limb mask)
1150 +{
1151 + int i;
1152 +
1153 + for (i = 0; i < NLIMBS; i++) {
1154 + const limb tmp = mask & (in[i] ^ out[i]);
1155 + out[i] ^= tmp;
1156 + }
1157 +}
1158 +
1159 +/* select_affine_point sets {out_x,out_y} to the index'th entry of table.
1160 + * On entry: index < 16, table[0] must be zero.
1161 + */
1162 +static void select_affine_point(felem out_x, felem out_y,
1163 + const limb *table, limb index)
1164 +{
1165 + limb i, j;
1166 +
1167 + memset(out_x, 0, sizeof(felem));
1168 + memset(out_y, 0, sizeof(felem));
1169 +
1170 + for (i = 1; i < 16; i++) {
1171 + limb mask = i ^ index;
1172 + mask |= mask >> 2;
1173 + mask |= mask >> 1;
1174 + mask &= 1;
1175 + mask--;
1176 + for (j = 0; j < NLIMBS; j++, table++) {
1177 + out_x[j] |= *table & mask;
1178 + }
1179 + for (j = 0; j < NLIMBS; j++, table++) {
1180 + out_y[j] |= *table & mask;
1181 + }
1182 + }
1183 +}
1184 +
1185 +/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
1186 + * table. On entry: index < 16, table[0] must be zero.
1187 + */
1188 +static void select_jacobian_point(felem out_x, felem out_y, felem out_z,
1189 + const limb *table, limb index)
1190 +{
1191 + limb i, j;
1192 +
1193 + memset(out_x, 0, sizeof(felem));
1194 + memset(out_y, 0, sizeof(felem));
1195 + memset(out_z, 0, sizeof(felem));
1196 +
1197 + /* The implicit value at index 0 is all zero. We don't need to perform that
1198 + * iteration of the loop because we already set out_* to zero.
1199 + */
1200 + table += 3*NLIMBS;
1201 +
1202 + for (i = 1; i < 16; i++) {
1203 + limb mask = i ^ index;
1204 + mask |= mask >> 2;
1205 + mask |= mask >> 1;
1206 + mask &= 1;
1207 + mask--;
1208 + for (j = 0; j < NLIMBS; j++, table++) {
1209 + out_x[j] |= *table & mask;
1210 + }
1211 + for (j = 0; j < NLIMBS; j++, table++) {
1212 + out_y[j] |= *table & mask;
1213 + }
1214 + for (j = 0; j < NLIMBS; j++, table++) {
1215 + out_z[j] |= *table & mask;
1216 + }
1217 + }
1218 +}
1219 +
1220 +/* get_bit returns the bit'th bit of scalar. */
1221 +static char get_bit(const u8 scalar[32], int bit)
1222 +{
1223 + return ((scalar[bit >> 3]) >> (bit & 7)) & 1;
1224 +}
1225 +
1226 +/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
1227 + * number. Note that the value of scalar must be less than the order of the
1228 + * group.
1229 + */
1230 +static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32])
1231 +{
1232 + int i, j;
1233 + limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
1234 + u32 table_offset;
1235 +
1236 + felem px, py;
1237 + felem tx, ty, tz;
1238 +
1239 + memset(nx, 0, sizeof(felem));
1240 + memset(ny, 0, sizeof(felem));
1241 + memset(nz, 0, sizeof(felem));
1242 +
1243 + /* The loop adds bits at positions 0, 64, 128 and 192, followed by
1244 + * positions 32,96,160 and 224 and does this 32 times.
1245 + */
1246 + for (i = 0; i < 32; i++) {
1247 + if (i) {
1248 + point_double(nx, ny, nz, nx, ny, nz);
1249 + }
1250 + for (j = 0; j <= 32; j += 32) {
1251 + char bit0 = get_bit(scalar, 31 - i + j);
1252 + char bit1 = get_bit(scalar, 95 - i + j);
1253 + char bit2 = get_bit(scalar, 159 - i + j);
1254 + char bit3 = get_bit(scalar, 223 - i + j);
1255 + limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);
1256 +
1257 + table_offset = ((((s32)j) << (32-6)) >> 31) & (30*NLIMBS);
1258 + select_affine_point(px, py, kPrecomputed + table_offset, index);
1259 +
1260 + /* Since scalar is less than the order of the group, we know that
1261 + * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
1262 + * below.
1263 + */
1264 + point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
1265 + /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
1266 + * (a.k.a. the point at infinity). We handle that situation by
1267 + * copying the point from the table.
1268 + */
1269 + copy_conditional(nx, px, n_is_infinity_mask);
1270 + copy_conditional(ny, py, n_is_infinity_mask);
1271 + copy_conditional(nz, kOne, n_is_infinity_mask);
1272 +
1273 + /* Equally, the result is also wrong if the point from the table is
1274 + * zero, which happens when the index is zero. We handle that by
1275 + * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0.
1276 + */
1277 + p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
1278 + mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
1279 + copy_conditional(nx, tx, mask);
1280 + copy_conditional(ny, ty, mask);
1281 + copy_conditional(nz, tz, mask);
1282 + /* If p was not zero, then n is now non-zero. */
1283 + n_is_infinity_mask &= ~p_is_noninfinite_mask;
1284 + }
1285 + }
1286 +}
1287 +
1288 +/* point_to_affine converts a Jacobian point to an affine point. If the input
1289 + * is the point at infinity then it returns (0, 0) in constant time.
1290 + */
1291 +static void point_to_affine(felem x_out, felem y_out,
1292 + const felem nx, const felem ny, const felem nz) {
1293 + felem z_inv, z_inv_sq;
1294 + felem_inv(z_inv, nz);
1295 + felem_square(z_inv_sq, z_inv);
1296 + felem_mul(x_out, nx, z_inv_sq);
1297 + felem_mul(z_inv, z_inv, z_inv_sq);
1298 + felem_mul(y_out, ny, z_inv);
1299 +}
1300 +
1301 +/* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */
1302 +static void scalar_mult(felem nx, felem ny, felem nz,
1303 + const felem x, const felem y, const u8 scalar[32])
1304 +{
1305 + int i;
1306 + felem px, py, pz, tx, ty, tz;
1307 + felem precomp[16][3];
1308 + limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;
1309 +
1310 + /* We precompute 0,1,2,... times {x,y}. */
1311 + memset(precomp, 0, sizeof(felem) * 3);
1312 + memcpy(&precomp[1][0], x, sizeof(felem));
1313 + memcpy(&precomp[1][1], y, sizeof(felem));
1314 + memcpy(&precomp[1][2], kOne, sizeof(felem));
1315 +
1316 + for (i = 2; i < 16; i += 2) {
1317 + point_double(precomp[i][0], precomp[i][1], precomp[i][2],
1318 + precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);
1319 +
1320 + point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
1321 + precomp[i][0], precomp[i][1], precomp[i][2], x, y);
1322 + }
1323 +
1324 + memset(nx, 0, sizeof(felem));
1325 + memset(ny, 0, sizeof(felem));
1326 + memset(nz, 0, sizeof(felem));
1327 + n_is_infinity_mask = -1;
1328 +
1329 + /* We add in a window of four bits each iteration and do this 64 times. */
1330 + for (i = 0; i < 64; i++) {
1331 + if (i) {
1332 + point_double(nx, ny, nz, nx, ny, nz);
1333 + point_double(nx, ny, nz, nx, ny, nz);
1334 + point_double(nx, ny, nz, nx, ny, nz);
1335 + point_double(nx, ny, nz, nx, ny, nz);
1336 + }
1337 +
1338 + index = scalar[31 - i / 2];
1339 + if ((i & 1) == 1) {
1340 + index &= 15;
1341 + } else {
1342 + index >>= 4;
1343 + }
1344 +
1345 + /* See the comments in scalar_base_mult about handling infinities. */
1346 + select_jacobian_point(px, py, pz, (limb *) precomp, index);
1347 + point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
1348 + copy_conditional(nx, px, n_is_infinity_mask);
1349 + copy_conditional(ny, py, n_is_infinity_mask);
1350 + copy_conditional(nz, pz, n_is_infinity_mask);
1351 +
1352 + p_is_noninfinite_mask = ((s32) ~ (index - 1)) >> 31;
1353 + mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
1354 + copy_conditional(nx, tx, mask);
1355 + copy_conditional(ny, ty, mask);
1356 + copy_conditional(nz, tz, mask);
1357 + n_is_infinity_mask &= ~p_is_noninfinite_mask;
1358 + }
1359 +}
1360 +
1361 +/* Interface with Freebl: */
1362 +
1363 +#ifdef IS_BIG_ENDIAN
1364 +#error "This code needs a little-endian processor"
1365 +#endif
1366 +
1367 +static const u32 kRInvDigits[8] = {
1368 + 0x80000000, 1, 0xffffffff, 0,
1369 + 0x80000001, 0xfffffffe, 1, 0x7fffffff
1370 +};
1371 +#define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit))
1372 +static const mp_int kRInv = {
1373 + MP_ZPOS,
1374 + MP_DIGITS_IN_256_BITS,
1375 + MP_DIGITS_IN_256_BITS,
1376 + /* Because we are running on a little-endian processor, this cast works for
1377 + * both 32 and 64-bit processors.
1378 + */
1379 + (mp_digit*) kRInvDigits
1380 +};
1381 +
1382 +static const limb kTwo28 = 0x10000000;
1383 +static const limb kTwo29 = 0x20000000;
1384 +
1385 +/* to_montgomery sets out = R*in. */
1386 +static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group)
1387 +{
1388 + /* There are no MPI functions for bitshift operations and we wish to shift
1389 + * in 257 bits left so we move the digits 256-bits left and then multiply
1390 + * by two.
1391 + */
1392 + mp_int in_shifted;
1393 + int i;
1394 + mp_err res;
1395 +
1396 + mp_init(&in_shifted);
1397 + s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS);
1398 + memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS),
1399 + MP_DIGITS(in),
1400 + MP_USED(in)*sizeof(mp_digit));
1401 + mp_mul_2(&in_shifted, &in_shifted);
1402 + MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth));
1403 +
1404 + for (i = 0;; i++) {
1405 + out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits;
1406 + mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL);
1407 +
1408 + i++;
1409 + if (i == NLIMBS)
1410 + break;
1411 + out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits;
1412 + mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL);
1413 + }
1414 +
1415 +CLEANUP:
1416 + mp_clear(&in_shifted);
1417 + return res;
1418 +}
1419 +
1420 +/* from_montgomery sets out=in/R. */
1421 +static mp_err from_montgomery(mp_int *out, const felem in,
1422 + const ECGroup *group)
1423 +{
1424 + mp_int result, tmp;
1425 + mp_err res;
1426 + int i;
1427 +
1428 + mp_init(&result);
1429 + mp_init(&tmp);
1430 +
1431 + MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result));
1432 + for (i = NLIMBS-2; i >= 0; i--) {
1433 + if ((i & 1) == 0) {
1434 + MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp));
1435 + } else {
1436 + MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp));
1437 + }
1438 + MP_CHECKOK(mp_add_d(&tmp, in[i], &result));
1439 + }
1440 +
1441 + MP_CHECKOK(mp_mul(&result, &kRInv, out));
1442 + MP_CHECKOK(group->meth->field_mod(out, out, group->meth));
1443 +
1444 +CLEANUP:
1445 + mp_clear(&result);
1446 + mp_clear(&tmp);
1447 + return res;
1448 +}
1449 +
1450 +/* scalar_from_mp_int sets out_scalar=n, where n < the group order. */
1451 +static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n)
1452 +{
1453 + /* We require that |n| is less than the order of the group and therefore it
1454 + * will fit into |scalar|. However, these is a timing side-channel here tha t
1455 + * we cannot avoid: if |n| is sufficiently small it may be one or more word s
1456 + * too short and we'll copy less data.
1457 + */
1458 + memset(out_scalar, 0, 32);
1459 + memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit));
1460 +}
1461 +
1462 +/* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the
1463 + * order of the group.
1464 + */
1465 +mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n,
1466 + mp_int *out_x, mp_int *out_y,
1467 + const ECGroup *group)
1468 +{
1469 + u8 scalar[32];
1470 + felem x, y, z, x_affine, y_affine;
1471 + mp_err res;
1472 +
1473 + /* FIXME(agl): test that n < order. */
1474 +
1475 + scalar_from_mp_int(scalar, n);
1476 + scalar_base_mult(x, y, z, scalar);
1477 + point_to_affine(x_affine, y_affine, x, y, z);
1478 + MP_CHECKOK(from_montgomery(out_x, x_affine, group));
1479 + MP_CHECKOK(from_montgomery(out_y, y_affine, group));
1480 +
1481 +CLEANUP:
1482 + return res;
1483 +}
1484 +
1485 +/* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is <
1486 + * the order of the group.
1487 + */
1488 +mp_err ec_GFp_nistp256_point_mul(const mp_int *n,
1489 + const mp_int *in_x, const mp_int *in_y,
1490 + mp_int *out_x, mp_int *out_y,
1491 + const ECGroup *group)
1492 +{
1493 + u8 scalar[32];
1494 + felem x, y, z, x_affine, y_affine, px, py;
1495 + mp_err res;
1496 +
1497 + scalar_from_mp_int(scalar, n);
1498 +
1499 + MP_CHECKOK(to_montgomery(px, in_x, group));
1500 + MP_CHECKOK(to_montgomery(py, in_y, group));
1501 +
1502 + scalar_mult(x, y, z, px, py, scalar);
1503 + point_to_affine(x_affine, y_affine, x, y, z);
1504 + MP_CHECKOK(from_montgomery(out_x, x_affine, group));
1505 + MP_CHECKOK(from_montgomery(out_y, y_affine, group));
1506 +
1507 +CLEANUP:
1508 + return res;
1509 +}
1510 +
1511 +/* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G +
1512 + * n2*{in_x,in_y}, where n1 and n2 are < the order of the group.
1513 + *
1514 + * As indicated by the name, this function operates in variable time. This
1515 + * is safe because it's used for signature validation which doesn't deal
1516 + * with secrets.
1517 + */
1518 +mp_err ec_GFp_nistp256_points_mul_vartime(
1519 + const mp_int *n1, const mp_int *n2,
1520 + const mp_int *in_x, const mp_int *in_y,
1521 + mp_int *out_x, mp_int *out_y,
1522 + const ECGroup *group)
1523 +{
1524 + u8 scalar1[32], scalar2[32];
1525 + felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py;
1526 + mp_err res = MP_OKAY;
1527 +
1528 + /* If n2 == NULL, this is just a base-point multiplication. */
1529 + if (n2 == NULL) {
1530 + return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group);
1531 + }
1532 +
1533 + /* If n1 == nULL, this is just an arbitary-point multiplication. */
1534 + if (n1 == NULL) {
1535 + return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group);
1536 + }
1537 +
1538 + /* If both scalars are zero, then the result is the point at infinity. */
1539 + if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) {
1540 + mp_zero(out_x);
1541 + mp_zero(out_y);
1542 + return res;
1543 + }
1544 +
1545 + scalar_from_mp_int(scalar1, n1);
1546 + scalar_from_mp_int(scalar2, n2);
1547 +
1548 + MP_CHECKOK(to_montgomery(px, in_x, group));
1549 + MP_CHECKOK(to_montgomery(py, in_y, group));
1550 + scalar_base_mult(x1, y1, z1, scalar1);
1551 + scalar_mult(x2, y2, z2, px, py, scalar2);
1552 +
1553 + if (mp_cmp_z(n2) == 0) {
1554 + /* If n2 == 0, then {x2,y2,z2} is zero and the result is just
1555 + * {x1,y1,z1}. */
1556 + } else if (mp_cmp_z(n1) == 0) {
1557 + /* If n1 == 0, then {x1,y1,z1} is zero and the result is just
1558 + * {x2,y2,z2}. */
1559 + memcpy(x1, x2, sizeof(x2));
1560 + memcpy(y1, y2, sizeof(y2));
1561 + memcpy(z1, z2, sizeof(z2));
1562 + } else {
1563 + /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
1564 + point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
1565 + }
1566 +
1567 + point_to_affine(x_affine, y_affine, x1, y1, z1);
1568 + MP_CHECKOK(from_montgomery(out_x, x_affine, group));
1569 + MP_CHECKOK(from_montgomery(out_y, y_affine, group));
1570 +
1571 +CLEANUP:
1572 + return res;
1573 +}
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698