Index: runtime/vm/simulator_arm.cc |
=================================================================== |
--- runtime/vm/simulator_arm.cc (revision 0) |
+++ runtime/vm/simulator_arm.cc (revision 0) |
@@ -0,0 +1,2740 @@ |
+// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+#include <math.h> // for isnan. |
+#include <setjmp.h> |
+#include <stdlib.h> |
+#include <pthread.h> |
+ |
+#include "vm/globals.h" |
+#if defined(TARGET_ARCH_ARM) |
+ |
+// Only build the simulator if not compiling for real ARM hardware. |
+#if !defined(HOST_ARCH_ARM) |
+ |
+#include "vm/simulator.h" |
+ |
+#include "vm/assembler.h" |
+#include "vm/constants_arm.h" |
+#include "vm/disassembler.h" |
+#include "vm/native_arguments.h" |
+#include "vm/thread.h" |
+ |
+namespace dart { |
+ |
+DEFINE_FLAG(bool, trace_sim, false, "Trace simulator execution."); |
+DEFINE_FLAG(int, stop_sim_at, 0, "Address to stop simulator at."); |
+ |
+ |
+// This macro provides a platform independent use of sscanf. The reason for |
+// SScanF not being implemented in a platform independent way through |
+// OS in the same way as SNPrint is that the Windows C Run-Time |
+// Library does not provide vsscanf. |
+#define SScanF sscanf // NOLINT |
+ |
+ |
+// Unimplemented counter class for debugging and measurement purposes. |
+class StatsCounter { |
+ public: |
+ explicit StatsCounter(const char* name) { |
+ UNIMPLEMENTED(); |
+ } |
+ |
+ void Increment() { |
+ UNIMPLEMENTED(); |
+ } |
+}; |
+ |
+ |
+// SimulatorSetjmpBuffer are linked together, and the last created one |
+// is referenced by the Simulator. When an exception is thrown, the exception |
+// runtime looks at where to jump and finds the corresponding |
+// SimulatorSetjmpBuffer based on the stack pointer of the exception handler. |
+// The runtime then does a Longjmp on that buffer to return to the simulator. |
+class SimulatorSetjmpBuffer { |
+ public: |
+ int Setjmp() { return setjmp(buffer_); } |
+ void Longjmp() { |
+ // "This" is now the last setjmp buffer. |
+ simulator_->set_last_setjmp_buffer(this); |
+ longjmp(buffer_, 1); |
+ } |
+ |
+ explicit SimulatorSetjmpBuffer(Simulator* sim) { |
+ simulator_ = sim; |
+ link_ = sim->last_setjmp_buffer(); |
+ sim->set_last_setjmp_buffer(this); |
+ sp_ = sim->get_register(SP); |
+ } |
+ |
+ ~SimulatorSetjmpBuffer() { |
+ ASSERT(simulator_->last_setjmp_buffer() == this); |
+ simulator_->set_last_setjmp_buffer(link_); |
+ } |
+ |
+ SimulatorSetjmpBuffer* link() { return link_; } |
+ |
+ int32_t sp() { return sp_; } |
+ |
+ private: |
+ int32_t sp_; |
+ Simulator* simulator_; |
+ SimulatorSetjmpBuffer* link_; |
+ jmp_buf buffer_; |
+ |
+ friend class Simulator; |
+}; |
+ |
+ |
+// The SimulatorDebugger class is used by the simulator while debugging |
+// simulated ARM code. |
+class SimulatorDebugger { |
+ public: |
+ explicit SimulatorDebugger(Simulator* sim); |
+ ~SimulatorDebugger(); |
+ |
+ void Stop(Instr* instr, const char* message); |
+ void Debug(); |
+ char* ReadLine(const char* prompt); |
+ |
+ private: |
+ static const int32_t kSimulatorBreakpointInstr = // svc #kBreakpointSvcCode |
+ ((AL << kConditionShift) | (0xf << 24) | kBreakpointSvcCode); |
+ static const int32_t kNopInstr = // nop |
+ ((AL << kConditionShift) | (0x32 << 20) | (0xf << 12)); |
+ |
+ Simulator* sim_; |
+ |
+ bool GetValue(char* desc, uint32_t* value); |
+ bool GetFValue(char* desc, float* value); |
+ bool GetDValue(char* desc, double* value); |
+ |
+ // Set or delete a breakpoint. Returns true if successful. |
+ bool SetBreakpoint(Instr* breakpc); |
+ bool DeleteBreakpoint(Instr* breakpc); |
+ |
+ // Undo and redo all breakpoints. This is needed to bracket disassembly and |
+ // execution to skip past breakpoints when run from the debugger. |
+ void UndoBreakpoints(); |
+ void RedoBreakpoints(); |
+}; |
+ |
+ |
+SimulatorDebugger::SimulatorDebugger(Simulator* sim) { |
+ sim_ = sim; |
+} |
+ |
+ |
+SimulatorDebugger::~SimulatorDebugger() { |
+} |
+ |
+ |
+void SimulatorDebugger::Stop(Instr* instr, const char* message) { |
+ OS::Print("Simulator hit %s\n", message); |
+ Debug(); |
+} |
+ |
+ |
+static Register LookupCoreRegisterByName(const char* name) { |
+ static const char* kNames[] = { |
+ "r0", "r1", "r2", "r3", |
+ "r4", "r5", "r6", "r7", |
+ "r8", "r9", "r10", "r11", |
+ "r12", "r13", "r14", "r15", |
+ "pc", "lr", "sp", "ip", |
+ "fp", "sl" |
+ }; |
+ static const Register kRegisters[] = { |
+ R0, R1, R2, R3, |
+ R4, R5, R6, R7, |
+ R8, R9, R10, R11, |
+ R12, R13, R14, R15, |
+ PC, LR, SP, IP, |
+ FP, R10 |
+ }; |
+ ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); |
+ for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { |
+ if (strcmp(kNames[i], name) == 0) { |
+ return kRegisters[i]; |
+ } |
+ } |
+ return kNoRegister; |
+} |
+ |
+ |
+static SRegister LookupSRegisterByName(const char* name) { |
+ int reg_nr = -1; |
+ bool ok = SScanF(name, "s%d", ®_nr); |
+ if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfSRegisters)) { |
+ return static_cast<SRegister>(reg_nr); |
+ } |
+ return kNoSRegister; |
+} |
+ |
+ |
+static DRegister LookupDRegisterByName(const char* name) { |
+ int reg_nr = -1; |
+ bool ok = SScanF(name, "d%d", ®_nr); |
+ if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfDRegisters)) { |
+ return static_cast<DRegister>(reg_nr); |
+ } |
+ return kNoDRegister; |
+} |
+ |
+ |
+bool SimulatorDebugger::GetValue(char* desc, uint32_t* value) { |
+ Register reg = LookupCoreRegisterByName(desc); |
+ if (reg != kNoRegister) { |
+ if (reg == PC) { |
+ *value = sim_->get_pc(); |
+ } else { |
+ *value = sim_->get_register(reg); |
+ } |
+ return true; |
+ } |
+ if ((desc[0] == '*')) { |
+ uint32_t addr; |
+ if (GetValue(desc + 1, &addr)) { |
+ *value = *(reinterpret_cast<uint32_t*>(addr)); |
+ return true; |
+ } |
+ } |
+ bool retval = SScanF(desc, "0x%x", value) == 1; |
+ if (!retval) { |
+ retval = SScanF(desc, "%x", value) == 1; |
+ } |
+ return retval; |
+} |
+ |
+ |
+bool SimulatorDebugger::GetFValue(char* desc, float* value) { |
+ SRegister sreg = LookupSRegisterByName(desc); |
+ if (sreg != kNoSRegister) { |
+ *value = sim_->get_sregister(sreg); |
+ return true; |
+ } |
+ if ((desc[0] == '*')) { |
+ uint32_t addr; |
+ if (GetValue(desc + 1, &addr)) { |
+ *value = *(reinterpret_cast<float*>(addr)); |
+ return true; |
+ } |
+ } |
+ return false; |
+} |
+ |
+ |
+bool SimulatorDebugger::GetDValue(char* desc, double* value) { |
+ DRegister dreg = LookupDRegisterByName(desc); |
+ if (dreg != kNoDRegister) { |
+ *value = sim_->get_dregister(dreg); |
+ return true; |
+ } |
+ if ((desc[0] == '*')) { |
+ uint32_t addr; |
+ if (GetValue(desc + 1, &addr)) { |
+ *value = *(reinterpret_cast<double*>(addr)); |
+ return true; |
+ } |
+ } |
+ return false; |
+} |
+ |
+ |
+bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { |
+ // Check if a breakpoint can be set. If not return without any side-effects. |
+ if (sim_->break_pc_ != NULL) { |
+ return false; |
+ } |
+ |
+ // Set the breakpoint. |
+ sim_->break_pc_ = breakpc; |
+ sim_->break_instr_ = breakpc->InstructionBits(); |
+ // Not setting the breakpoint instruction in the code itself. It will be set |
+ // when the debugger shell continues. |
+ return true; |
+} |
+ |
+ |
+bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
+ } |
+ |
+ sim_->break_pc_ = NULL; |
+ sim_->break_instr_ = 0; |
+ return true; |
+} |
+ |
+ |
+void SimulatorDebugger::UndoBreakpoints() { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
+ } |
+} |
+ |
+ |
+void SimulatorDebugger::RedoBreakpoints() { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(kSimulatorBreakpointInstr); |
+ } |
+} |
+ |
+ |
+void SimulatorDebugger::Debug() { |
+ intptr_t last_pc = -1; |
+ bool done = false; |
+ |
+#define COMMAND_SIZE 63 |
+#define ARG_SIZE 255 |
+ |
+#define STR(a) #a |
+#define XSTR(a) STR(a) |
+ |
+ char cmd[COMMAND_SIZE + 1]; |
+ char arg1[ARG_SIZE + 1]; |
+ char arg2[ARG_SIZE + 1]; |
+ |
+ // make sure to have a proper terminating character if reaching the limit |
+ cmd[COMMAND_SIZE] = 0; |
+ arg1[ARG_SIZE] = 0; |
+ arg2[ARG_SIZE] = 0; |
+ |
+ // Undo all set breakpoints while running in the debugger shell. This will |
+ // make them invisible to all commands. |
+ UndoBreakpoints(); |
+ |
+ while (!done) { |
+ if (last_pc != sim_->get_pc()) { |
+ last_pc = sim_->get_pc(); |
+ Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); |
+ } |
+ char* line = ReadLine("sim> "); |
+ if (line == NULL) { |
+ break; |
+ } else { |
+ // Use sscanf to parse the individual parts of the command line. At the |
+ // moment no command expects more than two parameters. |
+ int args = SScanF(line, |
+ "%" XSTR(COMMAND_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s", |
+ cmd, arg1, arg2); |
+ if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
+ OS::Print("c/cont -- continue execution\n" |
+ "disasm -- disassemble instrs at current pc location\n" |
+ " other variants are:\n" |
+ " disasm <address>\n" |
+ " disasm <address> <number_of_instructions>\n" |
+ " by default 10 instrs are disassembled\n" |
+ "del -- delete breakpoints\n" |
+ "flags -- print flag values\n" |
+ "gdb -- transfer control to gdb\n" |
+ "h/help -- print this help string\n" |
+ "break <address> -- set break point at specified address\n" |
+ "p/print <reg or value or *addr> -- print integer value\n" |
+ "pf/printfloat <sreg or *addr> -- print float value\n" |
+ "pd/printdouble <dreg or *addr> -- print double value\n" |
+ "po/printobject <*reg or *addr> -- print object\n" |
+ "si/stepi -- single step an instruction\n" |
+ "unstop -- if current pc is a stop instr make it a nop\n"); |
+ } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
+ sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
+ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
+ // Execute the one instruction we broke at with breakpoints disabled. |
+ sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
+ // Leave the debugger shell. |
+ done = true; |
+ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
+ if (args == 2) { |
+ uint32_t value; |
+ if (GetValue(arg1, &value)) { |
+ OS::Print("%s: %u 0x%x\n", arg1, value, value); |
+ } else { |
+ OS::Print("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ OS::Print("print <reg or value or *addr>\n"); |
+ } |
+ } else if ((strcmp(cmd, "pf") == 0) || (strcmp(cmd, "printfloat") == 0)) { |
+ if (args == 2) { |
+ float fvalue; |
+ if (GetFValue(arg1, &fvalue)) { |
+ uint32_t value = bit_cast<uint32_t, float>(fvalue); |
+ OS::Print("%s: 0%u 0x%x %.8g\n", arg1, value, value, fvalue); |
+ } else { |
+ OS::Print("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ OS::Print("printfloat <sreg or *addr>\n"); |
+ } |
+ } else if ((strcmp(cmd, "pd") == 0) || |
+ (strcmp(cmd, "printdouble") == 0)) { |
+ if (args == 2) { |
+ double dvalue; |
+ if (GetDValue(arg1, &dvalue)) { |
+ uint64_t long_value = bit_cast<uint64_t, double>(dvalue); |
+ OS::Print("%s: %llu 0x%llx %.8g\n", |
+ arg1, long_value, long_value, dvalue); |
+ } else { |
+ OS::Print("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ OS::Print("printdouble <dreg or *addr>\n"); |
+ } |
+ } else if ((strcmp(cmd, "po") == 0) || |
+ (strcmp(cmd, "printobject") == 0)) { |
+ if (args == 2) { |
+ uint32_t value; |
+ // Make the dereferencing '*' optional. |
+ if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || |
+ GetValue(arg1, &value)) { |
+ if (Isolate::Current()->heap()->Contains(value)) { |
+ OS::Print("%s: \n", arg1); |
+#if defined(DEBUG) |
+ const Object& obj = Object::Handle( |
+ reinterpret_cast<RawObject*>(value)); |
+ obj.Print(); |
+#endif // defined(DEBUG) |
+ } else { |
+ OS::Print("0x%x is not an object reference\n", value); |
+ } |
+ } else { |
+ OS::Print("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ OS::Print("printobject <*reg or *addr>\n"); |
+ } |
+ } else if (strcmp(cmd, "disasm") == 0) { |
+ uint32_t start = 0; |
+ uint32_t end = 0; |
+ if (args == 1) { |
+ start = sim_->get_pc(); |
+ end = start + (10 * Instr::kInstrSize); |
+ } else if (args == 2) { |
+ if (GetValue(arg1, &start)) { |
+ // no length parameter passed, assume 10 instructions |
+ end = start + (10 * Instr::kInstrSize); |
+ } |
+ } else { |
+ uint32_t length; |
+ if (GetValue(arg1, &start) && GetValue(arg2, &length)) { |
+ end = start + (length * Instr::kInstrSize); |
+ } |
+ } |
+ |
+ Disassembler::Disassemble(start, end); |
+ } else if (strcmp(cmd, "gdb") == 0) { |
+ OS::Print("relinquishing control to gdb\n"); |
+ OS::DebugBreak(); |
+ OS::Print("regaining control from gdb\n"); |
+ } else if (strcmp(cmd, "break") == 0) { |
+ if (args == 2) { |
+ uint32_t addr; |
+ if (GetValue(arg1, &addr)) { |
+ if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { |
+ OS::Print("setting breakpoint failed\n"); |
+ } |
+ } else { |
+ OS::Print("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ OS::Print("break <addr>\n"); |
+ } |
+ } else if (strcmp(cmd, "del") == 0) { |
+ if (!DeleteBreakpoint(NULL)) { |
+ OS::Print("deleting breakpoint failed\n"); |
+ } |
+ } else if (strcmp(cmd, "flags") == 0) { |
+ OS::Print("APSR: "); |
+ OS::Print("N flag: %d; ", sim_->n_flag_); |
+ OS::Print("Z flag: %d; ", sim_->z_flag_); |
+ OS::Print("C flag: %d; ", sim_->c_flag_); |
+ OS::Print("V flag: %d\n", sim_->v_flag_); |
+ OS::Print("FPSCR: "); |
+ OS::Print("N flag: %d; ", sim_->fp_n_flag_); |
+ OS::Print("Z flag: %d; ", sim_->fp_z_flag_); |
+ OS::Print("C flag: %d; ", sim_->fp_c_flag_); |
+ OS::Print("V flag: %d\n", sim_->fp_v_flag_); |
+ } else if (strcmp(cmd, "unstop") == 0) { |
+ intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; |
+ Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); |
+ if (stop_instr->IsSvc() || stop_instr->IsBkpt()) { |
+ stop_instr->SetInstructionBits(kNopInstr); |
+ } else { |
+ OS::Print("Not at debugger stop.\n"); |
+ } |
+ } else { |
+ OS::Print("Unknown command: %s\n", cmd); |
+ } |
+ } |
+ delete[] line; |
+ } |
+ |
+ // Add all the breakpoints back to stop execution and enter the debugger |
+ // shell when hit. |
+ RedoBreakpoints(); |
+ |
+#undef COMMAND_SIZE |
+#undef ARG_SIZE |
+ |
+#undef STR |
+#undef XSTR |
+} |
+ |
+char* SimulatorDebugger::ReadLine(const char* prompt) { |
+ char* result = NULL; |
+ char line_buf[256]; |
+ int offset = 0; |
+ bool keep_going = true; |
+ fprintf(stdout, "%s", prompt); |
+ fflush(stdout); |
+ while (keep_going) { |
+ if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) { |
+ // fgets got an error. Just give up. |
+ if (result != NULL) { |
+ delete[] result; |
+ } |
+ return NULL; |
+ } |
+ int len = strlen(line_buf); |
+ if (len > 1 && |
+ line_buf[len - 2] == '\\' && |
+ line_buf[len - 1] == '\n') { |
+ // When we read a line that ends with a "\" we remove the escape and |
+ // append the remainder. |
+ line_buf[len - 2] = '\n'; |
+ line_buf[len - 1] = 0; |
+ len -= 1; |
+ } else if ((len > 0) && (line_buf[len - 1] == '\n')) { |
+ // Since we read a new line we are done reading the line. This |
+ // will exit the loop after copying this buffer into the result. |
+ keep_going = false; |
+ } |
+ if (result == NULL) { |
+ // Allocate the initial result and make room for the terminating '\0' |
+ result = new char[len + 1]; |
+ if (result == NULL) { |
+ // OOM, so cannot readline anymore. |
+ return NULL; |
+ } |
+ } else { |
+ // Allocate a new result with enough room for the new addition. |
+ int new_len = offset + len + 1; |
+ char* new_result = new char[new_len]; |
+ if (new_result == NULL) { |
+ // OOM, free the buffer allocated so far and return NULL. |
+ delete[] result; |
+ return NULL; |
+ } else { |
+ // Copy the existing input into the new array and set the new |
+ // array as the result. |
+ memmove(new_result, result, offset); |
+ delete[] result; |
+ result = new_result; |
+ } |
+ } |
+ // Copy the newly read line into the result. |
+ memmove(result + offset, line_buf, len); |
+ offset += len; |
+ } |
+ ASSERT(result != NULL); |
+ result[offset] = '\0'; |
+ return result; |
+} |
+ |
+ |
+// Synchronization primitives support. |
+Mutex* Simulator::exclusive_access_lock_ = NULL; |
+Simulator::AddressTag Simulator::exclusive_access_state_[kNumAddressTags]; |
+int Simulator::next_address_tag_; |
+ |
+ |
+void Simulator::SetExclusiveAccess(uword addr) { |
+ Isolate* isolate = Isolate::Current(); |
+ ASSERT(isolate != NULL); |
+ int i = 0; |
+ while ((i < kNumAddressTags) && |
+ (exclusive_access_state_[i].isolate != isolate)) { |
+ i++; |
+ } |
+ if (i == kNumAddressTags) { |
+ i = next_address_tag_; |
+ if (++next_address_tag_ == kNumAddressTags) next_address_tag_ = 0; |
+ exclusive_access_state_[i].isolate = isolate; |
+ } |
+ exclusive_access_state_[i].addr = addr; |
+} |
+ |
+ |
+bool Simulator::HasExclusiveAccessAndOpen(uword addr) { |
+ Isolate* isolate = Isolate::Current(); |
+ ASSERT(isolate != NULL); |
+ bool result = false; |
+ for (int i = 0; i < kNumAddressTags; i++) { |
+ if (exclusive_access_state_[i].isolate == isolate) { |
+ if (exclusive_access_state_[i].addr == addr) { |
+ result = true; |
+ } |
+ exclusive_access_state_[i].addr = NULL; |
+ continue; |
+ } |
+ if (exclusive_access_state_[i].addr == addr) { |
+ exclusive_access_state_[i].addr = NULL; |
+ } |
+ } |
+ return result; |
+} |
+ |
+ |
+void Simulator::InitOnce() { |
+ // Setup exclusive access state. |
+ exclusive_access_lock_ = new Mutex(); |
+ for (int i = 0; i < kNumAddressTags; i++) { |
+ exclusive_access_state_[i].isolate = NULL; |
+ exclusive_access_state_[i].addr = NULL; |
+ } |
+ next_address_tag_ = 0; |
+} |
+ |
+ |
+Simulator::Simulator() { |
+ // Setup simulator support first. Some of this information is needed to |
+ // setup the architecture state. |
+ // We allocate the stack here, the size is computed as the sum of |
+ // the size specified by the user and the buffer space needed for |
+ // handling stack overflow exceptions. To be safe in potential |
+ // stack underflows we also add some underflow buffer space. |
+ stack_ = new char[(Isolate::GetSpecifiedStackSize() + |
+ Isolate::kStackSizeBuffer + |
+ kSimulatorStackUnderflowSize)]; |
+ pc_modified_ = false; |
+ icount_ = 0; |
+ break_pc_ = NULL; |
+ break_instr_ = 0; |
+ last_setjmp_buffer_ = NULL; |
+ |
+ // Setup architecture state. |
+ // All registers are initialized to zero to start with. |
+ for (int i = 0; i < kNumberOfCpuRegisters; i++) { |
+ registers_[i] = 0; |
+ } |
+ n_flag_ = false; |
+ z_flag_ = false; |
+ c_flag_ = false; |
+ v_flag_ = false; |
+ |
+ // The sp is initialized to point to the bottom (high address) of the |
+ // allocated stack area. |
+ registers_[SP] = StackTop(); |
+ // The lr and pc are initialized to a known bad value that will cause an |
+ // access violation if the simulator ever tries to execute it. |
+ registers_[PC] = kBadLR; |
+ registers_[LR] = kBadLR; |
+ |
+ // All double-precision registers are initialized to zero. |
+ for (int i = 0; i < kNumberOfDRegisters; i++) { |
+ dregisters_[i] = 0.0; |
+ } |
+ // Since VFP registers are overlapping, single-precision registers should |
+ // already be initialized. |
+ ASSERT(2*kNumberOfDRegisters >= kNumberOfSRegisters); |
+ for (int i = 0; i < kNumberOfSRegisters; i++) { |
+ ASSERT(sregisters_[i] == 0.0); |
+ } |
+ fp_n_flag_ = false; |
+ fp_z_flag_ = false; |
+ fp_c_flag_ = false; |
+ fp_v_flag_ = false; |
+} |
+ |
+ |
+Simulator::~Simulator() { |
+ delete[] stack_; |
+ Isolate::Current()->set_simulator(NULL); |
+} |
+ |
+ |
+// When the generated code calls an external reference we need to catch that in |
+// the simulator. The external reference will be a function compiled for the |
+// host architecture. We need to call that function instead of trying to |
+// execute it with the simulator. We do that by redirecting the external |
+// reference to a svc (supervisor call) instruction that is handled by |
+// the simulator. We write the original destination of the jump just at a known |
+// offset from the svc instruction so the simulator knows what to call. |
+class Redirection { |
+ public: |
+ uword address_of_svc_instruction() { |
+ return reinterpret_cast<uword>(&svc_instruction_); |
+ } |
+ |
+ void* external_function() const { return external_function_; } |
+ |
+ uint32_t argument_count() const { return argument_count_; } |
+ |
+ static Redirection* Get(void* external_function, uint32_t argument_count) { |
+ Redirection* current; |
+ for (current = list_; current != NULL; current = current->next_) { |
+ if (current->external_function_ == external_function) return current; |
+ } |
+ return new Redirection(external_function, argument_count); |
+ } |
+ |
+ static Redirection* FromSvcInstruction(Instr* svc_instruction) { |
+ char* addr_of_svc = reinterpret_cast<char*>(svc_instruction); |
+ char* addr_of_redirection = |
+ addr_of_svc - OFFSET_OF(Redirection, svc_instruction_); |
+ return reinterpret_cast<Redirection*>(addr_of_redirection); |
+ } |
+ |
+ private: |
+ static const int32_t kRedirectSvcInstruction = |
+ ((AL << kConditionShift) | (0xf << 24) | kRedirectionSvcCode); |
+ Redirection(void* external_function, uint32_t argument_count) |
+ : external_function_(external_function), |
+ argument_count_(argument_count), |
+ svc_instruction_(kRedirectSvcInstruction), |
+ next_(list_) { |
+ list_ = this; |
+ } |
+ |
+ void* external_function_; |
+ const uint32_t argument_count_; |
+ uint32_t svc_instruction_; |
+ Redirection* next_; |
+ static Redirection* list_; |
+}; |
+ |
+ |
+Redirection* Redirection::list_ = NULL; |
+ |
+ |
+uword Simulator::RedirectExternalReference(void* function, |
+ uint32_t argument_count) { |
+ Redirection* redirection = Redirection::Get(function, argument_count); |
+ return redirection->address_of_svc_instruction(); |
+} |
+ |
+ |
+// Get the active Simulator for the current isolate. |
+Simulator* Simulator::Current() { |
+ Simulator* simulator = Isolate::Current()->simulator(); |
+ if (simulator == NULL) { |
+ simulator = new Simulator(); |
+ Isolate::Current()->set_simulator(simulator); |
+ } |
+ return simulator; |
+} |
+ |
+ |
+// Sets the register in the architecture state. It will also deal with updating |
+// Simulator internal state for special registers such as PC. |
+void Simulator::set_register(Register reg, int32_t value) { |
+ ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
+ if (reg == PC) { |
+ pc_modified_ = true; |
+ } |
+ registers_[reg] = value; |
+} |
+ |
+ |
+// Get the register from the architecture state. This function does handle |
+// the special case of accessing the PC register. |
+int32_t Simulator::get_register(Register reg) const { |
+ ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
+ return registers_[reg] + ((reg == PC) ? Instr::kPCReadOffset : 0); |
+} |
+ |
+ |
+// Raw access to the PC register. |
+void Simulator::set_pc(int32_t value) { |
+ pc_modified_ = true; |
+ registers_[PC] = value; |
+} |
+ |
+ |
+// Raw access to the PC register without the special adjustment when reading. |
+int32_t Simulator::get_pc() const { |
+ return registers_[PC]; |
+} |
+ |
+ |
+// Accessors for VFP register state. |
+void Simulator::set_sregister(SRegister reg, float value) { |
+ ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
+ sregisters_[reg] = value; |
+} |
+ |
+ |
+float Simulator::get_sregister(SRegister reg) const { |
+ ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
+ return sregisters_[reg]; |
+} |
+ |
+ |
+void Simulator::set_dregister(DRegister reg, double value) { |
+ ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
+ dregisters_[reg] = value; |
+} |
+ |
+ |
+double Simulator::get_dregister(DRegister reg) const { |
+ ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
+ return dregisters_[reg]; |
+} |
+ |
+ |
+void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { |
+ uword fault_pc = get_pc(); |
+ // The debugger will not be able to single step past this instruction, but |
+ // it will be possible to disassemble the code and inspect registers. |
+ char buffer[128]; |
+ snprintf(buffer, sizeof(buffer), |
+ "illegal memory access at 0x%x, pc=0x%x\n", |
+ addr, fault_pc); |
+ SimulatorDebugger dbg(this); |
+ dbg.Stop(instr, buffer); |
+ // The debugger will return control in non-interactive mode. |
+ FATAL("Cannot continue execution after illegal memory access."); |
+} |
+ |
+ |
+// Processor versions prior to ARMv7 could not do unaligned reads and writes. |
+// On some ARM platforms an interrupt is caused. On others it does a funky |
+// rotation thing. However, from version v7, unaligned access is supported. |
+// Note that simulator runs have the runtime system running directly on the host |
+// system and only generated code is executed in the simulator. Since the host |
+// is typically IA32 we will get the correct ARMv7-like behaviour on unaligned |
+// accesses, but we should actually not generate code accessing unaligned data, |
+// so we still want to know and abort if we encounter such code. |
+void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) { |
+ // The debugger will not be able to single step past this instruction, but |
+ // it will be possible to disassemble the code and inspect registers. |
+ char buffer[64]; |
+ snprintf(buffer, sizeof(buffer), |
+ "unaligned %s at 0x%x, pc=%p\n", msg, addr, instr); |
+ SimulatorDebugger dbg(this); |
+ dbg.Stop(instr, buffer); |
+ // The debugger will return control in non-interactive mode. |
+ FATAL("Cannot continue execution after unaligned access."); |
+} |
+ |
+ |
+int Simulator::ReadW(uword addr, Instr* instr) { |
+ static StatsCounter counter_read_w("Simulated word reads"); |
+ counter_read_w.Increment(); |
+ if ((addr & 3) == 0) { |
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
+ return *ptr; |
+ } |
+ UnalignedAccess("read", addr, instr); |
+ return 0; |
+} |
+ |
+ |
+void Simulator::WriteW(uword addr, int value, Instr* instr) { |
+ static StatsCounter counter_write_w("Simulated word writes"); |
+ counter_write_w.Increment(); |
+ if ((addr & 3) == 0) { |
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
+ *ptr = value; |
+ return; |
+ } |
+ UnalignedAccess("write", addr, instr); |
+} |
+ |
+ |
+uint16_t Simulator::ReadHU(uword addr, Instr* instr) { |
+ static StatsCounter counter_read_hu("Simulated unsigned halfword reads"); |
+ counter_read_hu.Increment(); |
+ if ((addr & 1) == 0) { |
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
+ return *ptr; |
+ } |
+ UnalignedAccess("unsigned halfword read", addr, instr); |
+ return 0; |
+} |
+ |
+ |
+int16_t Simulator::ReadH(uword addr, Instr* instr) { |
+ static StatsCounter counter_read_h("Simulated signed halfword reads"); |
+ counter_read_h.Increment(); |
+ if ((addr & 1) == 0) { |
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
+ return *ptr; |
+ } |
+ UnalignedAccess("signed halfword read", addr, instr); |
+ return 0; |
+} |
+ |
+ |
+void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) { |
+ static StatsCounter counter_write_h("Simulated halfword writes"); |
+ counter_write_h.Increment(); |
+ if ((addr & 1) == 0) { |
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
+ *ptr = value; |
+ return; |
+ } |
+ UnalignedAccess("halfword write", addr, instr); |
+} |
+ |
+ |
+uint8_t Simulator::ReadBU(uword addr) { |
+ static StatsCounter counter_read_bu("Simulated unsigned byte reads"); |
+ counter_read_bu.Increment(); |
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+int8_t Simulator::ReadB(uword addr) { |
+ static StatsCounter counter_read_b("Simulated signed byte reads"); |
+ counter_read_b.Increment(); |
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+void Simulator::WriteB(uword addr, uint8_t value) { |
+ static StatsCounter counter_write_b("Simulated byte writes"); |
+ counter_write_b.Increment(); |
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
+ *ptr = value; |
+} |
+ |
+ |
+// Synchronization primitives support. |
+void Simulator::ClearExclusive() { |
+ // This lock is initialized in Simulator::InitOnce(). |
+ MutexLocker ml(exclusive_access_lock_); |
+ // Set exclusive access to open state for this isolate. |
+ HasExclusiveAccessAndOpen(NULL); |
+} |
+ |
+ |
+int Simulator::ReadExclusiveW(uword addr, Instr* instr) { |
+ // This lock is initialized in Simulator::InitOnce(). |
+ MutexLocker ml(exclusive_access_lock_); |
+ SetExclusiveAccess(addr); |
+ return ReadW(addr, instr); |
+} |
+ |
+ |
+int Simulator::WriteExclusiveW(uword addr, int value, Instr* instr) { |
+ // This lock is initialized in Simulator::InitOnce(). |
+ MutexLocker ml(exclusive_access_lock_); |
+ bool write_allowed = HasExclusiveAccessAndOpen(addr); |
+ if (write_allowed) { |
+ WriteW(addr, value, instr); |
+ return 0; // Success. |
+ } |
+ return 1; // Failure. |
+} |
+ |
+ |
+uword Simulator::CompareExchange(uword* address, |
+ uword compare_value, |
+ uword new_value) { |
+ // This lock is initialized in Simulator::InitOnce(). |
+ MutexLocker ml(exclusive_access_lock_); |
+ uword value = *address; |
+ if (value == compare_value) { |
+ *address = new_value; |
+ // Same effect on exclusive access state as a successful STREX. |
+ HasExclusiveAccessAndOpen(reinterpret_cast<uword>(address)); |
+ } else { |
+ // Same effect on exclusive access state as an LDREX. |
+ SetExclusiveAccess(reinterpret_cast<uword>(address)); |
+ } |
+ return value; |
+} |
+ |
+ |
+// Returns the top of the stack area to enable checking for stack pointer |
+// validity. |
+uintptr_t Simulator::StackTop() const { |
+ // To be safe in potential stack underflows we leave some buffer above and |
+ // set the stack top. |
+ return reinterpret_cast<uintptr_t>(stack_) + |
+ (Isolate::GetSpecifiedStackSize() + Isolate::kStackSizeBuffer); |
+} |
+ |
+ |
+// Unsupported instructions use Format to print an error and stop execution. |
+void Simulator::Format(Instr* instr, const char* format) { |
+ OS::Print("Simulator found unsupported instruction:\n 0x%p: %s\n", |
+ instr, |
+ format); |
+ UNIMPLEMENTED(); |
+} |
+ |
+ |
+// Checks if the current instruction should be executed based on its |
+// condition bits. |
+bool Simulator::ConditionallyExecute(Instr* instr) { |
+ switch (instr->ConditionField()) { |
+ case EQ: return z_flag_; |
+ case NE: return !z_flag_; |
+ case CS: return c_flag_; |
+ case CC: return !c_flag_; |
+ case MI: return n_flag_; |
+ case PL: return !n_flag_; |
+ case VS: return v_flag_; |
+ case VC: return !v_flag_; |
+ case HI: return c_flag_ && !z_flag_; |
+ case LS: return !c_flag_ || z_flag_; |
+ case GE: return n_flag_ == v_flag_; |
+ case LT: return n_flag_ != v_flag_; |
+ case GT: return !z_flag_ && (n_flag_ == v_flag_); |
+ case LE: return z_flag_ || (n_flag_ != v_flag_); |
+ case AL: return true; |
+ default: UNREACHABLE(); |
+ } |
+ return false; |
+} |
+ |
+ |
+// Calculate and set the Negative and Zero flags. |
+void Simulator::SetNZFlags(int32_t val) { |
+ n_flag_ = (val < 0); |
+ z_flag_ = (val == 0); |
+} |
+ |
+ |
+// Set the Carry flag. |
+void Simulator::SetCFlag(bool val) { |
+ c_flag_ = val; |
+} |
+ |
+ |
+// Set the oVerflow flag. |
+void Simulator::SetVFlag(bool val) { |
+ v_flag_ = val; |
+} |
+ |
+ |
+// Calculate C flag value for additions. |
+bool Simulator::CarryFrom(int32_t left, int32_t right) { |
+ uint32_t uleft = static_cast<uint32_t>(left); |
+ uint32_t uright = static_cast<uint32_t>(right); |
+ uint32_t urest = 0xffffffffU - uleft; |
+ |
+ return (uright > urest); |
+} |
+ |
+ |
+// Calculate C flag value for subtractions. |
+bool Simulator::BorrowFrom(int32_t left, int32_t right) { |
+ uint32_t uleft = static_cast<uint32_t>(left); |
+ uint32_t uright = static_cast<uint32_t>(right); |
+ |
+ return (uright > uleft); |
+} |
+ |
+ |
+// Calculate V flag value for additions and subtractions. |
+bool Simulator::OverflowFrom(int32_t alu_out, |
+ int32_t left, int32_t right, bool addition) { |
+ bool overflow; |
+ if (addition) { |
+ // operands have the same sign |
+ overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
+ // and operands and result have different sign |
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
+ } else { |
+ // operands have different signs |
+ overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
+ // and first operand and result have different signs |
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
+ } |
+ return overflow; |
+} |
+ |
+ |
+// Addressing Mode 1 - Data-processing operands: |
+// Get the value based on the shifter_operand with register. |
+int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) { |
+ Shift shift = instr->ShiftField(); |
+ int shift_amount = instr->ShiftAmountField(); |
+ int32_t result = get_register(instr->RmField()); |
+ if (instr->Bit(4) == 0) { |
+ // by immediate |
+ if ((shift == ROR) && (shift_amount == 0)) { |
+ UNIMPLEMENTED(); |
+ return result; |
+ } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
+ shift_amount = 32; |
+ } |
+ switch (shift) { |
+ case ASR: { |
+ if (shift_amount == 0) { |
+ if (result < 0) { |
+ result = 0xffffffff; |
+ *carry_out = true; |
+ } else { |
+ result = 0; |
+ *carry_out = false; |
+ } |
+ } else { |
+ result >>= (shift_amount - 1); |
+ *carry_out = (result & 1) == 1; |
+ result >>= 1; |
+ } |
+ break; |
+ } |
+ |
+ case LSL: { |
+ if (shift_amount == 0) { |
+ *carry_out = c_flag_; |
+ } else { |
+ result <<= (shift_amount - 1); |
+ *carry_out = (result < 0); |
+ result <<= 1; |
+ } |
+ break; |
+ } |
+ |
+ case LSR: { |
+ if (shift_amount == 0) { |
+ result = 0; |
+ *carry_out = c_flag_; |
+ } else { |
+ uint32_t uresult = static_cast<uint32_t>(result); |
+ uresult >>= (shift_amount - 1); |
+ *carry_out = (uresult & 1) == 1; |
+ uresult >>= 1; |
+ result = static_cast<int32_t>(uresult); |
+ } |
+ break; |
+ } |
+ |
+ case ROR: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ } else { |
+ // by register |
+ Register rs = instr->RsField(); |
+ shift_amount = get_register(rs) &0xff; |
+ switch (shift) { |
+ case ASR: { |
+ if (shift_amount == 0) { |
+ *carry_out = c_flag_; |
+ } else if (shift_amount < 32) { |
+ result >>= (shift_amount - 1); |
+ *carry_out = (result & 1) == 1; |
+ result >>= 1; |
+ } else { |
+ ASSERT(shift_amount >= 32); |
+ if (result < 0) { |
+ *carry_out = true; |
+ result = 0xffffffff; |
+ } else { |
+ *carry_out = false; |
+ result = 0; |
+ } |
+ } |
+ break; |
+ } |
+ |
+ case LSL: { |
+ if (shift_amount == 0) { |
+ *carry_out = c_flag_; |
+ } else if (shift_amount < 32) { |
+ result <<= (shift_amount - 1); |
+ *carry_out = (result < 0); |
+ result <<= 1; |
+ } else if (shift_amount == 32) { |
+ *carry_out = (result & 1) == 1; |
+ result = 0; |
+ } else { |
+ ASSERT(shift_amount > 32); |
+ *carry_out = false; |
+ result = 0; |
+ } |
+ break; |
+ } |
+ |
+ case LSR: { |
+ if (shift_amount == 0) { |
+ *carry_out = c_flag_; |
+ } else if (shift_amount < 32) { |
+ uint32_t uresult = static_cast<uint32_t>(result); |
+ uresult >>= (shift_amount - 1); |
+ *carry_out = (uresult & 1) == 1; |
+ uresult >>= 1; |
+ result = static_cast<int32_t>(uresult); |
+ } else if (shift_amount == 32) { |
+ *carry_out = (result < 0); |
+ result = 0; |
+ } else { |
+ *carry_out = false; |
+ result = 0; |
+ } |
+ break; |
+ } |
+ |
+ case ROR: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ } |
+ return result; |
+} |
+ |
+ |
+// Addressing Mode 1 - Data-processing operands: |
+// Get the value based on the shifter_operand with immediate. |
+int32_t Simulator::GetImm(Instr* instr, bool* carry_out) { |
+ int rotate = instr->RotateField() * 2; |
+ int immed8 = instr->Immed8Field(); |
+ int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); |
+ *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
+ return imm; |
+} |
+ |
+ |
+static int count_bits(int bit_vector) { |
+ int count = 0; |
+ while (bit_vector != 0) { |
+ if ((bit_vector & 1) != 0) { |
+ count++; |
+ } |
+ bit_vector >>= 1; |
+ } |
+ return count; |
+} |
+ |
+ |
+// Addressing Mode 4 - Load and Store Multiple |
+void Simulator::HandleRList(Instr* instr, bool load) { |
+ Register rn = instr->RnField(); |
+ int32_t rn_val = get_register(rn); |
+ int rlist = instr->RlistField(); |
+ int num_regs = count_bits(rlist); |
+ |
+ uword address = 0; |
+ uword end_address = 0; |
+ switch (instr->PUField()) { |
+ case 0: { |
+ // Print("da"); |
+ address = rn_val - (num_regs * 4) + 4; |
+ end_address = rn_val + 4; |
+ rn_val = rn_val - (num_regs * 4); |
+ break; |
+ } |
+ case 1: { |
+ // Print("ia"); |
+ address = rn_val; |
+ end_address = rn_val + (num_regs * 4); |
+ rn_val = rn_val + (num_regs * 4); |
+ break; |
+ } |
+ case 2: { |
+ // Print("db"); |
+ address = rn_val - (num_regs * 4); |
+ end_address = rn_val; |
+ rn_val = address; |
+ break; |
+ } |
+ case 3: { |
+ // Print("ib"); |
+ address = rn_val + 4; |
+ end_address = rn_val + (num_regs * 4) + 4; |
+ rn_val = rn_val + (num_regs * 4); |
+ break; |
+ } |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ if (IsIllegalAddress(address)) { |
+ HandleIllegalAccess(address, instr); |
+ } else { |
+ if (instr->HasW()) { |
+ set_register(rn, rn_val); |
+ } |
+ int reg = 0; |
+ while (rlist != 0) { |
+ if ((rlist & 1) != 0) { |
+ if (load) { |
+ set_register(static_cast<Register>(reg), ReadW(address, instr)); |
+ } else { |
+ WriteW(address, get_register(static_cast<Register>(reg)), instr); |
+ } |
+ address += 4; |
+ } |
+ reg++; |
+ rlist >>= 1; |
+ } |
+ ASSERT(end_address == address); |
+ } |
+} |
+ |
+ |
+// Calls into the Dart runtime are based on this simple interface. |
+typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); |
+ |
+ |
+static void PrintExternalCallTrace(intptr_t external, |
+ NativeArguments arguments) { |
+ // TODO(regis): Do a reverse lookup on this address and print the symbol. |
+ UNIMPLEMENTED(); |
+} |
+ |
+ |
+void Simulator::SupervisorCall(Instr* instr) { |
+ int svc = instr->SvcField(); |
+ switch (svc) { |
+ case kRedirectionSvcCode: { |
+ SimulatorSetjmpBuffer buffer(this); |
+ |
+ if (!setjmp(buffer.buffer_)) { |
+ NativeArguments arguments; |
+ ASSERT(sizeof(NativeArguments) == 4*kWordSize); |
+ arguments.isolate_ = reinterpret_cast<Isolate*>(get_register(R0)); |
+ arguments.argc_tag_ = get_register(R1); |
+ arguments.argv_ = reinterpret_cast<RawObject*(*)[]>(get_register(R2)); |
+ arguments.retval_ = reinterpret_cast<RawObject**>(get_register(R3)); |
+ |
+ int32_t saved_lr = get_register(LR); |
+ Redirection* redirection = Redirection::FromSvcInstruction(instr); |
+ intptr_t external = |
+ reinterpret_cast<intptr_t>(redirection->external_function()); |
+ SimulatorRuntimeCall target = |
+ reinterpret_cast<SimulatorRuntimeCall>(external); |
+ if (FLAG_trace_sim) { |
+ PrintExternalCallTrace(external, arguments); |
+ } |
+ target(arguments); |
+ |
+ // Zap caller-saved registers, since the actual runtime call could have |
+ // used them. |
+ set_register(R2, icount_); |
+ set_register(R3, icount_); |
+ set_register(IP, icount_); |
+ set_register(LR, icount_); |
+ float zap_fvalue = static_cast<float>(icount_); |
+ for (int i = S0; i <= S15; i++) { |
+ set_sregister(static_cast<SRegister>(i), zap_fvalue); |
+ } |
+#ifdef VFPv3_D32 |
+ double zap_dvalue = static_cast<double>(icount_); |
+ for (int i = D16; i <= D31; i++) { |
+ set_dregister(static_cast<DRegister>(i), zap_dvalue); |
+ } |
+#endif // VFPv3_D32 |
+ |
+ // Zap result register pair R0:R1 and return. |
+ set_register(R0, icount_); |
+ set_register(R1, icount_); |
+ set_pc(saved_lr); |
+ } |
+ |
+ break; |
+ } |
+ case kBreakpointSvcCode: { |
+ SimulatorDebugger dbg(this); |
+ dbg.Stop(instr, "breakpoint"); |
+ break; |
+ } |
+ case kStopMessageSvcCode: { |
+ SimulatorDebugger dbg(this); |
+ const char* message = *reinterpret_cast<const char**>( |
+ reinterpret_cast<intptr_t>(instr) - Instr::kInstrSize); |
+ set_pc(get_pc() + Instr::kInstrSize); |
+ dbg.Stop(instr, message); |
+ break; |
+ } |
+ case kWordSpillMarkerSvcCode: { |
+ static StatsCounter counter_spill_w("Simulated word spills"); |
+ counter_spill_w.Increment(); |
+ break; |
+ } |
+ case kDWordSpillMarkerSvcCode: { |
+ static StatsCounter counter_spill_d("Simulated double word spills"); |
+ counter_spill_d.Increment(); |
+ break; |
+ } |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+// Handle execution based on instruction types. |
+ |
+// Instruction types 0 and 1 are both rolled into one function because they |
+// only differ in the handling of the shifter_operand. |
+void Simulator::DecodeType01(Instr* instr) { |
+ if (!instr->IsDataProcessing()) { |
+ // miscellaneous, multiply, sync primitives, extra loads and stores. |
+ if (instr->IsMiscellaneous()) { |
+ switch (instr->Bits(4, 3)) { |
+ case 1: { |
+ ASSERT(instr->Bits(21, 2) == 0x3); |
+ // Format(instr, "clz'cond 'rd, 'rm"); |
+ Register rm = instr->RmField(); |
+ Register rd = instr->RdField(); |
+ int32_t rm_val = get_register(rm); |
+ int32_t rd_val = 0; |
+ if (rm_val != 0) { |
+ while (rm_val > 0) { |
+ rd_val++; |
+ rm_val <<= 1; |
+ } |
+ } else { |
+ rd_val = 32; |
+ } |
+ set_register(rd, rd_val); |
+ break; |
+ } |
+ case 3: { |
+ ASSERT(instr->Bits(21, 2) == 0x1); |
+ // Format(instr, "blx'cond 'rm"); |
+ Register rm = instr->RmField(); |
+ int32_t rm_val = get_register(rm); |
+ intptr_t pc = get_pc(); |
+ set_register(LR, pc + Instr::kInstrSize); |
+ set_pc(rm_val); |
+ break; |
+ } |
+ case 7: { |
+ if (instr->Bits(21, 2) == 0x1) { |
+ // Format(instr, "bkpt #'imm12_4"); |
+ SimulatorDebugger dbg(this); |
+ set_pc(get_pc() + Instr::kInstrSize); |
+ char buffer[32]; |
+ snprintf(buffer, sizeof(buffer), "bkpt #0x%x", instr->BkptField()); |
+ dbg.Stop(instr, buffer); |
+ } else { |
+ // Format(instr, "smc'cond"); |
+ UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ } else if (instr->IsMultiplyOrSyncPrimitive()) { |
+ if (instr->Bit(24) == 0) { |
+ // multiply instructions. |
+ Register rn = instr->RnField(); |
+ Register rd = instr->RdField(); |
+ Register rs = instr->RsField(); |
+ Register rm = instr->RmField(); |
+ int32_t rm_val = get_register(rm); |
+ int32_t rs_val = get_register(rs); |
+ int32_t rd_val = 0; |
+ switch (instr->Bits(21, 3)) { |
+ case 1: |
+ // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
+ // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
+ case 3: { |
+ // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
+ // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); |
+ rd_val = get_register(rd); |
+ // fall through |
+ } |
+ case 0: { |
+ // Registers rd, rn, rm are encoded as rn, rm, rs. |
+ // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
+ int32_t alu_out = rm_val * rs_val; |
+ if (instr->Bits(21, 3) == 3) { // mls |
+ alu_out = -alu_out; |
+ } |
+ alu_out += rd_val; |
+ set_register(rn, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ } |
+ break; |
+ } |
+ case 4: { |
+ // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
+ // Format(instr, "umull'cond's 'rd, 'rn, 'rm, 'rs"); |
+ uint64_t left_op = static_cast<uint32_t>(rm_val); |
+ uint64_t right_op = static_cast<uint32_t>(rs_val); |
+ uint64_t result = left_op * right_op; |
+ int32_t hi_res = Utils::High32Bits(result); |
+ int32_t lo_res = Utils::Low32Bits(result); |
+ set_register(rd, lo_res); |
+ set_register(rn, hi_res); |
+ if (instr->HasS()) { |
+ if (lo_res != 0) { |
+ // Collapse bits 0..31 into bit 32 so that 32-bit Z check works. |
+ hi_res |= 1; |
+ } |
+ ASSERT((result == 0) == (hi_res == 0)); // Z bit |
+ ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit |
+ SetNZFlags(hi_res); |
+ } |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ } else { |
+ // synchronization primitives |
+ Register rd = instr->RdField(); |
+ Register rn = instr->RnField(); |
+ uword addr = get_register(rn); |
+ switch (instr->Bits(20, 4)) { |
+ case 8: { |
+ // Format(instr, "strex'cond 'rd, 'rm, ['rn]"); |
+ if (IsIllegalAddress(addr)) { |
+ HandleIllegalAccess(addr, instr); |
+ } else { |
+ Register rm = instr->RmField(); |
+ set_register(rd, WriteExclusiveW(addr, get_register(rm), instr)); |
+ } |
+ break; |
+ } |
+ case 9: { |
+ // Format(instr, "ldrex'cond 'rd, ['rn]"); |
+ if (IsIllegalAddress(addr)) { |
+ HandleIllegalAccess(addr, instr); |
+ } else { |
+ set_register(rd, ReadExclusiveW(addr, instr)); |
+ } |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ } |
+ } else if (instr->Bit(25) == 1) { |
+ // 16-bit immediate loads, msr (immediate), and hints |
+ switch (instr->Bits(20, 5)) { |
+ case 16: |
+ case 20: { |
+ uint16_t imm16 = instr->MovwField(); |
+ Register rd = instr->RdField(); |
+ if (instr->Bit(22) == 0) { |
+ // Format(instr, "movw'cond 'rd, #'imm4_12"); |
+ set_register(rd, imm16); |
+ } else { |
+ // Format(instr, "movt'cond 'rd, #'imm4_12"); |
+ set_register(rd, (get_register(rd) & 0xffff) | (imm16 << 16)); |
+ } |
+ break; |
+ } |
+ case 18: { |
+ if ((instr->Bits(16, 4) == 0) && (instr->Bits(0, 8) == 0)) { |
+ // Format(instr, "nop'cond"); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ } else { |
+ // extra load/store instructions |
+ Register rd = instr->RdField(); |
+ Register rn = instr->RnField(); |
+ int32_t rn_val = get_register(rn); |
+ uword addr = 0; |
+ bool write_back = false; |
+ if (instr->Bit(22) == 0) { |
+ Register rm = instr->RmField(); |
+ int32_t rm_val = get_register(rm); |
+ switch (instr->PUField()) { |
+ case 0: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn], -'rm"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val -= rm_val; |
+ write_back = true; |
+ break; |
+ } |
+ case 1: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn], +'rm"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val += rm_val; |
+ write_back = true; |
+ break; |
+ } |
+ case 2: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn, -'rm]'w"); |
+ rn_val -= rm_val; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ case 3: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn, +'rm]'w"); |
+ rn_val += rm_val; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ default: { |
+ // The PU field is a 2-bit field. |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ } else { |
+ int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField(); |
+ switch (instr->PUField()) { |
+ case 0: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn], #-'off8"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val -= imm_val; |
+ write_back = true; |
+ break; |
+ } |
+ case 1: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn], #+'off8"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val += imm_val; |
+ write_back = true; |
+ break; |
+ } |
+ case 2: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn, #-'off8]'w"); |
+ rn_val -= imm_val; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ case 3: { |
+ // Format(instr, "'memop'cond'x 'rd2, ['rn, #+'off8]'w"); |
+ rn_val += imm_val; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ default: { |
+ // The PU field is a 2-bit field. |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ } |
+ if (IsIllegalAddress(addr)) { |
+ HandleIllegalAccess(addr, instr); |
+ } else { |
+ if (write_back) { |
+ set_register(rn, rn_val); |
+ } |
+ if (!instr->HasSign()) { |
+ if (instr->HasL()) { |
+ uint16_t val = ReadHU(addr, instr); |
+ set_register(rd, val); |
+ } else { |
+ uint16_t val = get_register(rd); |
+ WriteH(addr, val, instr); |
+ } |
+ } else if (instr->HasL()) { |
+ if (instr->HasH()) { |
+ int16_t val = ReadH(addr, instr); |
+ set_register(rd, val); |
+ } else { |
+ int8_t val = ReadB(addr); |
+ set_register(rd, val); |
+ } |
+ } else if ((rd & 1) == 0) { |
+ Register rd1 = static_cast<Register>(rd | 1); |
+ ASSERT(rd1 < kNumberOfCpuRegisters); |
+ if (instr->HasH()) { |
+ int32_t val_low = get_register(rd); |
+ int32_t val_high = get_register(rd1); |
+ WriteW(addr, val_low, instr); |
+ WriteW(addr + 4, val_high, instr); |
+ } else { |
+ int32_t val_low = ReadW(addr, instr); |
+ int32_t val_high = ReadW(addr + 4, instr); |
+ set_register(rd, val_low); |
+ set_register(rd1, val_high); |
+ } |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ } |
+ } |
+ } else { |
+ Register rd = instr->RdField(); |
+ Register rn = instr->RnField(); |
+ int32_t rn_val = get_register(rn); |
+ int32_t shifter_operand = 0; |
+ bool shifter_carry_out = 0; |
+ if (instr->TypeField() == 0) { |
+ shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
+ } else { |
+ ASSERT(instr->TypeField() == 1); |
+ shifter_operand = GetImm(instr, &shifter_carry_out); |
+ } |
+ int32_t alu_out; |
+ |
+ switch (instr->OpcodeField()) { |
+ case AND: { |
+ // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "and'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val & shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } |
+ break; |
+ } |
+ |
+ case EOR: { |
+ // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val ^ shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } |
+ break; |
+ } |
+ |
+ case SUB: { |
+ // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val - shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
+ } |
+ break; |
+ } |
+ |
+ case RSB: { |
+ // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); |
+ alu_out = shifter_operand - rn_val; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(!BorrowFrom(shifter_operand, rn_val)); |
+ SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); |
+ } |
+ break; |
+ } |
+ |
+ case ADD: { |
+ // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "add'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val + shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(CarryFrom(rn_val, shifter_operand)); |
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
+ } |
+ break; |
+ } |
+ |
+ case ADC: { |
+ // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val + shifter_operand + (c_flag_ ? 1 : 0); |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(CarryFrom(rn_val, shifter_operand)); |
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
+ } |
+ break; |
+ } |
+ |
+ case SBC: { |
+ // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val - shifter_operand - (!c_flag_ ? 1 : 0); |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
+ } |
+ break; |
+ } |
+ |
+ case RSC: { |
+ // Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); |
+ alu_out = shifter_operand - rn_val - (!c_flag_ ? 1 : 0); |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(!BorrowFrom(shifter_operand, rn_val)); |
+ SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); |
+ } |
+ break; |
+ } |
+ |
+ case TST: { |
+ if (instr->HasS()) { |
+ // Format(instr, "tst'cond 'rn, 'shift_rm"); |
+ // Format(instr, "tst'cond 'rn, 'imm"); |
+ alu_out = rn_val & shifter_operand; |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ |
+ case TEQ: { |
+ if (instr->HasS()) { |
+ // Format(instr, "teq'cond 'rn, 'shift_rm"); |
+ // Format(instr, "teq'cond 'rn, 'imm"); |
+ alu_out = rn_val ^ shifter_operand; |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ |
+ case CMP: { |
+ if (instr->HasS()) { |
+ // Format(instr, "cmp'cond 'rn, 'shift_rm"); |
+ // Format(instr, "cmp'cond 'rn, 'imm"); |
+ alu_out = rn_val - shifter_operand; |
+ SetNZFlags(alu_out); |
+ SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ |
+ case CMN: { |
+ if (instr->HasS()) { |
+ // Format(instr, "cmn'cond 'rn, 'shift_rm"); |
+ // Format(instr, "cmn'cond 'rn, 'imm"); |
+ alu_out = rn_val + shifter_operand; |
+ SetNZFlags(alu_out); |
+ SetCFlag(CarryFrom(rn_val, shifter_operand)); |
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ break; |
+ } |
+ |
+ case ORR: { |
+ // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val | shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } |
+ break; |
+ } |
+ |
+ case MOV: { |
+ // Format(instr, "mov'cond's 'rd, 'shift_rm"); |
+ // Format(instr, "mov'cond's 'rd, 'imm"); |
+ alu_out = shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } |
+ break; |
+ } |
+ |
+ case BIC: { |
+ // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); |
+ // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); |
+ alu_out = rn_val & ~shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } |
+ break; |
+ } |
+ |
+ case MVN: { |
+ // Format(instr, "mvn'cond's 'rd, 'shift_rm"); |
+ // Format(instr, "mvn'cond's 'rd, 'imm"); |
+ alu_out = ~shifter_operand; |
+ set_register(rd, alu_out); |
+ if (instr->HasS()) { |
+ SetNZFlags(alu_out); |
+ SetCFlag(shifter_carry_out); |
+ } |
+ break; |
+ } |
+ |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void Simulator::DecodeType2(Instr* instr) { |
+ Register rd = instr->RdField(); |
+ Register rn = instr->RnField(); |
+ int32_t rn_val = get_register(rn); |
+ int32_t im_val = instr->Offset12Field(); |
+ uword addr = 0; |
+ bool write_back = false; |
+ switch (instr->PUField()) { |
+ case 0: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val -= im_val; |
+ write_back = true; |
+ break; |
+ } |
+ case 1: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val += im_val; |
+ write_back = true; |
+ break; |
+ } |
+ case 2: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
+ rn_val -= im_val; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ case 3: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
+ rn_val += im_val; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ if (IsIllegalAddress(addr)) { |
+ HandleIllegalAccess(addr, instr); |
+ } else { |
+ if (write_back) { |
+ set_register(rn, rn_val); |
+ } |
+ if (instr->HasB()) { |
+ if (instr->HasL()) { |
+ unsigned char val = ReadBU(addr); |
+ set_register(rd, val); |
+ } else { |
+ unsigned char val = get_register(rd); |
+ WriteB(addr, val); |
+ } |
+ } else { |
+ if (instr->HasL()) { |
+ set_register(rd, ReadW(addr, instr)); |
+ } else { |
+ WriteW(addr, get_register(rd), instr); |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void Simulator::DecodeType3(Instr* instr) { |
+ Register rd = instr->RdField(); |
+ Register rn = instr->RnField(); |
+ int32_t rn_val = get_register(rn); |
+ bool shifter_carry_out = 0; |
+ int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
+ uword addr = 0; |
+ bool write_back = false; |
+ switch (instr->PUField()) { |
+ case 0: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val -= shifter_operand; |
+ write_back = true; |
+ break; |
+ } |
+ case 1: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); |
+ ASSERT(!instr->HasW()); |
+ addr = rn_val; |
+ rn_val += shifter_operand; |
+ write_back = true; |
+ break; |
+ } |
+ case 2: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
+ rn_val -= shifter_operand; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ case 3: { |
+ // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
+ rn_val += shifter_operand; |
+ addr = rn_val; |
+ write_back = instr->HasW(); |
+ break; |
+ } |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ if (IsIllegalAddress(addr)) { |
+ HandleIllegalAccess(addr, instr); |
+ } else { |
+ if (write_back) { |
+ set_register(rn, rn_val); |
+ } |
+ if (instr->HasB()) { |
+ if (instr->HasL()) { |
+ unsigned char val = ReadBU(addr); |
+ set_register(rd, val); |
+ } else { |
+ unsigned char val = get_register(rd); |
+ WriteB(addr, val); |
+ } |
+ } else { |
+ if (instr->HasL()) { |
+ set_register(rd, ReadW(addr, instr)); |
+ } else { |
+ WriteW(addr, get_register(rd), instr); |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void Simulator::DecodeType4(Instr* instr) { |
+ ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode |
+ if (instr->HasL()) { |
+ // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
+ HandleRList(instr, true); |
+ } else { |
+ // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
+ HandleRList(instr, false); |
+ } |
+} |
+ |
+ |
+void Simulator::DecodeType5(Instr* instr) { |
+ // Format(instr, "b'l'cond 'target"); |
+ int off = (instr->SImmed24Field() << 2) + 8; |
+ intptr_t pc = get_pc(); |
+ if (instr->HasLink()) { |
+ set_register(LR, pc + Instr::kInstrSize); |
+ } |
+ set_pc(pc+off); |
+} |
+ |
+ |
+void Simulator::DecodeType6(Instr* instr) { |
+ if (instr->IsVFPDoubleTransfer()) { |
+ Register rd = instr->RdField(); |
+ Register rn = instr->RnField(); |
+ if (instr->Bit(8) == 0) { |
+ SRegister sm = instr->SmField(); |
+ SRegister sm1 = static_cast<SRegister>(sm + 1); |
+ ASSERT(sm1 < kNumberOfSRegisters); |
+ if (instr->Bit(20) == 1) { |
+ // Format(instr, "vmovrrs'cond 'rd, 'rn, {'sm', 'sm1}"); |
+ set_register(rd, bit_cast<int32_t, float>(get_sregister(sm))); |
+ set_register(rn, bit_cast<int32_t, float>(get_sregister(sm1))); |
+ } else { |
+ // Format(instr, "vmovsrr'cond {'sm, 'sm1}, 'rd', 'rn"); |
+ set_sregister(sm, bit_cast<float, int32_t>(get_register(rd))); |
+ set_sregister(sm1, bit_cast<float, int32_t>(get_register(rn))); |
+ } |
+ } else { |
+ DRegister dm = instr->DmField(); |
+ if (instr->Bit(20) == 1) { |
+ // Format(instr, "vmovrrd'cond 'rd, 'rn, 'dm"); |
+ int64_t dm_val = bit_cast<int64_t, double>(get_dregister(dm)); |
+ set_register(rd, Utils::Low32Bits(dm_val)); |
+ set_register(rn, Utils::High32Bits(dm_val)); |
+ } else { |
+ // Format(instr, "vmovdrr'cond 'dm, 'rd, 'rn"); |
+ int64_t dm_val = Utils::LowHighTo64Bits(get_register(rd), |
+ get_register(rn)); |
+ set_dregister(dm, bit_cast<double, int64_t>(dm_val)); |
+ } |
+ } |
+ } else if (instr-> IsVFPLoadStore()) { |
+ Register rn = instr->RnField(); |
+ int32_t addr = get_register(rn); |
+ int32_t imm_val = instr->Bits(0, 8) << 2; |
+ if (instr->Bit(23) == 1) { |
+ addr += imm_val; |
+ } else { |
+ addr -= imm_val; |
+ } |
+ if (IsIllegalAddress(addr)) { |
+ HandleIllegalAccess(addr, instr); |
+ } else { |
+ if (instr->Bit(8) == 0) { |
+ SRegister sd = instr->SdField(); |
+ if (instr->Bit(20) == 1) { // vldrs |
+ // Format(instr, "vldrs'cond 'sd, ['rn, #+'off10]"); |
+ // Format(instr, "vldrs'cond 'sd, ['rn, #-'off10]"); |
+ set_sregister(sd, bit_cast<float, int32_t>(ReadW(addr, instr))); |
+ } else { // vstrs |
+ // Format(instr, "vstrs'cond 'sd, ['rn, #+'off10]"); |
+ // Format(instr, "vstrs'cond 'sd, ['rn, #-'off10]"); |
+ WriteW(addr, bit_cast<int32_t, float>(get_sregister(sd)), instr); |
+ } |
+ } else { |
+ DRegister dd = instr->DdField(); |
+ if (instr->Bit(20) == 1) { // vldrd |
+ // Format(instr, "vldrd'cond 'dd, ['rn, #+'off10]"); |
+ // Format(instr, "vldrd'cond 'dd, ['rn, #-'off10]"); |
+ int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr), |
+ ReadW(addr + 4, instr)); |
+ set_dregister(dd, bit_cast<double, int64_t>(dd_val)); |
+ } else { // vstrd |
+ // Format(instr, "vstrd'cond 'dd, ['rn, #+'off10]"); |
+ // Format(instr, "vstrd'cond 'dd, ['rn, #-'off10]"); |
+ int64_t dd_val = bit_cast<int64_t, double>(get_dregister(dd)); |
+ WriteW(addr, Utils::Low32Bits(dd_val), instr); |
+ WriteW(addr + 4, Utils::High32Bits(dd_val), instr); |
+ } |
+ } |
+ } |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+void Simulator::DecodeType7(Instr* instr) { |
+ if (instr->Bit(24) == 1) { |
+ // Format(instr, "svc #'svc"); |
+ SupervisorCall(instr); |
+ } else if (instr->IsVFPDataProcessingOrSingleTransfer()) { |
+ if (instr->Bit(4) == 0) { |
+ // VFP Data Processing |
+ SRegister sd; |
+ SRegister sn; |
+ SRegister sm; |
+ DRegister dd; |
+ DRegister dn; |
+ DRegister dm; |
+ if (instr->Bit(8) == 0) { |
+ sd = instr->SdField(); |
+ sn = instr->SnField(); |
+ sm = instr->SmField(); |
+ dd = kNoDRegister; |
+ dn = kNoDRegister; |
+ dm = kNoDRegister; |
+ } else { |
+ sd = kNoSRegister; |
+ sn = kNoSRegister; |
+ sm = kNoSRegister; |
+ dd = instr->DdField(); |
+ dn = instr->DnField(); |
+ dm = instr->DmField(); |
+ } |
+ switch (instr->Bits(20, 4) & 0xb) { |
+ case 1: // vnmla, vnmls, vnmul |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ case 0: { // vmla, vmls floating-point |
+ if (instr->Bit(8) == 0) { |
+ float addend = get_sregister(sn) * get_sregister(sm); |
+ float sd_val = get_sregister(sd); |
+ if (instr->Bit(6) == 0) { |
+ // Format(instr, "vmlas'cond 'sd, 'sn, 'sm"); |
+ } else { |
+ // Format(instr, "vmlss'cond 'sd, 'sn, 'sm"); |
+ addend = -addend; |
+ } |
+ set_sregister(sd, sd_val + addend); |
+ } else { |
+ double addend = get_dregister(dn) * get_dregister(dm); |
+ double dd_val = get_dregister(dd); |
+ if (instr->Bit(6) == 0) { |
+ // Format(instr, "vmlad'cond 'dd, 'dn, 'dm"); |
+ } else { |
+ // Format(instr, "vmlsd'cond 'dd, 'dn, 'dm"); |
+ addend = -addend; |
+ } |
+ set_dregister(dd, dd_val + addend); |
+ } |
+ break; |
+ } |
+ case 2: { // vmul |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vmuls'cond 'sd, 'sn, 'sm"); |
+ set_sregister(sd, get_sregister(sn) * get_sregister(sm)); |
+ } else { |
+ // Format(instr, "vmuld'cond 'dd, 'dn, 'dm"); |
+ set_dregister(dd, get_dregister(dn) * get_dregister(dm)); |
+ } |
+ break; |
+ } |
+ case 8: { // vdiv |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vdivs'cond 'sd, 'sn, 'sm"); |
+ set_sregister(sd, get_sregister(sn) / get_sregister(sm)); |
+ } else { |
+ // Format(instr, "vdivd'cond 'dd, 'dn, 'dm"); |
+ set_dregister(dd, get_dregister(dn) / get_dregister(dm)); |
+ } |
+ break; |
+ } |
+ case 3: { // vadd, vsub floating-point |
+ if (instr->Bit(8) == 0) { |
+ if (instr->Bit(6) == 0) { |
+ // Format(instr, "vadds'cond 'sd, 'sn, 'sm"); |
+ set_sregister(sd, get_sregister(sn) + get_sregister(sm)); |
+ } else { |
+ // Format(instr, "vsubs'cond 'sd, 'sn, 'sm"); |
+ set_sregister(sd, get_sregister(sn) - get_sregister(sm)); |
+ } |
+ } else { |
+ if (instr->Bit(6) == 0) { |
+ // Format(instr, "vaddd'cond 'dd, 'dn, 'dm"); |
+ set_dregister(dd, get_dregister(dn) + get_dregister(dm)); |
+ } else { |
+ // Format(instr, "vsubd'cond 'dd, 'dn, 'dm"); |
+ set_dregister(dd, get_dregister(dn) - get_dregister(dm)); |
+ } |
+ } |
+ break; |
+ } |
+ case 0xb: { // Other VFP data-processing instructions |
+ if (instr->Bit(6) == 0) { // vmov immediate |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vmovs'cond 'sd, #'immf"); |
+ set_sregister(sd, instr->ImmFloatField()); |
+ } else { |
+ // Format(instr, "vmovd'cond 'dd, #'immd"); |
+ set_dregister(dd, instr->ImmDoubleField()); |
+ } |
+ break; |
+ } |
+ switch (instr->Bits(16, 4)) { |
+ case 0: { // vmov immediate, vmov register, vabs |
+ switch (instr->Bits(6, 2)) { |
+ case 1: { // vmov register |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vmovs'cond 'sd, 'sm"); |
+ set_sregister(sd, get_sregister(sm)); |
+ } else { |
+ // Format(instr, "vmovd'cond 'dd, 'dm"); |
+ set_dregister(dd, get_dregister(dm)); |
+ } |
+ break; |
+ } |
+ case 3: { // vabs |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vabss'cond 'sd, 'sm"); |
+ set_sregister(sd, fabsf(get_sregister(sm))); |
+ } else { |
+ // Format(instr, "vabsd'cond 'dd, 'dm"); |
+ set_dregister(dd, fabs(get_dregister(dm))); |
+ } |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ break; |
+ } |
+ case 1: { // vneg, vsqrt |
+ switch (instr->Bits(6, 2)) { |
+ case 1: { // vneg |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vnegs'cond 'sd, 'sm"); |
+ set_sregister(sd, -get_sregister(sm)); |
+ } else { |
+ // Format(instr, "vnegd'cond 'dd, 'dm"); |
+ set_dregister(dd, -get_dregister(dm)); |
+ } |
+ break; |
+ } |
+ case 3: { // vsqrt |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vsqrts'cond 'sd, 'sm"); |
+ set_sregister(sd, sqrtf(get_sregister(sm))); |
+ } else { |
+ // Format(instr, "vsqrtd'cond 'dd, 'dm"); |
+ set_dregister(dd, sqrt(get_dregister(dm))); |
+ } |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ break; |
+ } |
+ case 4: // vcmp, vcmpe |
+ case 5: { // vcmp #0.0, vcmpe #0.0 |
+ if (instr->Bit(7) == 1) { // vcmpe |
+ UNIMPLEMENTED(); |
+ } else { |
+ fp_n_flag_ = false; |
+ fp_z_flag_ = false; |
+ fp_c_flag_ = false; |
+ fp_v_flag_ = false; |
+ if (instr->Bit(8) == 0) { // vcmps |
+ float sd_val = get_sregister(sd); |
+ float sm_val; |
+ if (instr->Bit(16) == 0) { |
+ // Format(instr, "vcmps'cond 'sd, 'sm"); |
+ sm_val = get_sregister(sm); |
+ } else { |
+ // Format(instr, "vcmps'cond 'sd, #0.0"); |
+ sm_val = 0.0f; |
+ } |
+ if (isnan(sd_val) || isnan(sm_val)) { |
+ fp_c_flag_ = true; |
+ fp_v_flag_ = true; |
+ } else if (sd_val == sm_val) { |
+ fp_z_flag_ = true; |
+ fp_c_flag_ = true; |
+ } else if (sd_val < sm_val) { |
+ fp_n_flag_ = true; |
+ } else { |
+ fp_c_flag_ = true; |
+ } |
+ } else { // vcmpd |
+ double dd_val = get_dregister(dd); |
+ double dm_val; |
+ if (instr->Bit(16) == 0) { |
+ // Format(instr, "vcmpd'cond 'dd, 'dm"); |
+ dm_val = get_dregister(dm); |
+ } else { |
+ // Format(instr, "vcmpd'cond 'dd, #0.0"); |
+ dm_val = 0.0; |
+ } |
+ if (isnan(dd_val) || isnan(dm_val)) { |
+ fp_c_flag_ = true; |
+ fp_v_flag_ = true; |
+ } else if (dd_val == dm_val) { |
+ fp_z_flag_ = true; |
+ fp_c_flag_ = true; |
+ } else if (dd_val < dm_val) { |
+ fp_n_flag_ = true; |
+ } else { |
+ fp_c_flag_ = true; |
+ } |
+ } |
+ } |
+ break; |
+ } |
+ case 7: { // vcvt between double-precision and single-precision |
+ if (instr->Bit(8) == 0) { |
+ // Format(instr, "vcvtds'cond 'dd, 'sm"); |
+ dd = instr->DdField(); |
+ set_dregister(dd, static_cast<double>(get_sregister(sm))); |
+ } else { |
+ // Format(instr, "vcvtsd'cond 'sd, 'dm"); |
+ sd = instr->SdField(); |
+ set_sregister(sd, static_cast<float>(get_dregister(dm))); |
+ } |
+ break; |
+ } |
+ case 8: { // vcvt, vcvtr between floating-point and integer |
+ sm = instr->SmField(); |
+ float sm_val = get_sregister(sm); |
+ uint32_t ud_val = 0; |
+ int32_t id_val = 0; |
+ if (instr->Bit(7) == 0) { // vcvtsu, vcvtdu |
+ ud_val = bit_cast<uint32_t, float>(sm_val); |
+ } else { // vcvtsi, vcvtdi |
+ id_val = bit_cast<int32_t, float>(sm_val); |
+ } |
+ if (instr->Bit(8) == 0) { |
+ float sd_val; |
+ if (instr->Bit(7) == 0) { |
+ // Format(instr, "vcvtsu'cond 'sd, 'sm"); |
+ sd_val = static_cast<float>(ud_val); |
+ } else { |
+ // Format(instr, "vcvtsi'cond 'sd, 'sm"); |
+ sd_val = static_cast<float>(id_val); |
+ } |
+ set_sregister(sd, sd_val); |
+ } else { |
+ double dd_val; |
+ if (instr->Bit(7) == 0) { |
+ // Format(instr, "vcvtdu'cond 'dd, 'sm"); |
+ dd_val = static_cast<double>(ud_val); |
+ } else { |
+ // Format(instr, "vcvtdi'cond 'dd, 'sm"); |
+ dd_val = static_cast<double>(id_val); |
+ } |
+ set_dregister(dd, dd_val); |
+ } |
+ break; |
+ } |
+ case 12: |
+ case 13: { // vcvt, vcvtr between floating-point and integer |
+ // We do not need to record exceptions in the FPSCR cumulative |
+ // flags, because we do not use them. |
+ if (instr->Bit(7) == 0) { |
+ // We only support round-to-zero mode |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ int32_t id_val = 0; |
+ uint32_t ud_val = 0; |
+ if (instr->Bit(8) == 0) { |
+ float sm_val = get_sregister(sm); |
+ if (instr->Bit(16) == 0) { |
+ // Format(instr, "vcvtus'cond 'sd, 'sm"); |
+ if (sm_val >= INT_MAX) { |
+ ud_val = INT_MAX; |
+ } else if (sm_val > 0.0) { |
+ ud_val = static_cast<uint32_t>(sm_val); |
+ } |
+ } else { |
+ // Format(instr, "vcvtis'cond 'sd, 'sm"); |
+ if (sm_val <= INT_MIN) { |
+ id_val = INT_MIN; |
+ } else if (sm_val >= INT_MAX) { |
+ id_val = INT_MAX; |
+ } else { |
+ id_val = static_cast<int32_t>(sm_val); |
+ } |
+ ASSERT((id_val >= 0) || !(sm_val >= 0.0)); |
+ } |
+ } else { |
+ sd = instr->SdField(); |
+ double dm_val = get_dregister(dm); |
+ if (instr->Bit(16) == 0) { |
+ // Format(instr, "vcvtud'cond 'sd, 'dm"); |
+ if (dm_val >= INT_MAX) { |
+ ud_val = INT_MAX; |
+ } else if (dm_val > 0.0) { |
+ ud_val = static_cast<uint32_t>(dm_val); |
+ } |
+ } else { |
+ // Format(instr, "vcvtid'cond 'sd, 'dm"); |
+ if (dm_val <= INT_MIN) { |
+ id_val = INT_MIN; |
+ } else if (dm_val >= INT_MAX) { |
+ id_val = INT_MAX; |
+ } else { |
+ id_val = static_cast<int32_t>(dm_val); |
+ } |
+ ASSERT((id_val >= 0) || !(dm_val >= 0.0)); |
+ } |
+ } |
+ float sd_val; |
+ if (instr->Bit(16) == 0) { |
+ sd_val = bit_cast<float, uint32_t>(ud_val); |
+ } else { |
+ sd_val = bit_cast<float, int32_t>(id_val); |
+ } |
+ set_sregister(sd, sd_val); |
+ break; |
+ } |
+ case 2: // vcvtb, vcvtt |
+ case 3: // vcvtb, vcvtt |
+ case 9: // undefined |
+ case 10: // vcvt between floating-point and fixed-point |
+ case 11: // vcvt between floating-point and fixed-point |
+ case 14: // vcvt between floating-point and fixed-point |
+ case 15: // vcvt between floating-point and fixed-point |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ } |
+ break; |
+ } |
+ } else { |
+ // 8, 16, or 32-bit Transfer between ARM Core and VFP |
+ if ((instr->Bits(21, 3) == 0) && (instr->Bit(8) == 0)) { |
+ Register rd = instr->RdField(); |
+ SRegister sn = instr->SnField(); |
+ if (instr->Bit(20) == 0) { |
+ // Format(instr, "vmovs'cond 'sn, 'rd"); |
+ set_sregister(sn, bit_cast<float, int32_t>(get_register(rd))); |
+ } else { |
+ // Format(instr, "vmovr'cond 'rd, 'sn"); |
+ set_register(rd, bit_cast<int32_t, float>(get_sregister(sn))); |
+ } |
+ } else if ((instr->Bits(20, 4) == 0xf) && (instr->Bit(8) == 0) && |
+ (instr->Bits(12, 4) == 0xf)) { |
+ // Format(instr, "vmstat'cond"); |
+ n_flag_ = fp_n_flag_; |
+ z_flag_ = fp_z_flag_; |
+ c_flag_ = fp_c_flag_; |
+ v_flag_ = fp_v_flag_; |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ } |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+} |
+ |
+ |
+// Executes the current instruction. |
+void Simulator::InstructionDecode(Instr* instr) { |
+ pc_modified_ = false; |
+ if (FLAG_trace_sim) { |
+ const uword start = reinterpret_cast<uword>(instr); |
+ const uword end = start + Instr::kInstrSize; |
+ Disassembler::Disassemble(start, end); |
+ } |
+ if (instr->ConditionField() == kSpecialCondition) { |
+ if (instr->InstructionBits() == static_cast<int32_t>(0xf57ff01f)) { |
+ // Format(instr, "clrex"); |
+ ClearExclusive(); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ } else if (ConditionallyExecute(instr)) { |
+ switch (instr->TypeField()) { |
+ case 0: |
+ case 1: { |
+ DecodeType01(instr); |
+ break; |
+ } |
+ case 2: { |
+ DecodeType2(instr); |
+ break; |
+ } |
+ case 3: { |
+ DecodeType3(instr); |
+ break; |
+ } |
+ case 4: { |
+ DecodeType4(instr); |
+ break; |
+ } |
+ case 5: { |
+ DecodeType5(instr); |
+ break; |
+ } |
+ case 6: { |
+ DecodeType6(instr); |
+ break; |
+ } |
+ case 7: { |
+ DecodeType7(instr); |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+ } |
+ if (!pc_modified_) { |
+ set_register(PC, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize); |
+ } |
+} |
+ |
+ |
+void Simulator::Execute() { |
+ static StatsCounter counter_instructions("Simulated instructions"); |
+ |
+ // Get the PC to simulate. Cannot use the accessor here as we need the |
+ // raw PC value and not the one used as input to arithmetic instructions. |
+ uword program_counter = get_pc(); |
+ |
+ if (FLAG_stop_sim_at == 0) { |
+ // Fast version of the dispatch loop without checking whether the simulator |
+ // should be stopping at a particular executed instruction. |
+ while (program_counter != kEndSimulatingPC) { |
+ Instr* instr = reinterpret_cast<Instr*>(program_counter); |
+ icount_++; |
+ counter_instructions.Increment(); |
+ if (IsIllegalAddress(program_counter)) { |
+ HandleIllegalAccess(program_counter, instr); |
+ } else { |
+ InstructionDecode(instr); |
+ } |
+ program_counter = get_pc(); |
+ } |
+ } else { |
+ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
+ // we reach the particular instruction count. |
+ while (program_counter != kEndSimulatingPC) { |
+ Instr* instr = reinterpret_cast<Instr*>(program_counter); |
+ icount_++; |
+ counter_instructions.Increment(); |
+ if (icount_ == FLAG_stop_sim_at) { |
+ SimulatorDebugger dbg(this); |
+ dbg.Debug(); |
+ } else if (IsIllegalAddress(program_counter)) { |
+ HandleIllegalAccess(program_counter, instr); |
+ } else { |
+ InstructionDecode(instr); |
+ } |
+ program_counter = get_pc(); |
+ } |
+ } |
+} |
+ |
+ |
+int64_t Simulator::Call(int32_t entry, |
+ int32_t parameter0, |
+ int32_t parameter1, |
+ int32_t parameter2, |
+ int32_t parameter3, |
+ int32_t parameter4) { |
+ // Save the SP register before the call so we can restore it. |
+ int32_t sp_before_call = get_register(SP); |
+ |
+ // Setup parameters. |
+ set_register(R0, parameter0); |
+ set_register(R1, parameter1); |
+ set_register(R2, parameter2); |
+ set_register(R3, parameter3); |
+ |
+ // Reserve room for one stack parameter. |
+ int32_t stack_pointer = sp_before_call; |
+ stack_pointer -= kWordSize; |
+ |
+ // Make sure the activation frames are properly aligned. |
+ static const int kFrameAlignment = OS::ActivationFrameAlignment(); |
+ if (kFrameAlignment > 0) { |
+ stack_pointer = Utils::RoundDown(stack_pointer, kFrameAlignment); |
+ } |
+ |
+ // Write the fourth parameter to the stack and update register SP. |
+ *reinterpret_cast<int32_t*>(stack_pointer) = parameter4; |
+ set_register(SP, stack_pointer); |
+ |
+ // Prepare to execute the code at entry. |
+ set_register(PC, entry); |
+ // Put down marker for end of simulation. The simulator will stop simulation |
+ // when the PC reaches this value. By saving the "end simulation" value into |
+ // the LR the simulation stops when returning to this call point. |
+ set_register(LR, kEndSimulatingPC); |
+ |
+ // Remember the values of callee-saved registers. |
+ // The code below assumes that r9 is not used as sb (static base) in |
+ // simulator code and therefore is regarded as a callee-saved register. |
+ int32_t r4_val = get_register(R4); |
+ int32_t r5_val = get_register(R5); |
+ int32_t r6_val = get_register(R6); |
+ int32_t r7_val = get_register(R7); |
+ int32_t r8_val = get_register(R8); |
+ int32_t r9_val = get_register(R9); |
+ int32_t r10_val = get_register(R10); |
+ int32_t r11_val = get_register(R11); |
+ |
+ // Setup the callee-saved registers with a known value. To be able to check |
+ // that they are preserved properly across JS execution. |
+ int32_t callee_saved_value = icount_; |
+ set_register(R4, callee_saved_value); |
+ set_register(R5, callee_saved_value); |
+ set_register(R6, callee_saved_value); |
+ set_register(R7, callee_saved_value); |
+ set_register(R8, callee_saved_value); |
+ set_register(R9, callee_saved_value); |
+ set_register(R10, callee_saved_value); |
+ set_register(R11, callee_saved_value); |
+ |
+ // Start the simulation |
+ Execute(); |
+ |
+ // Check that the callee-saved registers have been preserved. |
+ ASSERT(callee_saved_value == get_register(R4)); |
+ ASSERT(callee_saved_value == get_register(R5)); |
+ ASSERT(callee_saved_value == get_register(R6)); |
+ ASSERT(callee_saved_value == get_register(R7)); |
+ ASSERT(callee_saved_value == get_register(R8)); |
+ ASSERT(callee_saved_value == get_register(R9)); |
+ ASSERT(callee_saved_value == get_register(R10)); |
+ ASSERT(callee_saved_value == get_register(R11)); |
+ |
+ // Restore callee-saved registers with the original value. |
+ set_register(R4, r4_val); |
+ set_register(R5, r5_val); |
+ set_register(R6, r6_val); |
+ set_register(R7, r7_val); |
+ set_register(R8, r8_val); |
+ set_register(R9, r9_val); |
+ set_register(R10, r10_val); |
+ set_register(R11, r11_val); |
+ |
+ // Restore the SP register and return R1:R0. |
+ set_register(SP, sp_before_call); |
+ return Utils::LowHighTo64Bits(get_register(R0), get_register(R1)); |
+} |
+ |
+ |
+void Simulator::Longjmp( |
+ int32_t pc, int32_t sp, int32_t fp, const Instance& object) { |
+ set_register(SP, sp); |
+ set_register(FP, fp); |
+ set_register(PC, pc); |
+ SimulatorSetjmpBuffer* buf = last_setjmp_buffer(); |
+ |
+ // Walk over all setjmp buffers (simulated --> C++ transitions) |
+ // and try to find the setjmp associated with the stack pointer. |
+ while (buf->link() != NULL && buf->link()->sp() <= sp) { |
+ buf = buf->link(); |
+ } |
+ ASSERT(buf != NULL); |
+ |
+ // Clean up stack memory of C++ frames. |
+ // TODO(regis): Revisit. |
+ // isolate->PrepareForUnwinding(reinterpret_cast<uword>(buf)); |
+ // isolate->ChangeStateToGeneratedCode(); |
+ set_register(kExceptionObjectReg, bit_cast<int32_t>(object.raw())); |
+ buf->Longjmp(); |
+} |
+ |
+} // namespace dart |
+ |
+#endif // !defined(HOST_ARCH_ARM) |
+ |
+#endif // defined TARGET_ARCH_ARM |