|
OLD | NEW |
---|---|
(Empty) | |
1 /* This Source Code Form is subject to the terms of the Mozilla Public | |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
4 | |
5 /* A 32-bit implementation of the NIST P-256 elliptic curve. */ | |
wtc
2013/01/25 02:32:49
Lines 1-5 used to be one comment block. I separate
| |
6 | |
7 #include <string.h> | |
8 | |
9 #include "prtypes.h" | |
10 #include "mpi.h" | |
11 #include "mpi-priv.h" | |
12 #include "ecp.h" | |
13 | |
14 typedef PRUint8 u8; | |
15 typedef PRUint32 u32; | |
16 typedef PRInt32 s32; | |
17 typedef PRUint64 u64; | |
18 | |
19 /* Our field elements are represented as nine, unsigned 32-bit words. Freebl's | |
20 * MPI library calls them digits, but here they are called limbs, which is | |
21 * GMP's terminology. | |
22 * | |
23 * The value of an felem (field element) is: | |
24 * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) | |
25 * | |
26 * That is, each limb is alternately 29 or 28-bits wide in little-endian | |
27 * order. | |
28 * | |
29 * This means that an felem hits 2**257, rather than 2**256 as we would like. A | |
30 * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems | |
31 * when multiplying as terms end up one bit short of a limb which would require | |
32 * much bit-shifting to correct. | |
33 * | |
34 * Finally, the values stored in an felem are in Montgomery form. So the value | |
35 * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257. | |
36 */ | |
37 typedef u32 limb; | |
38 #define NLIMBS 9 | |
39 typedef limb felem[NLIMBS]; | |
40 | |
41 static const limb kBottom28Bits = 0xfffffff; | |
42 static const limb kBottom29Bits = 0x1fffffff; | |
43 | |
44 /* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and | |
45 * 28-bit words. | |
46 */ | |
47 static const felem kOne = { | |
48 2, 0, 0, 0xffff800, | |
49 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, | |
50 0 | |
51 }; | |
52 static const felem kZero = {0}; | |
53 static const felem kP = { | |
54 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, | |
55 0, 0, 0x200000, 0xf000000, | |
56 0xfffffff | |
57 }; | |
58 static const felem k2P = { | |
59 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, | |
60 0, 0, 0x400000, 0xe000000, | |
61 0x1fffffff | |
62 }; | |
63 | |
64 /* kPrecomputed contains precomputed values to aid the calculation of scalar | |
65 * multiples of the base point, G. It's actually two, equal length, tables | |
66 * concatenated. | |
67 * | |
68 * The first table contains (x,y) felem pairs for 16 multiples of the base | |
69 * point, G. | |
70 * | |
71 * Index | Index (binary) | Value | |
72 * 0 | 0000 | 0G (all zeros, omitted) | |
73 * 1 | 0001 | G | |
74 * 2 | 0010 | 2**64G | |
75 * 3 | 0011 | 2**64G + G | |
76 * 4 | 0100 | 2**128G | |
77 * 5 | 0101 | 2**128G + G | |
78 * 6 | 0110 | 2**128G + 2**64G | |
79 * 7 | 0111 | 2**128G + 2**64G + G | |
80 * 8 | 1000 | 2**192G | |
81 * 9 | 1001 | 2**192G + G | |
82 * 10 | 1010 | 2**192G + 2**64G | |
83 * 11 | 1011 | 2**192G + 2**64G + G | |
84 * 12 | 1100 | 2**192G + 2**128G | |
85 * 13 | 1101 | 2**192G + 2**128G + G | |
86 * 14 | 1110 | 2**192G + 2**128G + 2**64G | |
87 * 15 | 1111 | 2**192G + 2**128G + 2**64G + G | |
88 * | |
89 * The second table follows the same style, but the terms are 2**32G, | |
90 * 2**96G, 2**160G, 2**224G. | |
91 * | |
92 * This is ~2KB of data. | |
93 */ | |
94 static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = { | |
95 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7e dc, 0xd4a6eab, 0x3120bee, | |
96 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba 21, 0x14b10bb, 0xae3fe3, | |
97 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe4907 3, 0x3fa36cc, 0x5ebcd2c, | |
98 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea1244 6, 0xe1ade1e, 0xec91f22, | |
99 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109 , 0xa267a00, 0xb57c050, | |
100 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0 x7d6dee7, 0x2976e4b, | |
101 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a 5a9, 0x843a649, 0xc3ab0fa, | |
102 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11 , 0x58c43df, 0xf423fc2, | |
103 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db4 0f, 0x83e277d, 0xb0dd609, | |
104 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5 , 0xe10c9e, 0x33ab581, | |
105 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f , 0x48764cd, 0x76dbcca, | |
106 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b2 0, 0x4ba3173, 0xc168c33, | |
107 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0 , 0x65dd7ff, 0x3a1e4f6, | |
108 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f07 7, 0xa6add89, 0x4894acd, | |
109 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, | |
110 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c , 0xda0cf5b, 0x812e881, | |
111 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51 , 0xc22be3e, 0xe35e65a, | |
112 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9 , 0x1c5a839, 0x47a1e26, | |
113 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c5 02, 0x2f32042, 0xa17769b, | |
114 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a 02, 0x3fc93, 0x5620023, | |
115 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c , 0x407f75c, 0xbaab133, | |
116 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea 7, 0x3293ac0, 0xcdc98aa, | |
117 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, | |
118 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72 , 0x73e1c35, 0xee70fbc, | |
119 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85 , 0x27de188, 0x66f70b8, | |
120 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae 914, 0x2f3ec51, 0x3826b59, | |
121 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x 823d9d2, 0x8213f39, | |
122 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4 a, 0xf5ddc3d, 0x3786689, | |
123 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a72 9, 0x4be3499, 0x52b23aa, | |
124 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb0480 35, 0xe31de66, 0xc6ecaa3, | |
125 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a752 9, 0xcb7beb1, 0xb2a78a1, | |
126 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff6 58, 0xe3d6511, 0xc7d76f, | |
127 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, | |
128 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d3241 1, 0xb04a838, 0xd760d2d, | |
129 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11 e, 0x20bca9a, 0x66f496b, | |
130 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, | |
131 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56 ff, 0x65ef930, 0x21dc4a, | |
132 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15 f, 0x624e62e, 0xa90ae2f, | |
133 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522 b, 0xdc78583, 0x40eeabb, | |
134 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef3 4, 0xae2a960, 0x91b8bdc, | |
135 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0 x2413c8e, 0x5425bf9, | |
136 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633 , 0x7c91952, 0xd806dce, | |
137 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef7 3, 0x8956f34, 0xe4b5cf2, | |
138 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7 , 0x627b614, 0x7371cca, | |
139 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc 9, 0x9c19bf2, 0x5882229, | |
140 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b 3, 0xe85ff25, 0x408ef57, | |
141 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113 , 0xa4a1769, 0x11fbc6c, | |
142 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b 7, 0x4acbad9, 0x5efc5fa, | |
143 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc , 0x7bf0fa9, 0x957651, | |
144 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, | |
145 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c1 2d, 0xf20bd46, 0x1951fa7, | |
146 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74 , 0x99bb618, 0x2db944c, | |
147 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e7477 9, 0x576138, 0x9587927, | |
148 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782 d, 0xfc72e0b, 0x701b298, | |
149 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5 d8, 0xf858d3a, 0x942eea8, | |
150 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a 1, 0x8395659, 0x52ed4e2, | |
151 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c 0, 0x6bdf55a, 0x4e4457d, | |
152 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747 b, 0x878558d, 0x7d29aa4, | |
153 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d 7, 0xa5bef68, 0xb7b30d8, | |
154 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f5195 1, 0x9d0c177, 0x1c49a78, | |
155 }; | |
156 | |
157 /* Field element operations: | |
158 */ | |
159 | |
160 /* NON_ZERO_TO_ALL_ONES returns: | |
161 * 0xffffffff for 0 < x <= 2**31 | |
162 * 0 for x == 0 or x > 2**31. | |
163 * | |
164 * This macro assumes that right-shifting a signed number shifts in the MSB on | |
165 * the left. This is not ensured by the C standard, but is true on the CPUs | |
166 * that we're targetting with this code (x86 and ARM). | |
167 */ | |
168 #define NON_ZERO_TO_ALL_ONES(x) (~((u32) (((s32) ((x)-1)) >> 31))) | |
Ryan Sleevi
2013/01/25 03:50:36
Just because this is slipping into more and more c
agl
2013/01/25 16:04:03
I'd love to put it in nspr or somewhere similar. P
wtc
2013/01/31 16:59:02
After I worked out the detail (including plugging
| |
169 | |
170 /* felem_reduce_carry adds a multiple of p in order to cancel |carry|, | |
171 * which is a term at 2**257. | |
172 * | |
173 * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. | |
174 * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. | |
175 */ | |
176 static void felem_reduce_carry(felem inout, limb carry) | |
177 { | |
178 const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry); | |
179 | |
180 inout[0] += carry << 1; | |
181 inout[3] += 0x10000000 & carry_mask; | |
182 /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the | |
183 * previous line therefore this doesn't underflow. | |
184 */ | |
185 inout[3] -= carry << 11; | |
186 inout[4] += (0x20000000 - 1) & carry_mask; | |
187 inout[5] += (0x10000000 - 1) & carry_mask; | |
188 inout[6] += (0x20000000 - 1) & carry_mask; | |
189 inout[6] -= carry << 22; | |
190 /* This may underflow if carry is non-zero but, if so, we'll fix it in the | |
191 * next line. | |
192 */ | |
193 inout[7] -= 1 & carry_mask; | |
194 inout[7] += carry << 25; | |
195 } | |
196 | |
197 /* felem_sum sets out = in+in2. | |
198 * | |
199 * On entry, in[i]+in2[i] must not overflow a 32-bit word. | |
200 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 | |
201 */ | |
202 static void felem_sum(felem out, const felem in, const felem in2) | |
203 { | |
204 limb carry = 0; | |
205 unsigned int i; | |
206 for (i = 0;; i++) { | |
207 out[i] = in[i] + in2[i]; | |
208 out[i] += carry; | |
209 carry = out[i] >> 29; | |
210 out[i] &= kBottom29Bits; | |
211 | |
212 i++; | |
213 if (i == NLIMBS) | |
214 break; | |
215 | |
216 out[i] = in[i] + in2[i]; | |
217 out[i] += carry; | |
218 carry = out[i] >> 28; | |
219 out[i] &= kBottom28Bits; | |
220 } | |
221 | |
222 felem_reduce_carry(out, carry); | |
223 } | |
224 | |
225 #define two31m3 (((limb)1) << 31) - (((limb)1) << 3) | |
226 #define two30m2 (((limb)1) << 30) - (((limb)1) << 2) | |
227 #define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2) | |
228 #define two31m2 (((limb)1) << 31) - (((limb)1) << 2) | |
229 #define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2) | |
230 #define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2) | |
231 | |
232 /* zero31 is 0 mod p. | |
233 */ | |
234 static const felem zero31 = { | |
235 two31m3, two30m2, two31m2, two30p13m2, | |
236 two31m2, two30m2, two31p24m2, two30m27m2, | |
237 two31m2 | |
238 }; | |
239 | |
240 /* felem_diff sets out = in-in2. | |
241 * | |
242 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | |
243 * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | |
244 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
245 */ | |
246 static void felem_diff(felem out, const felem in, const felem in2) | |
247 { | |
248 limb carry = 0; | |
249 unsigned int i; | |
250 | |
251 for (i = 0;; i++) { | |
252 out[i] = in[i] - in2[i]; | |
253 out[i] += zero31[i]; | |
254 out[i] += carry; | |
255 carry = out[i] >> 29; | |
256 out[i] &= kBottom29Bits; | |
257 | |
258 i++; | |
259 if (i == NLIMBS) | |
260 break; | |
261 | |
262 out[i] = in[i] - in2[i]; | |
263 out[i] += zero31[i]; | |
264 out[i] += carry; | |
265 carry = out[i] >> 28; | |
266 out[i] &= kBottom28Bits; | |
267 } | |
268 | |
269 felem_reduce_carry(out, carry); | |
270 } | |
271 | |
272 /* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words | |
273 * with the same 29,28,... bit positions as an felem. | |
274 * | |
275 * The values in felems are in Montgomery form: x*R mod p where R = 2**257. | |
276 * Since we just multiplied two Montgomery values together, the result is | |
277 * x*y*R*R mod p. We wish to divide by R in order for the result also to be | |
278 * in Montgomery form. | |
279 * | |
280 * On entry: tmp[i] < 2**64 | |
281 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 | |
282 */ | |
283 static void felem_reduce_degree(felem out, u64 tmp[17]) | |
284 { | |
285 /* The following table may be helpful when reading this code: | |
286 * | |
287 * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... | |
288 * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 | |
289 * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 | |
290 * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 | |
291 */ | |
292 limb tmp2[18], carry, x, xMask; | |
293 unsigned int i; | |
294 | |
295 /* tmp contains 64-bit words with the same 29,28,29-bit positions as an | |
296 * felem. So the top of an element of tmp might overlap with another | |
297 * element two positions down. The following loop eliminates this | |
298 * overlap. | |
299 */ | |
300 tmp2[0] = tmp[0] & kBottom29Bits; | |
301 | |
302 /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try | |
303 * and hint to the compiler that it can do a single-word shift by selecting | |
304 * the right register rather than doing a double-word shift and truncating | |
305 * afterwards. | |
306 */ | |
307 tmp2[1] = ((limb) tmp[0]) >> 29; | |
308 tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits; | |
309 tmp2[1] += ((limb) tmp[1]) & kBottom28Bits; | |
310 carry = tmp2[1] >> 28; | |
311 tmp2[1] &= kBottom28Bits; | |
312 | |
313 for (i = 2; i < 17; i++) { | |
314 tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; | |
315 tmp2[i] += ((limb) (tmp[i - 1])) >> 28; | |
316 tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits; | |
317 tmp2[i] += ((limb) tmp[i]) & kBottom29Bits; | |
318 tmp2[i] += carry; | |
319 carry = tmp2[i] >> 29; | |
320 tmp2[i] &= kBottom29Bits; | |
321 | |
322 i++; | |
323 if (i == 17) | |
324 break; | |
325 tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; | |
326 tmp2[i] += ((limb) (tmp[i - 1])) >> 29; | |
327 tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits; | |
328 tmp2[i] += ((limb) tmp[i]) & kBottom28Bits; | |
329 tmp2[i] += carry; | |
330 carry = tmp2[i] >> 28; | |
331 tmp2[i] &= kBottom28Bits; | |
332 } | |
333 | |
334 tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25; | |
335 tmp2[17] += ((limb) (tmp[16])) >> 29; | |
336 tmp2[17] += (((limb) (tmp[16] >> 32)) << 3); | |
337 tmp2[17] += carry; | |
338 | |
339 /* Montgomery elimination of terms: | |
340 * | |
341 * Since R is 2**257, we can divide by R with a bitwise shift if we can | |
342 * ensure that the right-most 257 bits are all zero. We can make that true | |
343 * by adding multiplies of p without affecting the value. | |
344 * | |
345 * So we eliminate limbs from right to left. Since the bottom 29 bits of p | |
346 * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. | |
347 * We can do that for 8 further limbs and then right shift to eliminate the | |
348 * extra factor of R. | |
349 */ | |
350 for (i = 0;; i += 2) { | |
351 tmp2[i + 1] += tmp2[i] >> 29; | |
352 x = tmp2[i] & kBottom29Bits; | |
353 xMask = NON_ZERO_TO_ALL_ONES(x); | |
354 tmp2[i] = 0; | |
355 | |
356 /* The bounds calculations for this loop are tricky. Each iteration of | |
357 * the loop eliminates two words by adding values to words to their | |
358 * right. | |
359 * | |
360 * The following table contains the amounts added to each word (as an | |
361 * offset from the value of i at the top of the loop). The amounts are | |
362 * accounted for from the first and second half of the loop separately | |
363 * and are written as, for example, 28 to mean a value <2**28. | |
364 * | |
365 * Word: 3 4 5 6 7 8 9 10 | |
366 * Added in top half: 28 11 29 21 29 28 | |
367 * 28 29 | |
368 * 29 | |
369 * Added in bottom half: 29 10 28 21 28 28 | |
370 * 29 | |
371 * | |
372 * The value that is currently offset 7 will be offset 5 for the next | |
373 * iteration and then offset 3 for the iteration after that. Therefore | |
374 * the total value added will be the values added at 7, 5 and 3. | |
375 * | |
376 * The following table accumulates these values. The sums at the bottom | |
377 * are written as, for example, 29+28, to mean a value < 2**29+2**28. | |
378 * | |
379 * Word: 3 4 5 6 7 8 9 10 11 12 13 | |
380 * 28 11 10 29 21 29 28 28 28 28 28 | |
381 * 29 28 11 28 29 28 29 28 29 28 | |
382 * 29 28 21 21 29 21 29 21 | |
383 * 10 29 28 21 28 21 28 | |
384 * 28 29 28 29 28 29 28 | |
385 * 11 10 29 10 29 10 | |
386 * 29 28 11 28 11 | |
387 * 29 29 | |
388 * -------------------------------------------- | |
389 * 30+ 31+ 30+ 31+ 30+ | |
390 * 28+ 29+ 28+ 29+ 21+ | |
391 * 21+ 28+ 21+ 28+ 10 | |
392 * 10 21+ 10 21+ | |
393 * 11 11 | |
394 * | |
395 * So the greatest amount is added to tmp2[10] and tmp2[12]. If | |
396 * tmp2[10/12] has an initial value of <2**29, then the maximum value | |
397 * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, | |
398 * as required. | |
399 */ | |
400 tmp2[i + 3] += (x << 10) & kBottom28Bits; | |
401 tmp2[i + 4] += (x >> 18); | |
402 | |
403 tmp2[i + 6] += (x << 21) & kBottom29Bits; | |
404 tmp2[i + 7] += x >> 8; | |
405 | |
406 /* At position 200, which is the starting bit position for word 7, we | |
407 * have a factor of 0xf000000 = 2**28 - 2**24. | |
408 */ | |
409 tmp2[i + 7] += 0x10000000 & xMask; | |
410 /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */ | |
411 tmp2[i + 8] += (x - 1) & xMask; | |
412 tmp2[i + 7] -= (x << 24) & kBottom28Bits; | |
413 tmp2[i + 8] -= x >> 4; | |
414 | |
415 tmp2[i + 8] += 0x20000000 & xMask; | |
416 tmp2[i + 8] -= x; | |
417 tmp2[i + 8] += (x << 28) & kBottom29Bits; | |
418 tmp2[i + 9] += ((x >> 1) - 1) & xMask; | |
419 | |
420 if (i+1 == NLIMBS) | |
421 break; | |
422 tmp2[i + 2] += tmp2[i + 1] >> 28; | |
423 x = tmp2[i + 1] & kBottom28Bits; | |
424 xMask = NON_ZERO_TO_ALL_ONES(x); | |
425 tmp2[i + 1] = 0; | |
426 | |
427 tmp2[i + 4] += (x << 11) & kBottom29Bits; | |
428 tmp2[i + 5] += (x >> 18); | |
429 | |
430 tmp2[i + 7] += (x << 21) & kBottom28Bits; | |
431 tmp2[i + 8] += x >> 7; | |
432 | |
433 /* At position 199, which is the starting bit of the 8th word when | |
434 * dealing with a context starting on an odd word, we have a factor of | |
435 * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th | |
436 * word from i+1 is i+8. | |
437 */ | |
438 tmp2[i + 8] += 0x20000000 & xMask; | |
439 tmp2[i + 9] += (x - 1) & xMask; | |
440 tmp2[i + 8] -= (x << 25) & kBottom29Bits; | |
441 tmp2[i + 9] -= x >> 4; | |
442 | |
443 tmp2[i + 9] += 0x10000000 & xMask; | |
444 tmp2[i + 9] -= x; | |
445 tmp2[i + 10] += (x - 1) & xMask; | |
446 } | |
447 | |
448 /* We merge the right shift with a carry chain. The words above 2**257 have | |
449 * widths of 28,29,... which we need to correct when copying them down. | |
450 */ | |
451 carry = 0; | |
452 for (i = 0; i < 8; i++) { | |
453 /* The maximum value of tmp2[i + 9] occurs on the first iteration and | |
454 * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is | |
455 * therefore safe. | |
456 */ | |
457 out[i] = tmp2[i + 9]; | |
458 out[i] += carry; | |
459 out[i] += (tmp2[i + 10] << 28) & kBottom29Bits; | |
460 carry = out[i] >> 29; | |
461 out[i] &= kBottom29Bits; | |
462 | |
463 i++; | |
464 out[i] = tmp2[i + 9] >> 1; | |
465 out[i] += carry; | |
466 carry = out[i] >> 28; | |
467 out[i] &= kBottom28Bits; | |
468 } | |
469 | |
470 out[8] = tmp2[17]; | |
471 out[8] += carry; | |
472 carry = out[8] >> 29; | |
473 out[8] &= kBottom29Bits; | |
474 | |
475 felem_reduce_carry(out, carry); | |
476 } | |
477 | |
478 /* felem_square sets out=in*in. | |
479 * | |
480 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. | |
481 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
482 */ | |
483 static void felem_square(felem out, const felem in) | |
484 { | |
485 u64 tmp[17]; | |
486 | |
487 tmp[0] = ((u64) in[0]) * in[0]; | |
488 tmp[1] = ((u64) in[0]) * (in[1] << 1); | |
489 tmp[2] = ((u64) in[0]) * (in[2] << 1) + | |
490 ((u64) in[1]) * (in[1] << 1); | |
491 tmp[3] = ((u64) in[0]) * (in[3] << 1) + | |
492 ((u64) in[1]) * (in[2] << 1); | |
493 tmp[4] = ((u64) in[0]) * (in[4] << 1) + | |
494 ((u64) in[1]) * (in[3] << 2) + | |
495 ((u64) in[2]) * in[2]; | |
496 tmp[5] = ((u64) in[0]) * (in[5] << 1) + | |
497 ((u64) in[1]) * (in[4] << 1) + | |
498 ((u64) in[2]) * (in[3] << 1); | |
499 tmp[6] = ((u64) in[0]) * (in[6] << 1) + | |
500 ((u64) in[1]) * (in[5] << 2) + | |
501 ((u64) in[2]) * (in[4] << 1) + | |
502 ((u64) in[3]) * (in[3] << 1); | |
503 tmp[7] = ((u64) in[0]) * (in[7] << 1) + | |
504 ((u64) in[1]) * (in[6] << 1) + | |
505 ((u64) in[2]) * (in[5] << 1) + | |
506 ((u64) in[3]) * (in[4] << 1); | |
507 /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, | |
508 * which is < 2**64 as required. | |
509 */ | |
510 tmp[8] = ((u64) in[0]) * (in[8] << 1) + | |
511 ((u64) in[1]) * (in[7] << 2) + | |
512 ((u64) in[2]) * (in[6] << 1) + | |
513 ((u64) in[3]) * (in[5] << 2) + | |
514 ((u64) in[4]) * in[4]; | |
515 tmp[9] = ((u64) in[1]) * (in[8] << 1) + | |
516 ((u64) in[2]) * (in[7] << 1) + | |
517 ((u64) in[3]) * (in[6] << 1) + | |
518 ((u64) in[4]) * (in[5] << 1); | |
519 tmp[10] = ((u64) in[2]) * (in[8] << 1) + | |
520 ((u64) in[3]) * (in[7] << 2) + | |
521 ((u64) in[4]) * (in[6] << 1) + | |
522 ((u64) in[5]) * (in[5] << 1); | |
523 tmp[11] = ((u64) in[3]) * (in[8] << 1) + | |
524 ((u64) in[4]) * (in[7] << 1) + | |
525 ((u64) in[5]) * (in[6] << 1); | |
526 tmp[12] = ((u64) in[4]) * (in[8] << 1) + | |
527 ((u64) in[5]) * (in[7] << 2) + | |
528 ((u64) in[6]) * in[6]; | |
529 tmp[13] = ((u64) in[5]) * (in[8] << 1) + | |
530 ((u64) in[6]) * (in[7] << 1); | |
531 tmp[14] = ((u64) in[6]) * (in[8] << 1) + | |
532 ((u64) in[7]) * (in[7] << 1); | |
533 tmp[15] = ((u64) in[7]) * (in[8] << 1); | |
534 tmp[16] = ((u64) in[8]) * in[8]; | |
535 | |
536 felem_reduce_degree(out, tmp); | |
537 } | |
538 | |
539 /* felem_mul sets out=in*in2. | |
540 * | |
541 * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | |
542 * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | |
543 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
544 */ | |
545 static void felem_mul(felem out, const felem in, const felem in2) | |
546 { | |
547 u64 tmp[17]; | |
548 | |
549 tmp[0] = ((u64) in[0]) * in2[0]; | |
550 tmp[1] = ((u64) in[0]) * (in2[1] << 0) + | |
551 ((u64) in[1]) * (in2[0] << 0); | |
552 tmp[2] = ((u64) in[0]) * (in2[2] << 0) + | |
553 ((u64) in[1]) * (in2[1] << 1) + | |
554 ((u64) in[2]) * (in2[0] << 0); | |
555 tmp[3] = ((u64) in[0]) * (in2[3] << 0) + | |
556 ((u64) in[1]) * (in2[2] << 0) + | |
557 ((u64) in[2]) * (in2[1] << 0) + | |
558 ((u64) in[3]) * (in2[0] << 0); | |
559 tmp[4] = ((u64) in[0]) * (in2[4] << 0) + | |
560 ((u64) in[1]) * (in2[3] << 1) + | |
561 ((u64) in[2]) * (in2[2] << 0) + | |
562 ((u64) in[3]) * (in2[1] << 1) + | |
563 ((u64) in[4]) * (in2[0] << 0); | |
564 tmp[5] = ((u64) in[0]) * (in2[5] << 0) + | |
565 ((u64) in[1]) * (in2[4] << 0) + | |
566 ((u64) in[2]) * (in2[3] << 0) + | |
567 ((u64) in[3]) * (in2[2] << 0) + | |
568 ((u64) in[4]) * (in2[1] << 0) + | |
569 ((u64) in[5]) * (in2[0] << 0); | |
570 tmp[6] = ((u64) in[0]) * (in2[6] << 0) + | |
571 ((u64) in[1]) * (in2[5] << 1) + | |
572 ((u64) in[2]) * (in2[4] << 0) + | |
573 ((u64) in[3]) * (in2[3] << 1) + | |
574 ((u64) in[4]) * (in2[2] << 0) + | |
575 ((u64) in[5]) * (in2[1] << 1) + | |
576 ((u64) in[6]) * (in2[0] << 0); | |
577 tmp[7] = ((u64) in[0]) * (in2[7] << 0) + | |
578 ((u64) in[1]) * (in2[6] << 0) + | |
579 ((u64) in[2]) * (in2[5] << 0) + | |
580 ((u64) in[3]) * (in2[4] << 0) + | |
581 ((u64) in[4]) * (in2[3] << 0) + | |
582 ((u64) in[5]) * (in2[2] << 0) + | |
583 ((u64) in[6]) * (in2[1] << 0) + | |
584 ((u64) in[7]) * (in2[0] << 0); | |
585 /* tmp[8] has the greatest value but doesn't overflow. See logic in | |
586 * felem_square. | |
587 */ | |
588 tmp[8] = ((u64) in[0]) * (in2[8] << 0) + | |
589 ((u64) in[1]) * (in2[7] << 1) + | |
590 ((u64) in[2]) * (in2[6] << 0) + | |
591 ((u64) in[3]) * (in2[5] << 1) + | |
592 ((u64) in[4]) * (in2[4] << 0) + | |
593 ((u64) in[5]) * (in2[3] << 1) + | |
594 ((u64) in[6]) * (in2[2] << 0) + | |
595 ((u64) in[7]) * (in2[1] << 1) + | |
596 ((u64) in[8]) * (in2[0] << 0); | |
597 tmp[9] = ((u64) in[1]) * (in2[8] << 0) + | |
598 ((u64) in[2]) * (in2[7] << 0) + | |
599 ((u64) in[3]) * (in2[6] << 0) + | |
600 ((u64) in[4]) * (in2[5] << 0) + | |
601 ((u64) in[5]) * (in2[4] << 0) + | |
602 ((u64) in[6]) * (in2[3] << 0) + | |
603 ((u64) in[7]) * (in2[2] << 0) + | |
604 ((u64) in[8]) * (in2[1] << 0); | |
605 tmp[10] = ((u64) in[2]) * (in2[8] << 0) + | |
606 ((u64) in[3]) * (in2[7] << 1) + | |
607 ((u64) in[4]) * (in2[6] << 0) + | |
608 ((u64) in[5]) * (in2[5] << 1) + | |
609 ((u64) in[6]) * (in2[4] << 0) + | |
610 ((u64) in[7]) * (in2[3] << 1) + | |
611 ((u64) in[8]) * (in2[2] << 0); | |
612 tmp[11] = ((u64) in[3]) * (in2[8] << 0) + | |
613 ((u64) in[4]) * (in2[7] << 0) + | |
614 ((u64) in[5]) * (in2[6] << 0) + | |
615 ((u64) in[6]) * (in2[5] << 0) + | |
616 ((u64) in[7]) * (in2[4] << 0) + | |
617 ((u64) in[8]) * (in2[3] << 0); | |
618 tmp[12] = ((u64) in[4]) * (in2[8] << 0) + | |
619 ((u64) in[5]) * (in2[7] << 1) + | |
620 ((u64) in[6]) * (in2[6] << 0) + | |
621 ((u64) in[7]) * (in2[5] << 1) + | |
622 ((u64) in[8]) * (in2[4] << 0); | |
623 tmp[13] = ((u64) in[5]) * (in2[8] << 0) + | |
624 ((u64) in[6]) * (in2[7] << 0) + | |
625 ((u64) in[7]) * (in2[6] << 0) + | |
626 ((u64) in[8]) * (in2[5] << 0); | |
627 tmp[14] = ((u64) in[6]) * (in2[8] << 0) + | |
628 ((u64) in[7]) * (in2[7] << 1) + | |
629 ((u64) in[8]) * (in2[6] << 0); | |
630 tmp[15] = ((u64) in[7]) * (in2[8] << 0) + | |
631 ((u64) in[8]) * (in2[7] << 0); | |
632 tmp[16] = ((u64) in[8]) * (in2[8] << 0); | |
633 | |
634 felem_reduce_degree(out, tmp); | |
635 } | |
636 | |
637 static void felem_assign(felem out, const felem in) | |
638 { | |
639 memcpy(out, in, sizeof(felem)); | |
640 } | |
641 | |
642 /* felem_inv calculates |out| = |in|^{-1} | |
643 * | |
644 * Based on Fermat's Little Theorem: | |
645 * a^p = a (mod p) | |
646 * a^{p-1} = 1 (mod p) | |
647 * a^{p-2} = a^{-1} (mod p) | |
648 */ | |
649 static void felem_inv(felem out, const felem in) | |
650 { | |
651 felem ftmp, ftmp2; | |
652 /* each e_I will hold |in|^{2^I - 1} */ | |
653 felem e2, e4, e8, e16, e32, e64; | |
654 unsigned int i; | |
655 | |
656 felem_square(ftmp, in); /* 2^1 */ | |
657 felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */ | |
658 felem_assign(e2, ftmp); | |
659 felem_square(ftmp, ftmp); /* 2^3 - 2^1 */ | |
660 felem_square(ftmp, ftmp); /* 2^4 - 2^2 */ | |
661 felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */ | |
662 felem_assign(e4, ftmp); | |
663 felem_square(ftmp, ftmp); /* 2^5 - 2^1 */ | |
664 felem_square(ftmp, ftmp); /* 2^6 - 2^2 */ | |
665 felem_square(ftmp, ftmp); /* 2^7 - 2^3 */ | |
666 felem_square(ftmp, ftmp); /* 2^8 - 2^4 */ | |
667 felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */ | |
668 felem_assign(e8, ftmp); | |
669 for (i = 0; i < 8; i++) { | |
670 felem_square(ftmp, ftmp); | |
671 } /* 2^16 - 2^8 */ | |
672 felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */ | |
673 felem_assign(e16, ftmp); | |
674 for (i = 0; i < 16; i++) { | |
675 felem_square(ftmp, ftmp); | |
676 } /* 2^32 - 2^16 */ | |
677 felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */ | |
678 felem_assign(e32, ftmp); | |
679 for (i = 0; i < 32; i++) { | |
680 felem_square(ftmp, ftmp); | |
681 } /* 2^64 - 2^32 */ | |
682 felem_assign(e64, ftmp); | |
683 felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */ | |
684 for (i = 0; i < 192; i++) { | |
685 felem_square(ftmp, ftmp); | |
686 } /* 2^256 - 2^224 + 2^192 */ | |
687 | |
688 felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */ | |
689 for (i = 0; i < 16; i++) { | |
690 felem_square(ftmp2, ftmp2); | |
691 } /* 2^80 - 2^16 */ | |
692 felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */ | |
693 for (i = 0; i < 8; i++) { | |
694 felem_square(ftmp2, ftmp2); | |
695 } /* 2^88 - 2^8 */ | |
696 felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */ | |
697 for (i = 0; i < 4; i++) { | |
698 felem_square(ftmp2, ftmp2); | |
699 } /* 2^92 - 2^4 */ | |
700 felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */ | |
701 felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */ | |
702 felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */ | |
703 felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */ | |
704 felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */ | |
705 felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */ | |
706 felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */ | |
707 | |
708 felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | |
709 } | |
710 | |
711 /* felem_scalar_3 sets out=3*out. | |
712 * | |
713 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
714 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
715 */ | |
716 static void felem_scalar_3(felem out) | |
717 { | |
718 limb carry = 0; | |
719 unsigned int i; | |
720 | |
721 for (i = 0;; i++) { | |
722 out[i] *= 3; | |
723 out[i] += carry; | |
724 carry = out[i] >> 29; | |
725 out[i] &= kBottom29Bits; | |
726 | |
727 i++; | |
728 if (i == NLIMBS) | |
729 break; | |
730 | |
731 out[i] *= 3; | |
732 out[i] += carry; | |
733 carry = out[i] >> 28; | |
734 out[i] &= kBottom28Bits; | |
735 } | |
736 | |
737 felem_reduce_carry(out, carry); | |
738 } | |
739 | |
740 /* felem_scalar_4 sets out=4*out. | |
741 * | |
742 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
743 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
744 */ | |
745 static void felem_scalar_4(felem out) | |
746 { | |
747 limb carry = 0, next_carry; | |
748 unsigned int i; | |
749 | |
750 for (i = 0;; i++) { | |
751 next_carry = out[i] >> 27; | |
752 out[i] <<= 2; | |
753 out[i] &= kBottom29Bits; | |
754 out[i] += carry; | |
755 carry = next_carry + (out[i] >> 29); | |
756 out[i] &= kBottom29Bits; | |
757 | |
758 i++; | |
759 if (i == NLIMBS) | |
760 break; | |
761 next_carry = out[i] >> 26; | |
762 out[i] <<= 2; | |
763 out[i] &= kBottom28Bits; | |
764 out[i] += carry; | |
765 carry = next_carry + (out[i] >> 28); | |
766 out[i] &= kBottom28Bits; | |
767 } | |
768 | |
769 felem_reduce_carry(out, carry); | |
770 } | |
771 | |
772 /* felem_scalar_8 sets out=8*out. | |
773 * | |
774 * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
775 * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
776 */ | |
777 static void felem_scalar_8(felem out) | |
778 { | |
779 limb carry = 0, next_carry; | |
780 unsigned int i; | |
781 | |
782 for (i = 0;; i++) { | |
783 next_carry = out[i] >> 26; | |
784 out[i] <<= 3; | |
785 out[i] &= kBottom29Bits; | |
786 out[i] += carry; | |
787 carry = next_carry + (out[i] >> 29); | |
788 out[i] &= kBottom29Bits; | |
789 | |
790 i++; | |
791 if (i == NLIMBS) | |
792 break; | |
793 next_carry = out[i] >> 25; | |
794 out[i] <<= 3; | |
795 out[i] &= kBottom28Bits; | |
796 out[i] += carry; | |
797 carry = next_carry + (out[i] >> 28); | |
798 out[i] &= kBottom28Bits; | |
799 } | |
800 | |
801 felem_reduce_carry(out, carry); | |
802 } | |
803 | |
804 /* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of | |
805 * time depending on the value of |in|. | |
806 */ | |
807 static char felem_is_zero_vartime(const felem in) | |
808 { | |
809 limb carry; | |
810 int i; | |
811 limb tmp[NLIMBS]; | |
812 felem_assign(tmp, in); | |
813 | |
814 /* First, reduce tmp to a minimal form. | |
815 */ | |
816 do { | |
817 carry = 0; | |
818 for (i = 0;; i++) { | |
819 tmp[i] += carry; | |
820 carry = tmp[i] >> 29; | |
821 tmp[i] &= kBottom29Bits; | |
822 | |
823 i++; | |
824 if (i == NLIMBS) | |
825 break; | |
826 | |
827 tmp[i] += carry; | |
828 carry = tmp[i] >> 28; | |
829 tmp[i] &= kBottom28Bits; | |
830 } | |
831 | |
832 felem_reduce_carry(tmp, carry); | |
833 } while (carry); | |
834 | |
835 /* tmp < 2**257, so the only possible zero values are 0, p and 2p. | |
836 */ | |
837 return memcmp(tmp, kZero, sizeof(tmp)) == 0 || | |
838 memcmp(tmp, kP, sizeof(tmp)) == 0 || | |
839 memcmp(tmp, k2P, sizeof(tmp)) == 0; | |
840 } | |
841 | |
842 /* Group operations: | |
843 * | |
844 * Elements of the elliptic curve group are represented in Jacobian | |
845 * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in | |
846 * Jacobian form. | |
847 */ | |
848 | |
849 /* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}. | |
850 * | |
851 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling -dbl-2009-l | |
852 */ | |
853 static void point_double(felem x_out, felem y_out, felem z_out, | |
854 const felem x, const felem y, const felem z) | |
855 { | |
856 felem delta, gamma, alpha, beta, tmp, tmp2; | |
857 | |
858 felem_square(delta, z); | |
859 felem_square(gamma, y); | |
860 felem_mul(beta, x, gamma); | |
861 | |
862 felem_sum(tmp, x, delta); | |
863 felem_diff(tmp2, x, delta); | |
864 felem_mul(alpha, tmp, tmp2); | |
865 felem_scalar_3(alpha); | |
866 | |
867 felem_sum(tmp, y, z); | |
868 felem_square(tmp, tmp); | |
869 felem_diff(tmp, tmp, gamma); | |
870 felem_diff(z_out, tmp, delta); | |
871 | |
872 felem_scalar_4(beta); | |
873 felem_square(x_out, alpha); | |
874 felem_diff(x_out, x_out, beta); | |
875 felem_diff(x_out, x_out, beta); | |
876 | |
877 felem_diff(tmp, beta, x_out); | |
878 felem_mul(tmp, alpha, tmp); | |
879 felem_square(tmp2, gamma); | |
880 felem_scalar_8(tmp2); | |
881 felem_diff(y_out, tmp, tmp2); | |
882 } | |
883 | |
884 /* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}. | |
885 * (i.e. the second point is affine.) | |
886 * | |
887 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition -add-2007-bl | |
888 * | |
889 * Note that this function does not handle P+P, infinity+P nor P+infinity | |
890 * correctly. | |
891 */ | |
892 static void point_add_mixed(felem x_out, felem y_out, felem z_out, | |
893 const felem x1, const felem y1, const felem z1, | |
894 const felem x2, const felem y2) | |
895 { | |
896 felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp; | |
897 | |
898 felem_square(z1z1, z1); | |
899 felem_sum(tmp, z1, z1); | |
900 | |
901 felem_mul(u2, x2, z1z1); | |
902 felem_mul(z1z1z1, z1, z1z1); | |
903 felem_mul(s2, y2, z1z1z1); | |
904 felem_diff(h, u2, x1); | |
905 felem_sum(i, h, h); | |
906 felem_square(i, i); | |
907 felem_mul(j, h, i); | |
908 felem_diff(r, s2, y1); | |
909 felem_sum(r, r, r); | |
910 felem_mul(v, x1, i); | |
911 | |
912 felem_mul(z_out, tmp, h); | |
913 felem_square(rr, r); | |
914 felem_diff(x_out, rr, j); | |
915 felem_diff(x_out, x_out, v); | |
916 felem_diff(x_out, x_out, v); | |
917 | |
918 felem_diff(tmp, v, x_out); | |
919 felem_mul(y_out, tmp, r); | |
920 felem_mul(tmp, y1, j); | |
921 felem_diff(y_out, y_out, tmp); | |
922 felem_diff(y_out, y_out, tmp); | |
923 } | |
924 | |
925 /* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}. | |
926 * | |
927 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition -add-2007-bl | |
928 * | |
929 * Note that this function does not handle P+P, infinity+P nor P+infinity | |
930 * correctly. | |
931 */ | |
932 static void point_add(felem x_out, felem y_out, felem z_out, | |
933 const felem x1, const felem y1, const felem z1, | |
934 const felem x2, const felem y2, const felem z2) | |
935 { | |
936 felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | |
937 | |
938 felem_square(z1z1, z1); | |
939 felem_square(z2z2, z2); | |
940 felem_mul(u1, x1, z2z2); | |
941 | |
942 felem_sum(tmp, z1, z2); | |
943 felem_square(tmp, tmp); | |
944 felem_diff(tmp, tmp, z1z1); | |
945 felem_diff(tmp, tmp, z2z2); | |
946 | |
947 felem_mul(z2z2z2, z2, z2z2); | |
948 felem_mul(s1, y1, z2z2z2); | |
949 | |
950 felem_mul(u2, x2, z1z1); | |
951 felem_mul(z1z1z1, z1, z1z1); | |
952 felem_mul(s2, y2, z1z1z1); | |
953 felem_diff(h, u2, u1); | |
954 felem_sum(i, h, h); | |
955 felem_square(i, i); | |
956 felem_mul(j, h, i); | |
957 felem_diff(r, s2, s1); | |
958 felem_sum(r, r, r); | |
959 felem_mul(v, u1, i); | |
960 | |
961 felem_mul(z_out, tmp, h); | |
962 felem_square(rr, r); | |
963 felem_diff(x_out, rr, j); | |
964 felem_diff(x_out, x_out, v); | |
965 felem_diff(x_out, x_out, v); | |
966 | |
967 felem_diff(tmp, v, x_out); | |
968 felem_mul(y_out, tmp, r); | |
969 felem_mul(tmp, s1, j); | |
970 felem_diff(y_out, y_out, tmp); | |
971 felem_diff(y_out, y_out, tmp); | |
972 } | |
973 | |
974 /* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} + | |
975 * {x2,y2,z2}. | |
976 * | |
977 * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition -add-2007-bl | |
978 * | |
979 * This function handles the case where {x1,y1,z1}={x2,y2,z2}. | |
980 */ | |
981 static void point_add_or_double_vartime( | |
982 felem x_out, felem y_out, felem z_out, | |
983 const felem x1, const felem y1, const felem z1, | |
984 const felem x2, const felem y2, const felem z2) | |
985 { | |
986 felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | |
987 char x_equal, y_equal; | |
988 | |
989 felem_square(z1z1, z1); | |
990 felem_square(z2z2, z2); | |
991 felem_mul(u1, x1, z2z2); | |
992 | |
993 felem_sum(tmp, z1, z2); | |
994 felem_square(tmp, tmp); | |
995 felem_diff(tmp, tmp, z1z1); | |
996 felem_diff(tmp, tmp, z2z2); | |
997 | |
998 felem_mul(z2z2z2, z2, z2z2); | |
999 felem_mul(s1, y1, z2z2z2); | |
1000 | |
1001 felem_mul(u2, x2, z1z1); | |
1002 felem_mul(z1z1z1, z1, z1z1); | |
1003 felem_mul(s2, y2, z1z1z1); | |
1004 felem_diff(h, u2, u1); | |
1005 x_equal = felem_is_zero_vartime(h); | |
1006 felem_sum(i, h, h); | |
1007 felem_square(i, i); | |
1008 felem_mul(j, h, i); | |
1009 felem_diff(r, s2, s1); | |
1010 y_equal = felem_is_zero_vartime(r); | |
1011 if (x_equal && y_equal) { | |
1012 point_double(x_out, y_out, z_out, x1, y1, z1); | |
1013 return; | |
1014 } | |
1015 felem_sum(r, r, r); | |
1016 felem_mul(v, u1, i); | |
1017 | |
1018 felem_mul(z_out, tmp, h); | |
1019 felem_square(rr, r); | |
1020 felem_diff(x_out, rr, j); | |
1021 felem_diff(x_out, x_out, v); | |
1022 felem_diff(x_out, x_out, v); | |
1023 | |
1024 felem_diff(tmp, v, x_out); | |
1025 felem_mul(y_out, tmp, r); | |
1026 felem_mul(tmp, s1, j); | |
1027 felem_diff(y_out, y_out, tmp); | |
1028 felem_diff(y_out, y_out, tmp); | |
1029 } | |
1030 | |
1031 /* copy_conditional sets out=in if mask = 0xffffffff in constant time. | |
1032 * | |
1033 * On entry: mask is either 0 or 0xffffffff. | |
1034 */ | |
1035 static void copy_conditional(felem out, const felem in, limb mask) | |
1036 { | |
1037 int i; | |
1038 | |
1039 for (i = 0; i < NLIMBS; i++) { | |
1040 const limb tmp = mask & (in[i] ^ out[i]); | |
1041 out[i] ^= tmp; | |
1042 } | |
1043 } | |
1044 | |
1045 /* select_affine_point sets {out_x,out_y} to the index'th entry of table. | |
1046 * On entry: index < 16, table[0] must be zero. | |
1047 */ | |
1048 static void select_affine_point(felem out_x, felem out_y, | |
1049 const limb *table, limb index) | |
1050 { | |
1051 limb i, j; | |
1052 | |
1053 memset(out_x, 0, sizeof(felem)); | |
1054 memset(out_y, 0, sizeof(felem)); | |
1055 | |
1056 for (i = 1; i < 16; i++) { | |
1057 limb mask = i ^ index; | |
1058 mask |= mask >> 2; | |
1059 mask |= mask >> 1; | |
1060 mask &= 1; | |
1061 mask--; | |
1062 for (j = 0; j < NLIMBS; j++, table++) { | |
1063 out_x[j] |= *table & mask; | |
1064 } | |
1065 for (j = 0; j < NLIMBS; j++, table++) { | |
1066 out_y[j] |= *table & mask; | |
1067 } | |
1068 } | |
1069 } | |
1070 | |
1071 /* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of | |
1072 * table. On entry: index < 16, table[0] must be zero. | |
1073 */ | |
1074 static void select_jacobian_point(felem out_x, felem out_y, felem out_z, | |
1075 const limb *table, limb index) | |
1076 { | |
1077 limb i, j; | |
1078 | |
1079 memset(out_x, 0, sizeof(felem)); | |
1080 memset(out_y, 0, sizeof(felem)); | |
1081 memset(out_z, 0, sizeof(felem)); | |
1082 | |
1083 /* The implicit value at index 0 is all zero. We don't need to perform that | |
1084 * iteration of the loop because we already set out_* to zero. | |
1085 */ | |
1086 table += 3*NLIMBS; | |
1087 | |
1088 for (i = 1; i < 16; i++) { | |
1089 limb mask = i ^ index; | |
1090 mask |= mask >> 2; | |
1091 mask |= mask >> 1; | |
1092 mask &= 1; | |
1093 mask--; | |
1094 for (j = 0; j < NLIMBS; j++, table++) { | |
1095 out_x[j] |= *table & mask; | |
1096 } | |
1097 for (j = 0; j < NLIMBS; j++, table++) { | |
1098 out_y[j] |= *table & mask; | |
1099 } | |
1100 for (j = 0; j < NLIMBS; j++, table++) { | |
1101 out_z[j] |= *table & mask; | |
1102 } | |
1103 } | |
1104 } | |
1105 | |
1106 /* get_bit returns the bit'th bit of scalar. */ | |
1107 static char get_bit(const u8 scalar[32], int bit) | |
1108 { | |
1109 return ((scalar[bit >> 3]) >> (bit & 7)) & 1; | |
1110 } | |
1111 | |
1112 /* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian | |
1113 * number. Note that the value of scalar must be less than the order of the | |
1114 * group. | |
1115 */ | |
1116 static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32]) | |
1117 { | |
1118 int i, j; | |
1119 limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask; | |
1120 u32 table_offset; | |
1121 | |
1122 felem px, py; | |
1123 felem tx, ty, tz; | |
1124 | |
1125 memset(nx, 0, sizeof(felem)); | |
1126 memset(ny, 0, sizeof(felem)); | |
1127 memset(nz, 0, sizeof(felem)); | |
1128 | |
1129 /* The loop adds bits at positions 0, 64, 128 and 192, followed by | |
1130 * positions 32,96,160 and 224 and does this 32 times. | |
1131 */ | |
1132 for (i = 0; i < 32; i++) { | |
1133 if (i) { | |
1134 point_double(nx, ny, nz, nx, ny, nz); | |
1135 } | |
1136 for (j = 0; j <= 32; j += 32) { | |
1137 char bit0 = get_bit(scalar, 31 - i + j); | |
1138 char bit1 = get_bit(scalar, 95 - i + j); | |
1139 char bit2 = get_bit(scalar, 159 - i + j); | |
1140 char bit3 = get_bit(scalar, 223 - i + j); | |
1141 limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3); | |
1142 | |
1143 table_offset = ((((s32)j) << (32-6)) >> 31) & (30*NLIMBS); | |
1144 select_affine_point(px, py, kPrecomputed + table_offset, index); | |
1145 | |
1146 /* Since scalar is less than the order of the group, we know that | |
1147 * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle | |
1148 * below. | |
1149 */ | |
1150 point_add_mixed(tx, ty, tz, nx, ny, nz, px, py); | |
1151 /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero | |
1152 * (a.k.a. the point at infinity). We handle that situation by | |
1153 * copying the point from the table. | |
1154 */ | |
1155 copy_conditional(nx, px, n_is_infinity_mask); | |
1156 copy_conditional(ny, py, n_is_infinity_mask); | |
1157 copy_conditional(nz, kOne, n_is_infinity_mask); | |
1158 | |
1159 /* Equally, the result is also wrong if the point from the table is | |
1160 * zero, which happens when the index is zero. We handle that by | |
1161 * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. | |
1162 */ | |
1163 p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | |
1164 mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | |
1165 copy_conditional(nx, tx, mask); | |
1166 copy_conditional(ny, ty, mask); | |
1167 copy_conditional(nz, tz, mask); | |
1168 /* If p was not zero, then n is now non-zero. */ | |
1169 n_is_infinity_mask &= ~p_is_noninfinite_mask; | |
1170 } | |
1171 } | |
1172 } | |
1173 | |
1174 /* point_to_affine converts a Jacobian point to an affine point. If the input | |
1175 * is the point at infinity then it returns (0, 0) in constant time. | |
1176 */ | |
1177 static void point_to_affine(felem x_out, felem y_out, | |
1178 const felem nx, const felem ny, const felem nz) { | |
1179 felem z_inv, z_inv_sq; | |
1180 felem_inv(z_inv, nz); | |
1181 felem_square(z_inv_sq, z_inv); | |
1182 felem_mul(x_out, nx, z_inv_sq); | |
1183 felem_mul(z_inv, z_inv, z_inv_sq); | |
1184 felem_mul(y_out, ny, z_inv); | |
1185 } | |
1186 | |
1187 /* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */ | |
1188 static void scalar_mult(felem nx, felem ny, felem nz, | |
1189 const felem x, const felem y, const u8 scalar[32]) | |
1190 { | |
1191 int i; | |
1192 felem px, py, pz, tx, ty, tz; | |
1193 felem precomp[16][3]; | |
1194 limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask; | |
1195 | |
1196 /* We precompute 0,1,2,... times {x,y}. */ | |
1197 memset(precomp, 0, sizeof(felem) * 3); | |
1198 memcpy(&precomp[1][0], x, sizeof(felem)); | |
1199 memcpy(&precomp[1][1], y, sizeof(felem)); | |
1200 memcpy(&precomp[1][2], kOne, sizeof(felem)); | |
1201 | |
1202 for (i = 2; i < 16; i += 2) { | |
1203 point_double(precomp[i][0], precomp[i][1], precomp[i][2], | |
1204 precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]); | |
1205 | |
1206 point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2], | |
1207 precomp[i][0], precomp[i][1], precomp[i][2], x, y); | |
1208 } | |
1209 | |
1210 memset(nx, 0, sizeof(felem)); | |
1211 memset(ny, 0, sizeof(felem)); | |
1212 memset(nz, 0, sizeof(felem)); | |
1213 n_is_infinity_mask = -1; | |
1214 | |
1215 /* We add in a window of four bits each iteration and do this 64 times. */ | |
1216 for (i = 0; i < 64; i++) { | |
1217 if (i) { | |
1218 point_double(nx, ny, nz, nx, ny, nz); | |
1219 point_double(nx, ny, nz, nx, ny, nz); | |
1220 point_double(nx, ny, nz, nx, ny, nz); | |
1221 point_double(nx, ny, nz, nx, ny, nz); | |
1222 } | |
1223 | |
1224 index = scalar[31 - i / 2]; | |
1225 if ((i & 1) == 1) { | |
1226 index &= 15; | |
1227 } else { | |
1228 index >>= 4; | |
1229 } | |
1230 | |
1231 /* See the comments in scalar_base_mult about handling infinities. */ | |
1232 select_jacobian_point(px, py, pz, (limb *) precomp, index); | |
1233 point_add(tx, ty, tz, nx, ny, nz, px, py, pz); | |
1234 copy_conditional(nx, px, n_is_infinity_mask); | |
1235 copy_conditional(ny, py, n_is_infinity_mask); | |
1236 copy_conditional(nz, pz, n_is_infinity_mask); | |
1237 | |
1238 p_is_noninfinite_mask = ((s32) ~ (index - 1)) >> 31; | |
1239 mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | |
1240 copy_conditional(nx, tx, mask); | |
1241 copy_conditional(ny, ty, mask); | |
1242 copy_conditional(nz, tz, mask); | |
1243 n_is_infinity_mask &= ~p_is_noninfinite_mask; | |
1244 } | |
1245 } | |
1246 | |
1247 /* Interface with Freebl: */ | |
1248 | |
1249 #ifdef IS_BIG_ENDIAN | |
wtc
2013/01/25 02:32:49
I changed #if to #ifdef here.
| |
1250 #error "This code needs a little-endian processor" | |
1251 #endif | |
1252 | |
1253 static const u32 kRInvDigits[8] = { | |
1254 0x80000000, 1, 0xffffffff, 0, | |
1255 0x80000001, 0xfffffffe, 1, 0x7fffffff | |
1256 }; | |
1257 #define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit)) | |
1258 static const mp_int kRInv = { | |
1259 MP_ZPOS, | |
1260 MP_DIGITS_IN_256_BITS, | |
1261 MP_DIGITS_IN_256_BITS, | |
1262 /* Because we are running on a little-endian processor, this cast works for | |
1263 * both 32 and 64-bit processors. | |
1264 */ | |
1265 (mp_digit*) kRInvDigits | |
1266 }; | |
1267 | |
1268 static const limb kTwo28 = 0x10000000; | |
1269 static const limb kTwo29 = 0x20000000; | |
1270 | |
1271 /* to_montgomery sets out = R*in. */ | |
1272 static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group) | |
1273 { | |
1274 /* There are no MPI functions for bitshift operations and we wish to shift | |
1275 * in 257 bits left so we move the digits 256-bits left and then multiply | |
1276 * by two. | |
1277 */ | |
1278 mp_int in_shifted; | |
1279 int i; | |
1280 mp_err res; | |
1281 | |
1282 mp_init(&in_shifted); | |
1283 s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS); | |
1284 memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS), | |
1285 MP_DIGITS(in), | |
1286 MP_USED(in)*sizeof(mp_digit)); | |
1287 mp_mul_2(&in_shifted, &in_shifted); | |
1288 MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth)); | |
1289 | |
1290 for (i = 0;; i++) { | |
1291 out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits; | |
1292 mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL); | |
1293 | |
1294 i++; | |
1295 if (i == NLIMBS) | |
1296 break; | |
1297 out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits; | |
1298 mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL); | |
1299 } | |
1300 | |
1301 CLEANUP: | |
1302 mp_clear(&in_shifted); | |
1303 return res; | |
1304 } | |
1305 | |
1306 /* from_montgomery sets out=in/R. */ | |
1307 static mp_err from_montgomery(mp_int *out, const felem in, | |
1308 const ECGroup *group) | |
1309 { | |
1310 mp_int result, tmp; | |
1311 mp_err res; | |
1312 int i; | |
1313 | |
1314 mp_init(&result); | |
1315 mp_init(&tmp); | |
1316 | |
1317 MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result)); | |
1318 for (i = NLIMBS-2; i >= 0; i--) { | |
1319 if ((i & 1) == 0) { | |
1320 MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp)); | |
1321 } else { | |
1322 MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp)); | |
1323 } | |
1324 MP_CHECKOK(mp_add_d(&tmp, in[i], &result)); | |
1325 } | |
1326 | |
1327 MP_CHECKOK(mp_mul(&result, &kRInv, out)); | |
1328 MP_CHECKOK(group->meth->field_mod(out, out, group->meth)); | |
1329 | |
1330 CLEANUP: | |
1331 mp_clear(&result); | |
1332 mp_clear(&tmp); | |
1333 return res; | |
1334 } | |
1335 | |
1336 /* scalar_from_mp_int sets out_scalar=n, where n < the group order. */ | |
1337 static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n) | |
1338 { | |
1339 /* We require that |n| is less than the order of the group and therefore it | |
1340 * will fit into |scalar|. However, these is a timing side-channel here that | |
1341 * we cannot avoid: if |n| is sufficiently small it may be one or more words | |
1342 * too short and we'll copy less data. | |
1343 */ | |
1344 memset(out_scalar, 0, 32); | |
1345 memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit)); | |
1346 } | |
1347 | |
1348 /* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the | |
1349 * order of the group. | |
1350 */ | |
1351 mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n, | |
1352 mp_int *out_x, mp_int *out_y, | |
1353 const ECGroup *group) | |
1354 { | |
1355 u8 scalar[32]; | |
1356 felem x, y, z, x_affine, y_affine; | |
1357 mp_err res; | |
1358 | |
1359 /* FIXME(agl): test that n < order. */ | |
1360 | |
1361 scalar_from_mp_int(scalar, n); | |
1362 scalar_base_mult(x, y, z, scalar); | |
1363 point_to_affine(x_affine, y_affine, x, y, z); | |
1364 MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1365 MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1366 | |
1367 CLEANUP: | |
1368 return res; | |
1369 } | |
1370 | |
1371 /* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is < | |
1372 * the order of the group. | |
1373 */ | |
1374 mp_err ec_GFp_nistp256_point_mul(const mp_int *n, | |
1375 const mp_int *in_x, const mp_int *in_y, | |
1376 mp_int *out_x, mp_int *out_y, | |
1377 const ECGroup *group) | |
1378 { | |
1379 u8 scalar[32]; | |
1380 felem x, y, z, x_affine, y_affine, px, py; | |
1381 mp_err res; | |
1382 | |
1383 scalar_from_mp_int(scalar, n); | |
1384 | |
1385 MP_CHECKOK(to_montgomery(px, in_x, group)); | |
1386 MP_CHECKOK(to_montgomery(py, in_y, group)); | |
1387 | |
1388 scalar_mult(x, y, z, px, py, scalar); | |
1389 point_to_affine(x_affine, y_affine, x, y, z); | |
1390 MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1391 MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1392 | |
1393 CLEANUP: | |
1394 return res; | |
1395 } | |
1396 | |
1397 /* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G + | |
1398 * n2*{in_x,in_y}, where n1 and n2 are < the order of the group. | |
1399 * | |
1400 * As indicated by the name, this function operates in variable time. This | |
1401 * is safe because it's used for signature validation which doesn't deal | |
1402 * with secrets. | |
1403 */ | |
1404 mp_err ec_GFp_nistp256_points_mul_vartime( | |
1405 const mp_int *n1, const mp_int *n2, | |
1406 const mp_int *in_x, const mp_int *in_y, | |
1407 mp_int *out_x, mp_int *out_y, | |
1408 const ECGroup *group) | |
1409 { | |
1410 u8 scalar1[32], scalar2[32]; | |
1411 felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py; | |
1412 mp_err res = MP_OKAY; | |
1413 | |
1414 /* If n2 == NULL, this is just a base-point multiplication. */ | |
1415 if (n2 == NULL) { | |
1416 return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group); | |
1417 } | |
1418 | |
1419 /* If n1 == nULL, this is just an arbitary-point multiplication. */ | |
1420 if (n1 == NULL) { | |
1421 return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group); | |
1422 } | |
1423 | |
1424 /* If both scalars are zero, then the result is the point at infinity. */ | |
1425 if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) { | |
1426 mp_zero(out_x); | |
1427 mp_zero(out_y); | |
1428 return res; | |
1429 } | |
1430 | |
1431 scalar_from_mp_int(scalar1, n1); | |
1432 scalar_from_mp_int(scalar2, n2); | |
1433 | |
1434 MP_CHECKOK(to_montgomery(px, in_x, group)); | |
1435 MP_CHECKOK(to_montgomery(py, in_y, group)); | |
1436 scalar_base_mult(x1, y1, z1, scalar1); | |
1437 scalar_mult(x2, y2, z2, px, py, scalar2); | |
1438 | |
1439 if (mp_cmp_z(n2) == 0) { | |
1440 /* If n2 == 0, then {x2,y2,z2} is zero and the result is just | |
1441 * {x1,y1,z1}. */ | |
1442 } else if (mp_cmp_z(n1) == 0) { | |
1443 /* If n1 == 0, then {x1,y1,z1} is zero and the result is just | |
1444 * {x2,y2,z2}. */ | |
1445 memcpy(x1, x2, sizeof(x2)); | |
1446 memcpy(y1, y2, sizeof(y2)); | |
1447 memcpy(z1, z2, sizeof(z2)); | |
1448 } else { | |
1449 /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */ | |
1450 point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2); | |
1451 } | |
1452 | |
1453 point_to_affine(x_affine, y_affine, x1, y1, z1); | |
1454 MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1455 MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1456 | |
1457 CLEANUP: | |
1458 return res; | |
1459 } | |
OLD | NEW |