| Index: runtime/vm/simulator_arm.cc
|
| ===================================================================
|
| --- runtime/vm/simulator_arm.cc (revision 0)
|
| +++ runtime/vm/simulator_arm.cc (revision 0)
|
| @@ -0,0 +1,2740 @@
|
| +// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +#include <math.h> // for isnan.
|
| +#include <setjmp.h>
|
| +#include <stdlib.h>
|
| +#include <pthread.h>
|
| +
|
| +#include "vm/globals.h"
|
| +#if defined(TARGET_ARCH_ARM)
|
| +
|
| +// Only build the simulator if not compiling for real ARM hardware.
|
| +#if !defined(HOST_ARCH_ARM)
|
| +
|
| +#include "vm/simulator.h"
|
| +
|
| +#include "vm/assembler.h"
|
| +#include "vm/constants_arm.h"
|
| +#include "vm/disassembler.h"
|
| +#include "vm/native_arguments.h"
|
| +#include "vm/thread.h"
|
| +
|
| +namespace dart {
|
| +
|
| +DEFINE_FLAG(bool, trace_sim, false, "Trace simulator execution.");
|
| +DEFINE_FLAG(int, stop_sim_at, 0, "Address to stop simulator at.");
|
| +
|
| +
|
| +// This macro provides a platform independent use of sscanf. The reason for
|
| +// SScanF not being implemented in a platform independent way through
|
| +// OS in the same way as SNPrint is that the Windows C Run-Time
|
| +// Library does not provide vsscanf.
|
| +#define SScanF sscanf // NOLINT
|
| +
|
| +
|
| +// Unimplemented counter class for debugging and measurement purposes.
|
| +class StatsCounter {
|
| + public:
|
| + explicit StatsCounter(const char* name) {
|
| + UNIMPLEMENTED();
|
| + }
|
| +
|
| + void Increment() {
|
| + UNIMPLEMENTED();
|
| + }
|
| +};
|
| +
|
| +
|
| +// SimulatorSetjmpBuffer are linked together, and the last created one
|
| +// is referenced by the Simulator. When an exception is thrown, the exception
|
| +// runtime looks at where to jump and finds the corresponding
|
| +// SimulatorSetjmpBuffer based on the stack pointer of the exception handler.
|
| +// The runtime then does a Longjmp on that buffer to return to the simulator.
|
| +class SimulatorSetjmpBuffer {
|
| + public:
|
| + int Setjmp() { return setjmp(buffer_); }
|
| + void Longjmp() {
|
| + // "This" is now the last setjmp buffer.
|
| + simulator_->set_last_setjmp_buffer(this);
|
| + longjmp(buffer_, 1);
|
| + }
|
| +
|
| + explicit SimulatorSetjmpBuffer(Simulator* sim) {
|
| + simulator_ = sim;
|
| + link_ = sim->last_setjmp_buffer();
|
| + sim->set_last_setjmp_buffer(this);
|
| + sp_ = sim->get_register(SP);
|
| + }
|
| +
|
| + ~SimulatorSetjmpBuffer() {
|
| + ASSERT(simulator_->last_setjmp_buffer() == this);
|
| + simulator_->set_last_setjmp_buffer(link_);
|
| + }
|
| +
|
| + SimulatorSetjmpBuffer* link() { return link_; }
|
| +
|
| + int32_t sp() { return sp_; }
|
| +
|
| + private:
|
| + int32_t sp_;
|
| + Simulator* simulator_;
|
| + SimulatorSetjmpBuffer* link_;
|
| + jmp_buf buffer_;
|
| +
|
| + friend class Simulator;
|
| +};
|
| +
|
| +
|
| +// The SimulatorDebugger class is used by the simulator while debugging
|
| +// simulated ARM code.
|
| +class SimulatorDebugger {
|
| + public:
|
| + explicit SimulatorDebugger(Simulator* sim);
|
| + ~SimulatorDebugger();
|
| +
|
| + void Stop(Instr* instr, const char* message);
|
| + void Debug();
|
| + char* ReadLine(const char* prompt);
|
| +
|
| + private:
|
| + static const int32_t kSimulatorBreakpointInstr = // svc #kBreakpointSvcCode
|
| + ((AL << kConditionShift) | (0xf << 24) | kBreakpointSvcCode);
|
| + static const int32_t kNopInstr = // nop
|
| + ((AL << kConditionShift) | (0x32 << 20) | (0xf << 12));
|
| +
|
| + Simulator* sim_;
|
| +
|
| + bool GetValue(char* desc, uint32_t* value);
|
| + bool GetFValue(char* desc, float* value);
|
| + bool GetDValue(char* desc, double* value);
|
| +
|
| + // Set or delete a breakpoint. Returns true if successful.
|
| + bool SetBreakpoint(Instr* breakpc);
|
| + bool DeleteBreakpoint(Instr* breakpc);
|
| +
|
| + // Undo and redo all breakpoints. This is needed to bracket disassembly and
|
| + // execution to skip past breakpoints when run from the debugger.
|
| + void UndoBreakpoints();
|
| + void RedoBreakpoints();
|
| +};
|
| +
|
| +
|
| +SimulatorDebugger::SimulatorDebugger(Simulator* sim) {
|
| + sim_ = sim;
|
| +}
|
| +
|
| +
|
| +SimulatorDebugger::~SimulatorDebugger() {
|
| +}
|
| +
|
| +
|
| +void SimulatorDebugger::Stop(Instr* instr, const char* message) {
|
| + OS::Print("Simulator hit %s\n", message);
|
| + Debug();
|
| +}
|
| +
|
| +
|
| +static Register LookupCoreRegisterByName(const char* name) {
|
| + static const char* kNames[] = {
|
| + "r0", "r1", "r2", "r3",
|
| + "r4", "r5", "r6", "r7",
|
| + "r8", "r9", "r10", "r11",
|
| + "r12", "r13", "r14", "r15",
|
| + "pc", "lr", "sp", "ip",
|
| + "fp", "sl"
|
| + };
|
| + static const Register kRegisters[] = {
|
| + R0, R1, R2, R3,
|
| + R4, R5, R6, R7,
|
| + R8, R9, R10, R11,
|
| + R12, R13, R14, R15,
|
| + PC, LR, SP, IP,
|
| + FP, R10
|
| + };
|
| + ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters));
|
| + for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) {
|
| + if (strcmp(kNames[i], name) == 0) {
|
| + return kRegisters[i];
|
| + }
|
| + }
|
| + return kNoRegister;
|
| +}
|
| +
|
| +
|
| +static SRegister LookupSRegisterByName(const char* name) {
|
| + int reg_nr = -1;
|
| + bool ok = SScanF(name, "s%d", ®_nr);
|
| + if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfSRegisters)) {
|
| + return static_cast<SRegister>(reg_nr);
|
| + }
|
| + return kNoSRegister;
|
| +}
|
| +
|
| +
|
| +static DRegister LookupDRegisterByName(const char* name) {
|
| + int reg_nr = -1;
|
| + bool ok = SScanF(name, "d%d", ®_nr);
|
| + if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfDRegisters)) {
|
| + return static_cast<DRegister>(reg_nr);
|
| + }
|
| + return kNoDRegister;
|
| +}
|
| +
|
| +
|
| +bool SimulatorDebugger::GetValue(char* desc, uint32_t* value) {
|
| + Register reg = LookupCoreRegisterByName(desc);
|
| + if (reg != kNoRegister) {
|
| + if (reg == PC) {
|
| + *value = sim_->get_pc();
|
| + } else {
|
| + *value = sim_->get_register(reg);
|
| + }
|
| + return true;
|
| + }
|
| + if ((desc[0] == '*')) {
|
| + uint32_t addr;
|
| + if (GetValue(desc + 1, &addr)) {
|
| + *value = *(reinterpret_cast<uint32_t*>(addr));
|
| + return true;
|
| + }
|
| + }
|
| + bool retval = SScanF(desc, "0x%x", value) == 1;
|
| + if (!retval) {
|
| + retval = SScanF(desc, "%x", value) == 1;
|
| + }
|
| + return retval;
|
| +}
|
| +
|
| +
|
| +bool SimulatorDebugger::GetFValue(char* desc, float* value) {
|
| + SRegister sreg = LookupSRegisterByName(desc);
|
| + if (sreg != kNoSRegister) {
|
| + *value = sim_->get_sregister(sreg);
|
| + return true;
|
| + }
|
| + if ((desc[0] == '*')) {
|
| + uint32_t addr;
|
| + if (GetValue(desc + 1, &addr)) {
|
| + *value = *(reinterpret_cast<float*>(addr));
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +bool SimulatorDebugger::GetDValue(char* desc, double* value) {
|
| + DRegister dreg = LookupDRegisterByName(desc);
|
| + if (dreg != kNoDRegister) {
|
| + *value = sim_->get_dregister(dreg);
|
| + return true;
|
| + }
|
| + if ((desc[0] == '*')) {
|
| + uint32_t addr;
|
| + if (GetValue(desc + 1, &addr)) {
|
| + *value = *(reinterpret_cast<double*>(addr));
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) {
|
| + // Check if a breakpoint can be set. If not return without any side-effects.
|
| + if (sim_->break_pc_ != NULL) {
|
| + return false;
|
| + }
|
| +
|
| + // Set the breakpoint.
|
| + sim_->break_pc_ = breakpc;
|
| + sim_->break_instr_ = breakpc->InstructionBits();
|
| + // Not setting the breakpoint instruction in the code itself. It will be set
|
| + // when the debugger shell continues.
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| + }
|
| +
|
| + sim_->break_pc_ = NULL;
|
| + sim_->break_instr_ = 0;
|
| + return true;
|
| +}
|
| +
|
| +
|
| +void SimulatorDebugger::UndoBreakpoints() {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| + }
|
| +}
|
| +
|
| +
|
| +void SimulatorDebugger::RedoBreakpoints() {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(kSimulatorBreakpointInstr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void SimulatorDebugger::Debug() {
|
| + intptr_t last_pc = -1;
|
| + bool done = false;
|
| +
|
| +#define COMMAND_SIZE 63
|
| +#define ARG_SIZE 255
|
| +
|
| +#define STR(a) #a
|
| +#define XSTR(a) STR(a)
|
| +
|
| + char cmd[COMMAND_SIZE + 1];
|
| + char arg1[ARG_SIZE + 1];
|
| + char arg2[ARG_SIZE + 1];
|
| +
|
| + // make sure to have a proper terminating character if reaching the limit
|
| + cmd[COMMAND_SIZE] = 0;
|
| + arg1[ARG_SIZE] = 0;
|
| + arg2[ARG_SIZE] = 0;
|
| +
|
| + // Undo all set breakpoints while running in the debugger shell. This will
|
| + // make them invisible to all commands.
|
| + UndoBreakpoints();
|
| +
|
| + while (!done) {
|
| + if (last_pc != sim_->get_pc()) {
|
| + last_pc = sim_->get_pc();
|
| + Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize);
|
| + }
|
| + char* line = ReadLine("sim> ");
|
| + if (line == NULL) {
|
| + break;
|
| + } else {
|
| + // Use sscanf to parse the individual parts of the command line. At the
|
| + // moment no command expects more than two parameters.
|
| + int args = SScanF(line,
|
| + "%" XSTR(COMMAND_SIZE) "s "
|
| + "%" XSTR(ARG_SIZE) "s "
|
| + "%" XSTR(ARG_SIZE) "s",
|
| + cmd, arg1, arg2);
|
| + if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
|
| + OS::Print("c/cont -- continue execution\n"
|
| + "disasm -- disassemble instrs at current pc location\n"
|
| + " other variants are:\n"
|
| + " disasm <address>\n"
|
| + " disasm <address> <number_of_instructions>\n"
|
| + " by default 10 instrs are disassembled\n"
|
| + "del -- delete breakpoints\n"
|
| + "flags -- print flag values\n"
|
| + "gdb -- transfer control to gdb\n"
|
| + "h/help -- print this help string\n"
|
| + "break <address> -- set break point at specified address\n"
|
| + "p/print <reg or value or *addr> -- print integer value\n"
|
| + "pf/printfloat <sreg or *addr> -- print float value\n"
|
| + "pd/printdouble <dreg or *addr> -- print double value\n"
|
| + "po/printobject <*reg or *addr> -- print object\n"
|
| + "si/stepi -- single step an instruction\n"
|
| + "unstop -- if current pc is a stop instr make it a nop\n");
|
| + } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
| + sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
|
| + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
|
| + // Execute the one instruction we broke at with breakpoints disabled.
|
| + sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
|
| + // Leave the debugger shell.
|
| + done = true;
|
| + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
|
| + if (args == 2) {
|
| + uint32_t value;
|
| + if (GetValue(arg1, &value)) {
|
| + OS::Print("%s: %u 0x%x\n", arg1, value, value);
|
| + } else {
|
| + OS::Print("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + OS::Print("print <reg or value or *addr>\n");
|
| + }
|
| + } else if ((strcmp(cmd, "pf") == 0) || (strcmp(cmd, "printfloat") == 0)) {
|
| + if (args == 2) {
|
| + float fvalue;
|
| + if (GetFValue(arg1, &fvalue)) {
|
| + uint32_t value = bit_cast<uint32_t, float>(fvalue);
|
| + OS::Print("%s: 0%u 0x%x %.8g\n", arg1, value, value, fvalue);
|
| + } else {
|
| + OS::Print("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + OS::Print("printfloat <sreg or *addr>\n");
|
| + }
|
| + } else if ((strcmp(cmd, "pd") == 0) ||
|
| + (strcmp(cmd, "printdouble") == 0)) {
|
| + if (args == 2) {
|
| + double dvalue;
|
| + if (GetDValue(arg1, &dvalue)) {
|
| + uint64_t long_value = bit_cast<uint64_t, double>(dvalue);
|
| + OS::Print("%s: %llu 0x%llx %.8g\n",
|
| + arg1, long_value, long_value, dvalue);
|
| + } else {
|
| + OS::Print("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + OS::Print("printdouble <dreg or *addr>\n");
|
| + }
|
| + } else if ((strcmp(cmd, "po") == 0) ||
|
| + (strcmp(cmd, "printobject") == 0)) {
|
| + if (args == 2) {
|
| + uint32_t value;
|
| + // Make the dereferencing '*' optional.
|
| + if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) ||
|
| + GetValue(arg1, &value)) {
|
| + if (Isolate::Current()->heap()->Contains(value)) {
|
| + OS::Print("%s: \n", arg1);
|
| +#if defined(DEBUG)
|
| + const Object& obj = Object::Handle(
|
| + reinterpret_cast<RawObject*>(value));
|
| + obj.Print();
|
| +#endif // defined(DEBUG)
|
| + } else {
|
| + OS::Print("0x%x is not an object reference\n", value);
|
| + }
|
| + } else {
|
| + OS::Print("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + OS::Print("printobject <*reg or *addr>\n");
|
| + }
|
| + } else if (strcmp(cmd, "disasm") == 0) {
|
| + uint32_t start = 0;
|
| + uint32_t end = 0;
|
| + if (args == 1) {
|
| + start = sim_->get_pc();
|
| + end = start + (10 * Instr::kInstrSize);
|
| + } else if (args == 2) {
|
| + if (GetValue(arg1, &start)) {
|
| + // no length parameter passed, assume 10 instructions
|
| + end = start + (10 * Instr::kInstrSize);
|
| + }
|
| + } else {
|
| + uint32_t length;
|
| + if (GetValue(arg1, &start) && GetValue(arg2, &length)) {
|
| + end = start + (length * Instr::kInstrSize);
|
| + }
|
| + }
|
| +
|
| + Disassembler::Disassemble(start, end);
|
| + } else if (strcmp(cmd, "gdb") == 0) {
|
| + OS::Print("relinquishing control to gdb\n");
|
| + OS::DebugBreak();
|
| + OS::Print("regaining control from gdb\n");
|
| + } else if (strcmp(cmd, "break") == 0) {
|
| + if (args == 2) {
|
| + uint32_t addr;
|
| + if (GetValue(arg1, &addr)) {
|
| + if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) {
|
| + OS::Print("setting breakpoint failed\n");
|
| + }
|
| + } else {
|
| + OS::Print("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + OS::Print("break <addr>\n");
|
| + }
|
| + } else if (strcmp(cmd, "del") == 0) {
|
| + if (!DeleteBreakpoint(NULL)) {
|
| + OS::Print("deleting breakpoint failed\n");
|
| + }
|
| + } else if (strcmp(cmd, "flags") == 0) {
|
| + OS::Print("APSR: ");
|
| + OS::Print("N flag: %d; ", sim_->n_flag_);
|
| + OS::Print("Z flag: %d; ", sim_->z_flag_);
|
| + OS::Print("C flag: %d; ", sim_->c_flag_);
|
| + OS::Print("V flag: %d\n", sim_->v_flag_);
|
| + OS::Print("FPSCR: ");
|
| + OS::Print("N flag: %d; ", sim_->fp_n_flag_);
|
| + OS::Print("Z flag: %d; ", sim_->fp_z_flag_);
|
| + OS::Print("C flag: %d; ", sim_->fp_c_flag_);
|
| + OS::Print("V flag: %d\n", sim_->fp_v_flag_);
|
| + } else if (strcmp(cmd, "unstop") == 0) {
|
| + intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize;
|
| + Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc);
|
| + if (stop_instr->IsSvc() || stop_instr->IsBkpt()) {
|
| + stop_instr->SetInstructionBits(kNopInstr);
|
| + } else {
|
| + OS::Print("Not at debugger stop.\n");
|
| + }
|
| + } else {
|
| + OS::Print("Unknown command: %s\n", cmd);
|
| + }
|
| + }
|
| + delete[] line;
|
| + }
|
| +
|
| + // Add all the breakpoints back to stop execution and enter the debugger
|
| + // shell when hit.
|
| + RedoBreakpoints();
|
| +
|
| +#undef COMMAND_SIZE
|
| +#undef ARG_SIZE
|
| +
|
| +#undef STR
|
| +#undef XSTR
|
| +}
|
| +
|
| +char* SimulatorDebugger::ReadLine(const char* prompt) {
|
| + char* result = NULL;
|
| + char line_buf[256];
|
| + int offset = 0;
|
| + bool keep_going = true;
|
| + fprintf(stdout, "%s", prompt);
|
| + fflush(stdout);
|
| + while (keep_going) {
|
| + if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) {
|
| + // fgets got an error. Just give up.
|
| + if (result != NULL) {
|
| + delete[] result;
|
| + }
|
| + return NULL;
|
| + }
|
| + int len = strlen(line_buf);
|
| + if (len > 1 &&
|
| + line_buf[len - 2] == '\\' &&
|
| + line_buf[len - 1] == '\n') {
|
| + // When we read a line that ends with a "\" we remove the escape and
|
| + // append the remainder.
|
| + line_buf[len - 2] = '\n';
|
| + line_buf[len - 1] = 0;
|
| + len -= 1;
|
| + } else if ((len > 0) && (line_buf[len - 1] == '\n')) {
|
| + // Since we read a new line we are done reading the line. This
|
| + // will exit the loop after copying this buffer into the result.
|
| + keep_going = false;
|
| + }
|
| + if (result == NULL) {
|
| + // Allocate the initial result and make room for the terminating '\0'
|
| + result = new char[len + 1];
|
| + if (result == NULL) {
|
| + // OOM, so cannot readline anymore.
|
| + return NULL;
|
| + }
|
| + } else {
|
| + // Allocate a new result with enough room for the new addition.
|
| + int new_len = offset + len + 1;
|
| + char* new_result = new char[new_len];
|
| + if (new_result == NULL) {
|
| + // OOM, free the buffer allocated so far and return NULL.
|
| + delete[] result;
|
| + return NULL;
|
| + } else {
|
| + // Copy the existing input into the new array and set the new
|
| + // array as the result.
|
| + memmove(new_result, result, offset);
|
| + delete[] result;
|
| + result = new_result;
|
| + }
|
| + }
|
| + // Copy the newly read line into the result.
|
| + memmove(result + offset, line_buf, len);
|
| + offset += len;
|
| + }
|
| + ASSERT(result != NULL);
|
| + result[offset] = '\0';
|
| + return result;
|
| +}
|
| +
|
| +
|
| +// Synchronization primitives support.
|
| +Mutex* Simulator::exclusive_access_lock_ = NULL;
|
| +Simulator::AddressTag Simulator::exclusive_access_state_[kNumAddressTags];
|
| +int Simulator::next_address_tag_;
|
| +
|
| +
|
| +void Simulator::SetExclusiveAccess(uword addr) {
|
| + Isolate* isolate = Isolate::Current();
|
| + ASSERT(isolate != NULL);
|
| + int i = 0;
|
| + while ((i < kNumAddressTags) &&
|
| + (exclusive_access_state_[i].isolate != isolate)) {
|
| + i++;
|
| + }
|
| + if (i == kNumAddressTags) {
|
| + i = next_address_tag_;
|
| + if (++next_address_tag_ == kNumAddressTags) next_address_tag_ = 0;
|
| + exclusive_access_state_[i].isolate = isolate;
|
| + }
|
| + exclusive_access_state_[i].addr = addr;
|
| +}
|
| +
|
| +
|
| +bool Simulator::HasExclusiveAccessAndOpen(uword addr) {
|
| + Isolate* isolate = Isolate::Current();
|
| + ASSERT(isolate != NULL);
|
| + bool result = false;
|
| + for (int i = 0; i < kNumAddressTags; i++) {
|
| + if (exclusive_access_state_[i].isolate == isolate) {
|
| + if (exclusive_access_state_[i].addr == addr) {
|
| + result = true;
|
| + }
|
| + exclusive_access_state_[i].addr = NULL;
|
| + continue;
|
| + }
|
| + if (exclusive_access_state_[i].addr == addr) {
|
| + exclusive_access_state_[i].addr = NULL;
|
| + }
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +
|
| +void Simulator::InitOnce() {
|
| + // Setup exclusive access state.
|
| + exclusive_access_lock_ = new Mutex();
|
| + for (int i = 0; i < kNumAddressTags; i++) {
|
| + exclusive_access_state_[i].isolate = NULL;
|
| + exclusive_access_state_[i].addr = NULL;
|
| + }
|
| + next_address_tag_ = 0;
|
| +}
|
| +
|
| +
|
| +Simulator::Simulator() {
|
| + // Setup simulator support first. Some of this information is needed to
|
| + // setup the architecture state.
|
| + // We allocate the stack here, the size is computed as the sum of
|
| + // the size specified by the user and the buffer space needed for
|
| + // handling stack overflow exceptions. To be safe in potential
|
| + // stack underflows we also add some underflow buffer space.
|
| + stack_ = new char[(Isolate::GetSpecifiedStackSize() +
|
| + Isolate::kStackSizeBuffer +
|
| + kSimulatorStackUnderflowSize)];
|
| + pc_modified_ = false;
|
| + icount_ = 0;
|
| + break_pc_ = NULL;
|
| + break_instr_ = 0;
|
| + last_setjmp_buffer_ = NULL;
|
| +
|
| + // Setup architecture state.
|
| + // All registers are initialized to zero to start with.
|
| + for (int i = 0; i < kNumberOfCpuRegisters; i++) {
|
| + registers_[i] = 0;
|
| + }
|
| + n_flag_ = false;
|
| + z_flag_ = false;
|
| + c_flag_ = false;
|
| + v_flag_ = false;
|
| +
|
| + // The sp is initialized to point to the bottom (high address) of the
|
| + // allocated stack area.
|
| + registers_[SP] = StackTop();
|
| + // The lr and pc are initialized to a known bad value that will cause an
|
| + // access violation if the simulator ever tries to execute it.
|
| + registers_[PC] = kBadLR;
|
| + registers_[LR] = kBadLR;
|
| +
|
| + // All double-precision registers are initialized to zero.
|
| + for (int i = 0; i < kNumberOfDRegisters; i++) {
|
| + dregisters_[i] = 0.0;
|
| + }
|
| + // Since VFP registers are overlapping, single-precision registers should
|
| + // already be initialized.
|
| + ASSERT(2*kNumberOfDRegisters >= kNumberOfSRegisters);
|
| + for (int i = 0; i < kNumberOfSRegisters; i++) {
|
| + ASSERT(sregisters_[i] == 0.0);
|
| + }
|
| + fp_n_flag_ = false;
|
| + fp_z_flag_ = false;
|
| + fp_c_flag_ = false;
|
| + fp_v_flag_ = false;
|
| +}
|
| +
|
| +
|
| +Simulator::~Simulator() {
|
| + delete[] stack_;
|
| + Isolate::Current()->set_simulator(NULL);
|
| +}
|
| +
|
| +
|
| +// When the generated code calls an external reference we need to catch that in
|
| +// the simulator. The external reference will be a function compiled for the
|
| +// host architecture. We need to call that function instead of trying to
|
| +// execute it with the simulator. We do that by redirecting the external
|
| +// reference to a svc (supervisor call) instruction that is handled by
|
| +// the simulator. We write the original destination of the jump just at a known
|
| +// offset from the svc instruction so the simulator knows what to call.
|
| +class Redirection {
|
| + public:
|
| + uword address_of_svc_instruction() {
|
| + return reinterpret_cast<uword>(&svc_instruction_);
|
| + }
|
| +
|
| + void* external_function() const { return external_function_; }
|
| +
|
| + uint32_t argument_count() const { return argument_count_; }
|
| +
|
| + static Redirection* Get(void* external_function, uint32_t argument_count) {
|
| + Redirection* current;
|
| + for (current = list_; current != NULL; current = current->next_) {
|
| + if (current->external_function_ == external_function) return current;
|
| + }
|
| + return new Redirection(external_function, argument_count);
|
| + }
|
| +
|
| + static Redirection* FromSvcInstruction(Instr* svc_instruction) {
|
| + char* addr_of_svc = reinterpret_cast<char*>(svc_instruction);
|
| + char* addr_of_redirection =
|
| + addr_of_svc - OFFSET_OF(Redirection, svc_instruction_);
|
| + return reinterpret_cast<Redirection*>(addr_of_redirection);
|
| + }
|
| +
|
| + private:
|
| + static const int32_t kRedirectSvcInstruction =
|
| + ((AL << kConditionShift) | (0xf << 24) | kRedirectionSvcCode);
|
| + Redirection(void* external_function, uint32_t argument_count)
|
| + : external_function_(external_function),
|
| + argument_count_(argument_count),
|
| + svc_instruction_(kRedirectSvcInstruction),
|
| + next_(list_) {
|
| + list_ = this;
|
| + }
|
| +
|
| + void* external_function_;
|
| + const uint32_t argument_count_;
|
| + uint32_t svc_instruction_;
|
| + Redirection* next_;
|
| + static Redirection* list_;
|
| +};
|
| +
|
| +
|
| +Redirection* Redirection::list_ = NULL;
|
| +
|
| +
|
| +uword Simulator::RedirectExternalReference(void* function,
|
| + uint32_t argument_count) {
|
| + Redirection* redirection = Redirection::Get(function, argument_count);
|
| + return redirection->address_of_svc_instruction();
|
| +}
|
| +
|
| +
|
| +// Get the active Simulator for the current isolate.
|
| +Simulator* Simulator::Current() {
|
| + Simulator* simulator = Isolate::Current()->simulator();
|
| + if (simulator == NULL) {
|
| + simulator = new Simulator();
|
| + Isolate::Current()->set_simulator(simulator);
|
| + }
|
| + return simulator;
|
| +}
|
| +
|
| +
|
| +// Sets the register in the architecture state. It will also deal with updating
|
| +// Simulator internal state for special registers such as PC.
|
| +void Simulator::set_register(Register reg, int32_t value) {
|
| + ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters));
|
| + if (reg == PC) {
|
| + pc_modified_ = true;
|
| + }
|
| + registers_[reg] = value;
|
| +}
|
| +
|
| +
|
| +// Get the register from the architecture state. This function does handle
|
| +// the special case of accessing the PC register.
|
| +int32_t Simulator::get_register(Register reg) const {
|
| + ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters));
|
| + return registers_[reg] + ((reg == PC) ? Instr::kPCReadOffset : 0);
|
| +}
|
| +
|
| +
|
| +// Raw access to the PC register.
|
| +void Simulator::set_pc(int32_t value) {
|
| + pc_modified_ = true;
|
| + registers_[PC] = value;
|
| +}
|
| +
|
| +
|
| +// Raw access to the PC register without the special adjustment when reading.
|
| +int32_t Simulator::get_pc() const {
|
| + return registers_[PC];
|
| +}
|
| +
|
| +
|
| +// Accessors for VFP register state.
|
| +void Simulator::set_sregister(SRegister reg, float value) {
|
| + ASSERT((reg >= 0) && (reg < kNumberOfSRegisters));
|
| + sregisters_[reg] = value;
|
| +}
|
| +
|
| +
|
| +float Simulator::get_sregister(SRegister reg) const {
|
| + ASSERT((reg >= 0) && (reg < kNumberOfSRegisters));
|
| + return sregisters_[reg];
|
| +}
|
| +
|
| +
|
| +void Simulator::set_dregister(DRegister reg, double value) {
|
| + ASSERT((reg >= 0) && (reg < kNumberOfDRegisters));
|
| + dregisters_[reg] = value;
|
| +}
|
| +
|
| +
|
| +double Simulator::get_dregister(DRegister reg) const {
|
| + ASSERT((reg >= 0) && (reg < kNumberOfDRegisters));
|
| + return dregisters_[reg];
|
| +}
|
| +
|
| +
|
| +void Simulator::HandleIllegalAccess(uword addr, Instr* instr) {
|
| + uword fault_pc = get_pc();
|
| + // The debugger will not be able to single step past this instruction, but
|
| + // it will be possible to disassemble the code and inspect registers.
|
| + char buffer[128];
|
| + snprintf(buffer, sizeof(buffer),
|
| + "illegal memory access at 0x%x, pc=0x%x\n",
|
| + addr, fault_pc);
|
| + SimulatorDebugger dbg(this);
|
| + dbg.Stop(instr, buffer);
|
| + // The debugger will return control in non-interactive mode.
|
| + FATAL("Cannot continue execution after illegal memory access.");
|
| +}
|
| +
|
| +
|
| +// Processor versions prior to ARMv7 could not do unaligned reads and writes.
|
| +// On some ARM platforms an interrupt is caused. On others it does a funky
|
| +// rotation thing. However, from version v7, unaligned access is supported.
|
| +// Note that simulator runs have the runtime system running directly on the host
|
| +// system and only generated code is executed in the simulator. Since the host
|
| +// is typically IA32 we will get the correct ARMv7-like behaviour on unaligned
|
| +// accesses, but we should actually not generate code accessing unaligned data,
|
| +// so we still want to know and abort if we encounter such code.
|
| +void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) {
|
| + // The debugger will not be able to single step past this instruction, but
|
| + // it will be possible to disassemble the code and inspect registers.
|
| + char buffer[64];
|
| + snprintf(buffer, sizeof(buffer),
|
| + "unaligned %s at 0x%x, pc=%p\n", msg, addr, instr);
|
| + SimulatorDebugger dbg(this);
|
| + dbg.Stop(instr, buffer);
|
| + // The debugger will return control in non-interactive mode.
|
| + FATAL("Cannot continue execution after unaligned access.");
|
| +}
|
| +
|
| +
|
| +int Simulator::ReadW(uword addr, Instr* instr) {
|
| + static StatsCounter counter_read_w("Simulated word reads");
|
| + counter_read_w.Increment();
|
| + if ((addr & 3) == 0) {
|
| + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
| + return *ptr;
|
| + }
|
| + UnalignedAccess("read", addr, instr);
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteW(uword addr, int value, Instr* instr) {
|
| + static StatsCounter counter_write_w("Simulated word writes");
|
| + counter_write_w.Increment();
|
| + if ((addr & 3) == 0) {
|
| + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| + }
|
| + UnalignedAccess("write", addr, instr);
|
| +}
|
| +
|
| +
|
| +uint16_t Simulator::ReadHU(uword addr, Instr* instr) {
|
| + static StatsCounter counter_read_hu("Simulated unsigned halfword reads");
|
| + counter_read_hu.Increment();
|
| + if ((addr & 1) == 0) {
|
| + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
| + return *ptr;
|
| + }
|
| + UnalignedAccess("unsigned halfword read", addr, instr);
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +int16_t Simulator::ReadH(uword addr, Instr* instr) {
|
| + static StatsCounter counter_read_h("Simulated signed halfword reads");
|
| + counter_read_h.Increment();
|
| + if ((addr & 1) == 0) {
|
| + int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
| + return *ptr;
|
| + }
|
| + UnalignedAccess("signed halfword read", addr, instr);
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) {
|
| + static StatsCounter counter_write_h("Simulated halfword writes");
|
| + counter_write_h.Increment();
|
| + if ((addr & 1) == 0) {
|
| + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| + }
|
| + UnalignedAccess("halfword write", addr, instr);
|
| +}
|
| +
|
| +
|
| +uint8_t Simulator::ReadBU(uword addr) {
|
| + static StatsCounter counter_read_bu("Simulated unsigned byte reads");
|
| + counter_read_bu.Increment();
|
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +int8_t Simulator::ReadB(uword addr) {
|
| + static StatsCounter counter_read_b("Simulated signed byte reads");
|
| + counter_read_b.Increment();
|
| + int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteB(uword addr, uint8_t value) {
|
| + static StatsCounter counter_write_b("Simulated byte writes");
|
| + counter_write_b.Increment();
|
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
| + *ptr = value;
|
| +}
|
| +
|
| +
|
| +// Synchronization primitives support.
|
| +void Simulator::ClearExclusive() {
|
| + // This lock is initialized in Simulator::InitOnce().
|
| + MutexLocker ml(exclusive_access_lock_);
|
| + // Set exclusive access to open state for this isolate.
|
| + HasExclusiveAccessAndOpen(NULL);
|
| +}
|
| +
|
| +
|
| +int Simulator::ReadExclusiveW(uword addr, Instr* instr) {
|
| + // This lock is initialized in Simulator::InitOnce().
|
| + MutexLocker ml(exclusive_access_lock_);
|
| + SetExclusiveAccess(addr);
|
| + return ReadW(addr, instr);
|
| +}
|
| +
|
| +
|
| +int Simulator::WriteExclusiveW(uword addr, int value, Instr* instr) {
|
| + // This lock is initialized in Simulator::InitOnce().
|
| + MutexLocker ml(exclusive_access_lock_);
|
| + bool write_allowed = HasExclusiveAccessAndOpen(addr);
|
| + if (write_allowed) {
|
| + WriteW(addr, value, instr);
|
| + return 0; // Success.
|
| + }
|
| + return 1; // Failure.
|
| +}
|
| +
|
| +
|
| +uword Simulator::CompareExchange(uword* address,
|
| + uword compare_value,
|
| + uword new_value) {
|
| + // This lock is initialized in Simulator::InitOnce().
|
| + MutexLocker ml(exclusive_access_lock_);
|
| + uword value = *address;
|
| + if (value == compare_value) {
|
| + *address = new_value;
|
| + // Same effect on exclusive access state as a successful STREX.
|
| + HasExclusiveAccessAndOpen(reinterpret_cast<uword>(address));
|
| + } else {
|
| + // Same effect on exclusive access state as an LDREX.
|
| + SetExclusiveAccess(reinterpret_cast<uword>(address));
|
| + }
|
| + return value;
|
| +}
|
| +
|
| +
|
| +// Returns the top of the stack area to enable checking for stack pointer
|
| +// validity.
|
| +uintptr_t Simulator::StackTop() const {
|
| + // To be safe in potential stack underflows we leave some buffer above and
|
| + // set the stack top.
|
| + return reinterpret_cast<uintptr_t>(stack_) +
|
| + (Isolate::GetSpecifiedStackSize() + Isolate::kStackSizeBuffer);
|
| +}
|
| +
|
| +
|
| +// Unsupported instructions use Format to print an error and stop execution.
|
| +void Simulator::Format(Instr* instr, const char* format) {
|
| + OS::Print("Simulator found unsupported instruction:\n 0x%p: %s\n",
|
| + instr,
|
| + format);
|
| + UNIMPLEMENTED();
|
| +}
|
| +
|
| +
|
| +// Checks if the current instruction should be executed based on its
|
| +// condition bits.
|
| +bool Simulator::ConditionallyExecute(Instr* instr) {
|
| + switch (instr->ConditionField()) {
|
| + case EQ: return z_flag_;
|
| + case NE: return !z_flag_;
|
| + case CS: return c_flag_;
|
| + case CC: return !c_flag_;
|
| + case MI: return n_flag_;
|
| + case PL: return !n_flag_;
|
| + case VS: return v_flag_;
|
| + case VC: return !v_flag_;
|
| + case HI: return c_flag_ && !z_flag_;
|
| + case LS: return !c_flag_ || z_flag_;
|
| + case GE: return n_flag_ == v_flag_;
|
| + case LT: return n_flag_ != v_flag_;
|
| + case GT: return !z_flag_ && (n_flag_ == v_flag_);
|
| + case LE: return z_flag_ || (n_flag_ != v_flag_);
|
| + case AL: return true;
|
| + default: UNREACHABLE();
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +// Calculate and set the Negative and Zero flags.
|
| +void Simulator::SetNZFlags(int32_t val) {
|
| + n_flag_ = (val < 0);
|
| + z_flag_ = (val == 0);
|
| +}
|
| +
|
| +
|
| +// Set the Carry flag.
|
| +void Simulator::SetCFlag(bool val) {
|
| + c_flag_ = val;
|
| +}
|
| +
|
| +
|
| +// Set the oVerflow flag.
|
| +void Simulator::SetVFlag(bool val) {
|
| + v_flag_ = val;
|
| +}
|
| +
|
| +
|
| +// Calculate C flag value for additions.
|
| +bool Simulator::CarryFrom(int32_t left, int32_t right) {
|
| + uint32_t uleft = static_cast<uint32_t>(left);
|
| + uint32_t uright = static_cast<uint32_t>(right);
|
| + uint32_t urest = 0xffffffffU - uleft;
|
| +
|
| + return (uright > urest);
|
| +}
|
| +
|
| +
|
| +// Calculate C flag value for subtractions.
|
| +bool Simulator::BorrowFrom(int32_t left, int32_t right) {
|
| + uint32_t uleft = static_cast<uint32_t>(left);
|
| + uint32_t uright = static_cast<uint32_t>(right);
|
| +
|
| + return (uright > uleft);
|
| +}
|
| +
|
| +
|
| +// Calculate V flag value for additions and subtractions.
|
| +bool Simulator::OverflowFrom(int32_t alu_out,
|
| + int32_t left, int32_t right, bool addition) {
|
| + bool overflow;
|
| + if (addition) {
|
| + // operands have the same sign
|
| + overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
|
| + // and operands and result have different sign
|
| + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
| + } else {
|
| + // operands have different signs
|
| + overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
|
| + // and first operand and result have different signs
|
| + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
| + }
|
| + return overflow;
|
| +}
|
| +
|
| +
|
| +// Addressing Mode 1 - Data-processing operands:
|
| +// Get the value based on the shifter_operand with register.
|
| +int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) {
|
| + Shift shift = instr->ShiftField();
|
| + int shift_amount = instr->ShiftAmountField();
|
| + int32_t result = get_register(instr->RmField());
|
| + if (instr->Bit(4) == 0) {
|
| + // by immediate
|
| + if ((shift == ROR) && (shift_amount == 0)) {
|
| + UNIMPLEMENTED();
|
| + return result;
|
| + } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
|
| + shift_amount = 32;
|
| + }
|
| + switch (shift) {
|
| + case ASR: {
|
| + if (shift_amount == 0) {
|
| + if (result < 0) {
|
| + result = 0xffffffff;
|
| + *carry_out = true;
|
| + } else {
|
| + result = 0;
|
| + *carry_out = false;
|
| + }
|
| + } else {
|
| + result >>= (shift_amount - 1);
|
| + *carry_out = (result & 1) == 1;
|
| + result >>= 1;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LSL: {
|
| + if (shift_amount == 0) {
|
| + *carry_out = c_flag_;
|
| + } else {
|
| + result <<= (shift_amount - 1);
|
| + *carry_out = (result < 0);
|
| + result <<= 1;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LSR: {
|
| + if (shift_amount == 0) {
|
| + result = 0;
|
| + *carry_out = c_flag_;
|
| + } else {
|
| + uint32_t uresult = static_cast<uint32_t>(result);
|
| + uresult >>= (shift_amount - 1);
|
| + *carry_out = (uresult & 1) == 1;
|
| + uresult >>= 1;
|
| + result = static_cast<int32_t>(uresult);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case ROR: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| +
|
| + default: {
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + } else {
|
| + // by register
|
| + Register rs = instr->RsField();
|
| + shift_amount = get_register(rs) &0xff;
|
| + switch (shift) {
|
| + case ASR: {
|
| + if (shift_amount == 0) {
|
| + *carry_out = c_flag_;
|
| + } else if (shift_amount < 32) {
|
| + result >>= (shift_amount - 1);
|
| + *carry_out = (result & 1) == 1;
|
| + result >>= 1;
|
| + } else {
|
| + ASSERT(shift_amount >= 32);
|
| + if (result < 0) {
|
| + *carry_out = true;
|
| + result = 0xffffffff;
|
| + } else {
|
| + *carry_out = false;
|
| + result = 0;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LSL: {
|
| + if (shift_amount == 0) {
|
| + *carry_out = c_flag_;
|
| + } else if (shift_amount < 32) {
|
| + result <<= (shift_amount - 1);
|
| + *carry_out = (result < 0);
|
| + result <<= 1;
|
| + } else if (shift_amount == 32) {
|
| + *carry_out = (result & 1) == 1;
|
| + result = 0;
|
| + } else {
|
| + ASSERT(shift_amount > 32);
|
| + *carry_out = false;
|
| + result = 0;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LSR: {
|
| + if (shift_amount == 0) {
|
| + *carry_out = c_flag_;
|
| + } else if (shift_amount < 32) {
|
| + uint32_t uresult = static_cast<uint32_t>(result);
|
| + uresult >>= (shift_amount - 1);
|
| + *carry_out = (uresult & 1) == 1;
|
| + uresult >>= 1;
|
| + result = static_cast<int32_t>(uresult);
|
| + } else if (shift_amount == 32) {
|
| + *carry_out = (result < 0);
|
| + result = 0;
|
| + } else {
|
| + *carry_out = false;
|
| + result = 0;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case ROR: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| +
|
| + default: {
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +
|
| +// Addressing Mode 1 - Data-processing operands:
|
| +// Get the value based on the shifter_operand with immediate.
|
| +int32_t Simulator::GetImm(Instr* instr, bool* carry_out) {
|
| + int rotate = instr->RotateField() * 2;
|
| + int immed8 = instr->Immed8Field();
|
| + int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
|
| + *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
|
| + return imm;
|
| +}
|
| +
|
| +
|
| +static int count_bits(int bit_vector) {
|
| + int count = 0;
|
| + while (bit_vector != 0) {
|
| + if ((bit_vector & 1) != 0) {
|
| + count++;
|
| + }
|
| + bit_vector >>= 1;
|
| + }
|
| + return count;
|
| +}
|
| +
|
| +
|
| +// Addressing Mode 4 - Load and Store Multiple
|
| +void Simulator::HandleRList(Instr* instr, bool load) {
|
| + Register rn = instr->RnField();
|
| + int32_t rn_val = get_register(rn);
|
| + int rlist = instr->RlistField();
|
| + int num_regs = count_bits(rlist);
|
| +
|
| + uword address = 0;
|
| + uword end_address = 0;
|
| + switch (instr->PUField()) {
|
| + case 0: {
|
| + // Print("da");
|
| + address = rn_val - (num_regs * 4) + 4;
|
| + end_address = rn_val + 4;
|
| + rn_val = rn_val - (num_regs * 4);
|
| + break;
|
| + }
|
| + case 1: {
|
| + // Print("ia");
|
| + address = rn_val;
|
| + end_address = rn_val + (num_regs * 4);
|
| + rn_val = rn_val + (num_regs * 4);
|
| + break;
|
| + }
|
| + case 2: {
|
| + // Print("db");
|
| + address = rn_val - (num_regs * 4);
|
| + end_address = rn_val;
|
| + rn_val = address;
|
| + break;
|
| + }
|
| + case 3: {
|
| + // Print("ib");
|
| + address = rn_val + 4;
|
| + end_address = rn_val + (num_regs * 4) + 4;
|
| + rn_val = rn_val + (num_regs * 4);
|
| + break;
|
| + }
|
| + default: {
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + if (IsIllegalAddress(address)) {
|
| + HandleIllegalAccess(address, instr);
|
| + } else {
|
| + if (instr->HasW()) {
|
| + set_register(rn, rn_val);
|
| + }
|
| + int reg = 0;
|
| + while (rlist != 0) {
|
| + if ((rlist & 1) != 0) {
|
| + if (load) {
|
| + set_register(static_cast<Register>(reg), ReadW(address, instr));
|
| + } else {
|
| + WriteW(address, get_register(static_cast<Register>(reg)), instr);
|
| + }
|
| + address += 4;
|
| + }
|
| + reg++;
|
| + rlist >>= 1;
|
| + }
|
| + ASSERT(end_address == address);
|
| + }
|
| +}
|
| +
|
| +
|
| +// Calls into the Dart runtime are based on this simple interface.
|
| +typedef void (*SimulatorRuntimeCall)(NativeArguments arguments);
|
| +
|
| +
|
| +static void PrintExternalCallTrace(intptr_t external,
|
| + NativeArguments arguments) {
|
| + // TODO(regis): Do a reverse lookup on this address and print the symbol.
|
| + UNIMPLEMENTED();
|
| +}
|
| +
|
| +
|
| +void Simulator::SupervisorCall(Instr* instr) {
|
| + int svc = instr->SvcField();
|
| + switch (svc) {
|
| + case kRedirectionSvcCode: {
|
| + SimulatorSetjmpBuffer buffer(this);
|
| +
|
| + if (!setjmp(buffer.buffer_)) {
|
| + NativeArguments arguments;
|
| + ASSERT(sizeof(NativeArguments) == 4*kWordSize);
|
| + arguments.isolate_ = reinterpret_cast<Isolate*>(get_register(R0));
|
| + arguments.argc_tag_ = get_register(R1);
|
| + arguments.argv_ = reinterpret_cast<RawObject*(*)[]>(get_register(R2));
|
| + arguments.retval_ = reinterpret_cast<RawObject**>(get_register(R3));
|
| +
|
| + int32_t saved_lr = get_register(LR);
|
| + Redirection* redirection = Redirection::FromSvcInstruction(instr);
|
| + intptr_t external =
|
| + reinterpret_cast<intptr_t>(redirection->external_function());
|
| + SimulatorRuntimeCall target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + if (FLAG_trace_sim) {
|
| + PrintExternalCallTrace(external, arguments);
|
| + }
|
| + target(arguments);
|
| +
|
| + // Zap caller-saved registers, since the actual runtime call could have
|
| + // used them.
|
| + set_register(R2, icount_);
|
| + set_register(R3, icount_);
|
| + set_register(IP, icount_);
|
| + set_register(LR, icount_);
|
| + float zap_fvalue = static_cast<float>(icount_);
|
| + for (int i = S0; i <= S15; i++) {
|
| + set_sregister(static_cast<SRegister>(i), zap_fvalue);
|
| + }
|
| +#ifdef VFPv3_D32
|
| + double zap_dvalue = static_cast<double>(icount_);
|
| + for (int i = D16; i <= D31; i++) {
|
| + set_dregister(static_cast<DRegister>(i), zap_dvalue);
|
| + }
|
| +#endif // VFPv3_D32
|
| +
|
| + // Zap result register pair R0:R1 and return.
|
| + set_register(R0, icount_);
|
| + set_register(R1, icount_);
|
| + set_pc(saved_lr);
|
| + }
|
| +
|
| + break;
|
| + }
|
| + case kBreakpointSvcCode: {
|
| + SimulatorDebugger dbg(this);
|
| + dbg.Stop(instr, "breakpoint");
|
| + break;
|
| + }
|
| + case kStopMessageSvcCode: {
|
| + SimulatorDebugger dbg(this);
|
| + const char* message = *reinterpret_cast<const char**>(
|
| + reinterpret_cast<intptr_t>(instr) - Instr::kInstrSize);
|
| + set_pc(get_pc() + Instr::kInstrSize);
|
| + dbg.Stop(instr, message);
|
| + break;
|
| + }
|
| + case kWordSpillMarkerSvcCode: {
|
| + static StatsCounter counter_spill_w("Simulated word spills");
|
| + counter_spill_w.Increment();
|
| + break;
|
| + }
|
| + case kDWordSpillMarkerSvcCode: {
|
| + static StatsCounter counter_spill_d("Simulated double word spills");
|
| + counter_spill_d.Increment();
|
| + break;
|
| + }
|
| + default: {
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +// Handle execution based on instruction types.
|
| +
|
| +// Instruction types 0 and 1 are both rolled into one function because they
|
| +// only differ in the handling of the shifter_operand.
|
| +void Simulator::DecodeType01(Instr* instr) {
|
| + if (!instr->IsDataProcessing()) {
|
| + // miscellaneous, multiply, sync primitives, extra loads and stores.
|
| + if (instr->IsMiscellaneous()) {
|
| + switch (instr->Bits(4, 3)) {
|
| + case 1: {
|
| + ASSERT(instr->Bits(21, 2) == 0x3);
|
| + // Format(instr, "clz'cond 'rd, 'rm");
|
| + Register rm = instr->RmField();
|
| + Register rd = instr->RdField();
|
| + int32_t rm_val = get_register(rm);
|
| + int32_t rd_val = 0;
|
| + if (rm_val != 0) {
|
| + while (rm_val > 0) {
|
| + rd_val++;
|
| + rm_val <<= 1;
|
| + }
|
| + } else {
|
| + rd_val = 32;
|
| + }
|
| + set_register(rd, rd_val);
|
| + break;
|
| + }
|
| + case 3: {
|
| + ASSERT(instr->Bits(21, 2) == 0x1);
|
| + // Format(instr, "blx'cond 'rm");
|
| + Register rm = instr->RmField();
|
| + int32_t rm_val = get_register(rm);
|
| + intptr_t pc = get_pc();
|
| + set_register(LR, pc + Instr::kInstrSize);
|
| + set_pc(rm_val);
|
| + break;
|
| + }
|
| + case 7: {
|
| + if (instr->Bits(21, 2) == 0x1) {
|
| + // Format(instr, "bkpt #'imm12_4");
|
| + SimulatorDebugger dbg(this);
|
| + set_pc(get_pc() + Instr::kInstrSize);
|
| + char buffer[32];
|
| + snprintf(buffer, sizeof(buffer), "bkpt #0x%x", instr->BkptField());
|
| + dbg.Stop(instr, buffer);
|
| + } else {
|
| + // Format(instr, "smc'cond");
|
| + UNIMPLEMENTED();
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + } else if (instr->IsMultiplyOrSyncPrimitive()) {
|
| + if (instr->Bit(24) == 0) {
|
| + // multiply instructions.
|
| + Register rn = instr->RnField();
|
| + Register rd = instr->RdField();
|
| + Register rs = instr->RsField();
|
| + Register rm = instr->RmField();
|
| + int32_t rm_val = get_register(rm);
|
| + int32_t rs_val = get_register(rs);
|
| + int32_t rd_val = 0;
|
| + switch (instr->Bits(21, 3)) {
|
| + case 1:
|
| + // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
|
| + // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
|
| + case 3: {
|
| + // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
|
| + // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
|
| + rd_val = get_register(rd);
|
| + // fall through
|
| + }
|
| + case 0: {
|
| + // Registers rd, rn, rm are encoded as rn, rm, rs.
|
| + // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
|
| + int32_t alu_out = rm_val * rs_val;
|
| + if (instr->Bits(21, 3) == 3) { // mls
|
| + alu_out = -alu_out;
|
| + }
|
| + alu_out += rd_val;
|
| + set_register(rn, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case 4: {
|
| + // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
|
| + // Format(instr, "umull'cond's 'rd, 'rn, 'rm, 'rs");
|
| + uint64_t left_op = static_cast<uint32_t>(rm_val);
|
| + uint64_t right_op = static_cast<uint32_t>(rs_val);
|
| + uint64_t result = left_op * right_op;
|
| + int32_t hi_res = Utils::High32Bits(result);
|
| + int32_t lo_res = Utils::Low32Bits(result);
|
| + set_register(rd, lo_res);
|
| + set_register(rn, hi_res);
|
| + if (instr->HasS()) {
|
| + if (lo_res != 0) {
|
| + // Collapse bits 0..31 into bit 32 so that 32-bit Z check works.
|
| + hi_res |= 1;
|
| + }
|
| + ASSERT((result == 0) == (hi_res == 0)); // Z bit
|
| + ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit
|
| + SetNZFlags(hi_res);
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + } else {
|
| + // synchronization primitives
|
| + Register rd = instr->RdField();
|
| + Register rn = instr->RnField();
|
| + uword addr = get_register(rn);
|
| + switch (instr->Bits(20, 4)) {
|
| + case 8: {
|
| + // Format(instr, "strex'cond 'rd, 'rm, ['rn]");
|
| + if (IsIllegalAddress(addr)) {
|
| + HandleIllegalAccess(addr, instr);
|
| + } else {
|
| + Register rm = instr->RmField();
|
| + set_register(rd, WriteExclusiveW(addr, get_register(rm), instr));
|
| + }
|
| + break;
|
| + }
|
| + case 9: {
|
| + // Format(instr, "ldrex'cond 'rd, ['rn]");
|
| + if (IsIllegalAddress(addr)) {
|
| + HandleIllegalAccess(addr, instr);
|
| + } else {
|
| + set_register(rd, ReadExclusiveW(addr, instr));
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + } else if (instr->Bit(25) == 1) {
|
| + // 16-bit immediate loads, msr (immediate), and hints
|
| + switch (instr->Bits(20, 5)) {
|
| + case 16:
|
| + case 20: {
|
| + uint16_t imm16 = instr->MovwField();
|
| + Register rd = instr->RdField();
|
| + if (instr->Bit(22) == 0) {
|
| + // Format(instr, "movw'cond 'rd, #'imm4_12");
|
| + set_register(rd, imm16);
|
| + } else {
|
| + // Format(instr, "movt'cond 'rd, #'imm4_12");
|
| + set_register(rd, (get_register(rd) & 0xffff) | (imm16 << 16));
|
| + }
|
| + break;
|
| + }
|
| + case 18: {
|
| + if ((instr->Bits(16, 4) == 0) && (instr->Bits(0, 8) == 0)) {
|
| + // Format(instr, "nop'cond");
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + } else {
|
| + // extra load/store instructions
|
| + Register rd = instr->RdField();
|
| + Register rn = instr->RnField();
|
| + int32_t rn_val = get_register(rn);
|
| + uword addr = 0;
|
| + bool write_back = false;
|
| + if (instr->Bit(22) == 0) {
|
| + Register rm = instr->RmField();
|
| + int32_t rm_val = get_register(rm);
|
| + switch (instr->PUField()) {
|
| + case 0: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn], -'rm");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val -= rm_val;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 1: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn], +'rm");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val += rm_val;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 2: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn, -'rm]'w");
|
| + rn_val -= rm_val;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + case 3: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn, +'rm]'w");
|
| + rn_val += rm_val;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + default: {
|
| + // The PU field is a 2-bit field.
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + } else {
|
| + int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField();
|
| + switch (instr->PUField()) {
|
| + case 0: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn], #-'off8");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val -= imm_val;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 1: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn], #+'off8");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val += imm_val;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 2: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn, #-'off8]'w");
|
| + rn_val -= imm_val;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + case 3: {
|
| + // Format(instr, "'memop'cond'x 'rd2, ['rn, #+'off8]'w");
|
| + rn_val += imm_val;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + default: {
|
| + // The PU field is a 2-bit field.
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if (IsIllegalAddress(addr)) {
|
| + HandleIllegalAccess(addr, instr);
|
| + } else {
|
| + if (write_back) {
|
| + set_register(rn, rn_val);
|
| + }
|
| + if (!instr->HasSign()) {
|
| + if (instr->HasL()) {
|
| + uint16_t val = ReadHU(addr, instr);
|
| + set_register(rd, val);
|
| + } else {
|
| + uint16_t val = get_register(rd);
|
| + WriteH(addr, val, instr);
|
| + }
|
| + } else if (instr->HasL()) {
|
| + if (instr->HasH()) {
|
| + int16_t val = ReadH(addr, instr);
|
| + set_register(rd, val);
|
| + } else {
|
| + int8_t val = ReadB(addr);
|
| + set_register(rd, val);
|
| + }
|
| + } else if ((rd & 1) == 0) {
|
| + Register rd1 = static_cast<Register>(rd | 1);
|
| + ASSERT(rd1 < kNumberOfCpuRegisters);
|
| + if (instr->HasH()) {
|
| + int32_t val_low = get_register(rd);
|
| + int32_t val_high = get_register(rd1);
|
| + WriteW(addr, val_low, instr);
|
| + WriteW(addr + 4, val_high, instr);
|
| + } else {
|
| + int32_t val_low = ReadW(addr, instr);
|
| + int32_t val_high = ReadW(addr + 4, instr);
|
| + set_register(rd, val_low);
|
| + set_register(rd1, val_high);
|
| + }
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + }
|
| + }
|
| + } else {
|
| + Register rd = instr->RdField();
|
| + Register rn = instr->RnField();
|
| + int32_t rn_val = get_register(rn);
|
| + int32_t shifter_operand = 0;
|
| + bool shifter_carry_out = 0;
|
| + if (instr->TypeField() == 0) {
|
| + shifter_operand = GetShiftRm(instr, &shifter_carry_out);
|
| + } else {
|
| + ASSERT(instr->TypeField() == 1);
|
| + shifter_operand = GetImm(instr, &shifter_carry_out);
|
| + }
|
| + int32_t alu_out;
|
| +
|
| + switch (instr->OpcodeField()) {
|
| + case AND: {
|
| + // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "and'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val & shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case EOR: {
|
| + // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val ^ shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case SUB: {
|
| + // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val - shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(!BorrowFrom(rn_val, shifter_operand));
|
| + SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case RSB: {
|
| + // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
|
| + alu_out = shifter_operand - rn_val;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(!BorrowFrom(shifter_operand, rn_val));
|
| + SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case ADD: {
|
| + // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "add'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val + shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(CarryFrom(rn_val, shifter_operand));
|
| + SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case ADC: {
|
| + // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "adc'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val + shifter_operand + (c_flag_ ? 1 : 0);
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(CarryFrom(rn_val, shifter_operand));
|
| + SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case SBC: {
|
| + // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val - shifter_operand - (!c_flag_ ? 1 : 0);
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(!BorrowFrom(rn_val, shifter_operand));
|
| + SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case RSC: {
|
| + // Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
|
| + alu_out = shifter_operand - rn_val - (!c_flag_ ? 1 : 0);
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(!BorrowFrom(shifter_operand, rn_val));
|
| + SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case TST: {
|
| + if (instr->HasS()) {
|
| + // Format(instr, "tst'cond 'rn, 'shift_rm");
|
| + // Format(instr, "tst'cond 'rn, 'imm");
|
| + alu_out = rn_val & shifter_operand;
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case TEQ: {
|
| + if (instr->HasS()) {
|
| + // Format(instr, "teq'cond 'rn, 'shift_rm");
|
| + // Format(instr, "teq'cond 'rn, 'imm");
|
| + alu_out = rn_val ^ shifter_operand;
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case CMP: {
|
| + if (instr->HasS()) {
|
| + // Format(instr, "cmp'cond 'rn, 'shift_rm");
|
| + // Format(instr, "cmp'cond 'rn, 'imm");
|
| + alu_out = rn_val - shifter_operand;
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(!BorrowFrom(rn_val, shifter_operand));
|
| + SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case CMN: {
|
| + if (instr->HasS()) {
|
| + // Format(instr, "cmn'cond 'rn, 'shift_rm");
|
| + // Format(instr, "cmn'cond 'rn, 'imm");
|
| + alu_out = rn_val + shifter_operand;
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(CarryFrom(rn_val, shifter_operand));
|
| + SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case ORR: {
|
| + // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val | shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case MOV: {
|
| + // Format(instr, "mov'cond's 'rd, 'shift_rm");
|
| + // Format(instr, "mov'cond's 'rd, 'imm");
|
| + alu_out = shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case BIC: {
|
| + // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
|
| + // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
|
| + alu_out = rn_val & ~shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case MVN: {
|
| + // Format(instr, "mvn'cond's 'rd, 'shift_rm");
|
| + // Format(instr, "mvn'cond's 'rd, 'imm");
|
| + alu_out = ~shifter_operand;
|
| + set_register(rd, alu_out);
|
| + if (instr->HasS()) {
|
| + SetNZFlags(alu_out);
|
| + SetCFlag(shifter_carry_out);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + default: {
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::DecodeType2(Instr* instr) {
|
| + Register rd = instr->RdField();
|
| + Register rn = instr->RnField();
|
| + int32_t rn_val = get_register(rn);
|
| + int32_t im_val = instr->Offset12Field();
|
| + uword addr = 0;
|
| + bool write_back = false;
|
| + switch (instr->PUField()) {
|
| + case 0: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val -= im_val;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 1: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val += im_val;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 2: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
|
| + rn_val -= im_val;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + case 3: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
|
| + rn_val += im_val;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + default: {
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + if (IsIllegalAddress(addr)) {
|
| + HandleIllegalAccess(addr, instr);
|
| + } else {
|
| + if (write_back) {
|
| + set_register(rn, rn_val);
|
| + }
|
| + if (instr->HasB()) {
|
| + if (instr->HasL()) {
|
| + unsigned char val = ReadBU(addr);
|
| + set_register(rd, val);
|
| + } else {
|
| + unsigned char val = get_register(rd);
|
| + WriteB(addr, val);
|
| + }
|
| + } else {
|
| + if (instr->HasL()) {
|
| + set_register(rd, ReadW(addr, instr));
|
| + } else {
|
| + WriteW(addr, get_register(rd), instr);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::DecodeType3(Instr* instr) {
|
| + Register rd = instr->RdField();
|
| + Register rn = instr->RnField();
|
| + int32_t rn_val = get_register(rn);
|
| + bool shifter_carry_out = 0;
|
| + int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
|
| + uword addr = 0;
|
| + bool write_back = false;
|
| + switch (instr->PUField()) {
|
| + case 0: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val -= shifter_operand;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 1: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
|
| + ASSERT(!instr->HasW());
|
| + addr = rn_val;
|
| + rn_val += shifter_operand;
|
| + write_back = true;
|
| + break;
|
| + }
|
| + case 2: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
|
| + rn_val -= shifter_operand;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + case 3: {
|
| + // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
|
| + rn_val += shifter_operand;
|
| + addr = rn_val;
|
| + write_back = instr->HasW();
|
| + break;
|
| + }
|
| + default: {
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + if (IsIllegalAddress(addr)) {
|
| + HandleIllegalAccess(addr, instr);
|
| + } else {
|
| + if (write_back) {
|
| + set_register(rn, rn_val);
|
| + }
|
| + if (instr->HasB()) {
|
| + if (instr->HasL()) {
|
| + unsigned char val = ReadBU(addr);
|
| + set_register(rd, val);
|
| + } else {
|
| + unsigned char val = get_register(rd);
|
| + WriteB(addr, val);
|
| + }
|
| + } else {
|
| + if (instr->HasL()) {
|
| + set_register(rd, ReadW(addr, instr));
|
| + } else {
|
| + WriteW(addr, get_register(rd), instr);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::DecodeType4(Instr* instr) {
|
| + ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode
|
| + if (instr->HasL()) {
|
| + // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
|
| + HandleRList(instr, true);
|
| + } else {
|
| + // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
|
| + HandleRList(instr, false);
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::DecodeType5(Instr* instr) {
|
| + // Format(instr, "b'l'cond 'target");
|
| + int off = (instr->SImmed24Field() << 2) + 8;
|
| + intptr_t pc = get_pc();
|
| + if (instr->HasLink()) {
|
| + set_register(LR, pc + Instr::kInstrSize);
|
| + }
|
| + set_pc(pc+off);
|
| +}
|
| +
|
| +
|
| +void Simulator::DecodeType6(Instr* instr) {
|
| + if (instr->IsVFPDoubleTransfer()) {
|
| + Register rd = instr->RdField();
|
| + Register rn = instr->RnField();
|
| + if (instr->Bit(8) == 0) {
|
| + SRegister sm = instr->SmField();
|
| + SRegister sm1 = static_cast<SRegister>(sm + 1);
|
| + ASSERT(sm1 < kNumberOfSRegisters);
|
| + if (instr->Bit(20) == 1) {
|
| + // Format(instr, "vmovrrs'cond 'rd, 'rn, {'sm', 'sm1}");
|
| + set_register(rd, bit_cast<int32_t, float>(get_sregister(sm)));
|
| + set_register(rn, bit_cast<int32_t, float>(get_sregister(sm1)));
|
| + } else {
|
| + // Format(instr, "vmovsrr'cond {'sm, 'sm1}, 'rd', 'rn");
|
| + set_sregister(sm, bit_cast<float, int32_t>(get_register(rd)));
|
| + set_sregister(sm1, bit_cast<float, int32_t>(get_register(rn)));
|
| + }
|
| + } else {
|
| + DRegister dm = instr->DmField();
|
| + if (instr->Bit(20) == 1) {
|
| + // Format(instr, "vmovrrd'cond 'rd, 'rn, 'dm");
|
| + int64_t dm_val = bit_cast<int64_t, double>(get_dregister(dm));
|
| + set_register(rd, Utils::Low32Bits(dm_val));
|
| + set_register(rn, Utils::High32Bits(dm_val));
|
| + } else {
|
| + // Format(instr, "vmovdrr'cond 'dm, 'rd, 'rn");
|
| + int64_t dm_val = Utils::LowHighTo64Bits(get_register(rd),
|
| + get_register(rn));
|
| + set_dregister(dm, bit_cast<double, int64_t>(dm_val));
|
| + }
|
| + }
|
| + } else if (instr-> IsVFPLoadStore()) {
|
| + Register rn = instr->RnField();
|
| + int32_t addr = get_register(rn);
|
| + int32_t imm_val = instr->Bits(0, 8) << 2;
|
| + if (instr->Bit(23) == 1) {
|
| + addr += imm_val;
|
| + } else {
|
| + addr -= imm_val;
|
| + }
|
| + if (IsIllegalAddress(addr)) {
|
| + HandleIllegalAccess(addr, instr);
|
| + } else {
|
| + if (instr->Bit(8) == 0) {
|
| + SRegister sd = instr->SdField();
|
| + if (instr->Bit(20) == 1) { // vldrs
|
| + // Format(instr, "vldrs'cond 'sd, ['rn, #+'off10]");
|
| + // Format(instr, "vldrs'cond 'sd, ['rn, #-'off10]");
|
| + set_sregister(sd, bit_cast<float, int32_t>(ReadW(addr, instr)));
|
| + } else { // vstrs
|
| + // Format(instr, "vstrs'cond 'sd, ['rn, #+'off10]");
|
| + // Format(instr, "vstrs'cond 'sd, ['rn, #-'off10]");
|
| + WriteW(addr, bit_cast<int32_t, float>(get_sregister(sd)), instr);
|
| + }
|
| + } else {
|
| + DRegister dd = instr->DdField();
|
| + if (instr->Bit(20) == 1) { // vldrd
|
| + // Format(instr, "vldrd'cond 'dd, ['rn, #+'off10]");
|
| + // Format(instr, "vldrd'cond 'dd, ['rn, #-'off10]");
|
| + int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr),
|
| + ReadW(addr + 4, instr));
|
| + set_dregister(dd, bit_cast<double, int64_t>(dd_val));
|
| + } else { // vstrd
|
| + // Format(instr, "vstrd'cond 'dd, ['rn, #+'off10]");
|
| + // Format(instr, "vstrd'cond 'dd, ['rn, #-'off10]");
|
| + int64_t dd_val = bit_cast<int64_t, double>(get_dregister(dd));
|
| + WriteW(addr, Utils::Low32Bits(dd_val), instr);
|
| + WriteW(addr + 4, Utils::High32Bits(dd_val), instr);
|
| + }
|
| + }
|
| + }
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::DecodeType7(Instr* instr) {
|
| + if (instr->Bit(24) == 1) {
|
| + // Format(instr, "svc #'svc");
|
| + SupervisorCall(instr);
|
| + } else if (instr->IsVFPDataProcessingOrSingleTransfer()) {
|
| + if (instr->Bit(4) == 0) {
|
| + // VFP Data Processing
|
| + SRegister sd;
|
| + SRegister sn;
|
| + SRegister sm;
|
| + DRegister dd;
|
| + DRegister dn;
|
| + DRegister dm;
|
| + if (instr->Bit(8) == 0) {
|
| + sd = instr->SdField();
|
| + sn = instr->SnField();
|
| + sm = instr->SmField();
|
| + dd = kNoDRegister;
|
| + dn = kNoDRegister;
|
| + dm = kNoDRegister;
|
| + } else {
|
| + sd = kNoSRegister;
|
| + sn = kNoSRegister;
|
| + sm = kNoSRegister;
|
| + dd = instr->DdField();
|
| + dn = instr->DnField();
|
| + dm = instr->DmField();
|
| + }
|
| + switch (instr->Bits(20, 4) & 0xb) {
|
| + case 1: // vnmla, vnmls, vnmul
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case 0: { // vmla, vmls floating-point
|
| + if (instr->Bit(8) == 0) {
|
| + float addend = get_sregister(sn) * get_sregister(sm);
|
| + float sd_val = get_sregister(sd);
|
| + if (instr->Bit(6) == 0) {
|
| + // Format(instr, "vmlas'cond 'sd, 'sn, 'sm");
|
| + } else {
|
| + // Format(instr, "vmlss'cond 'sd, 'sn, 'sm");
|
| + addend = -addend;
|
| + }
|
| + set_sregister(sd, sd_val + addend);
|
| + } else {
|
| + double addend = get_dregister(dn) * get_dregister(dm);
|
| + double dd_val = get_dregister(dd);
|
| + if (instr->Bit(6) == 0) {
|
| + // Format(instr, "vmlad'cond 'dd, 'dn, 'dm");
|
| + } else {
|
| + // Format(instr, "vmlsd'cond 'dd, 'dn, 'dm");
|
| + addend = -addend;
|
| + }
|
| + set_dregister(dd, dd_val + addend);
|
| + }
|
| + break;
|
| + }
|
| + case 2: { // vmul
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vmuls'cond 'sd, 'sn, 'sm");
|
| + set_sregister(sd, get_sregister(sn) * get_sregister(sm));
|
| + } else {
|
| + // Format(instr, "vmuld'cond 'dd, 'dn, 'dm");
|
| + set_dregister(dd, get_dregister(dn) * get_dregister(dm));
|
| + }
|
| + break;
|
| + }
|
| + case 8: { // vdiv
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vdivs'cond 'sd, 'sn, 'sm");
|
| + set_sregister(sd, get_sregister(sn) / get_sregister(sm));
|
| + } else {
|
| + // Format(instr, "vdivd'cond 'dd, 'dn, 'dm");
|
| + set_dregister(dd, get_dregister(dn) / get_dregister(dm));
|
| + }
|
| + break;
|
| + }
|
| + case 3: { // vadd, vsub floating-point
|
| + if (instr->Bit(8) == 0) {
|
| + if (instr->Bit(6) == 0) {
|
| + // Format(instr, "vadds'cond 'sd, 'sn, 'sm");
|
| + set_sregister(sd, get_sregister(sn) + get_sregister(sm));
|
| + } else {
|
| + // Format(instr, "vsubs'cond 'sd, 'sn, 'sm");
|
| + set_sregister(sd, get_sregister(sn) - get_sregister(sm));
|
| + }
|
| + } else {
|
| + if (instr->Bit(6) == 0) {
|
| + // Format(instr, "vaddd'cond 'dd, 'dn, 'dm");
|
| + set_dregister(dd, get_dregister(dn) + get_dregister(dm));
|
| + } else {
|
| + // Format(instr, "vsubd'cond 'dd, 'dn, 'dm");
|
| + set_dregister(dd, get_dregister(dn) - get_dregister(dm));
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case 0xb: { // Other VFP data-processing instructions
|
| + if (instr->Bit(6) == 0) { // vmov immediate
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vmovs'cond 'sd, #'immf");
|
| + set_sregister(sd, instr->ImmFloatField());
|
| + } else {
|
| + // Format(instr, "vmovd'cond 'dd, #'immd");
|
| + set_dregister(dd, instr->ImmDoubleField());
|
| + }
|
| + break;
|
| + }
|
| + switch (instr->Bits(16, 4)) {
|
| + case 0: { // vmov immediate, vmov register, vabs
|
| + switch (instr->Bits(6, 2)) {
|
| + case 1: { // vmov register
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vmovs'cond 'sd, 'sm");
|
| + set_sregister(sd, get_sregister(sm));
|
| + } else {
|
| + // Format(instr, "vmovd'cond 'dd, 'dm");
|
| + set_dregister(dd, get_dregister(dm));
|
| + }
|
| + break;
|
| + }
|
| + case 3: { // vabs
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vabss'cond 'sd, 'sm");
|
| + set_sregister(sd, fabsf(get_sregister(sm)));
|
| + } else {
|
| + // Format(instr, "vabsd'cond 'dd, 'dm");
|
| + set_dregister(dd, fabs(get_dregister(dm)));
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case 1: { // vneg, vsqrt
|
| + switch (instr->Bits(6, 2)) {
|
| + case 1: { // vneg
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vnegs'cond 'sd, 'sm");
|
| + set_sregister(sd, -get_sregister(sm));
|
| + } else {
|
| + // Format(instr, "vnegd'cond 'dd, 'dm");
|
| + set_dregister(dd, -get_dregister(dm));
|
| + }
|
| + break;
|
| + }
|
| + case 3: { // vsqrt
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vsqrts'cond 'sd, 'sm");
|
| + set_sregister(sd, sqrtf(get_sregister(sm)));
|
| + } else {
|
| + // Format(instr, "vsqrtd'cond 'dd, 'dm");
|
| + set_dregister(dd, sqrt(get_dregister(dm)));
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case 4: // vcmp, vcmpe
|
| + case 5: { // vcmp #0.0, vcmpe #0.0
|
| + if (instr->Bit(7) == 1) { // vcmpe
|
| + UNIMPLEMENTED();
|
| + } else {
|
| + fp_n_flag_ = false;
|
| + fp_z_flag_ = false;
|
| + fp_c_flag_ = false;
|
| + fp_v_flag_ = false;
|
| + if (instr->Bit(8) == 0) { // vcmps
|
| + float sd_val = get_sregister(sd);
|
| + float sm_val;
|
| + if (instr->Bit(16) == 0) {
|
| + // Format(instr, "vcmps'cond 'sd, 'sm");
|
| + sm_val = get_sregister(sm);
|
| + } else {
|
| + // Format(instr, "vcmps'cond 'sd, #0.0");
|
| + sm_val = 0.0f;
|
| + }
|
| + if (isnan(sd_val) || isnan(sm_val)) {
|
| + fp_c_flag_ = true;
|
| + fp_v_flag_ = true;
|
| + } else if (sd_val == sm_val) {
|
| + fp_z_flag_ = true;
|
| + fp_c_flag_ = true;
|
| + } else if (sd_val < sm_val) {
|
| + fp_n_flag_ = true;
|
| + } else {
|
| + fp_c_flag_ = true;
|
| + }
|
| + } else { // vcmpd
|
| + double dd_val = get_dregister(dd);
|
| + double dm_val;
|
| + if (instr->Bit(16) == 0) {
|
| + // Format(instr, "vcmpd'cond 'dd, 'dm");
|
| + dm_val = get_dregister(dm);
|
| + } else {
|
| + // Format(instr, "vcmpd'cond 'dd, #0.0");
|
| + dm_val = 0.0;
|
| + }
|
| + if (isnan(dd_val) || isnan(dm_val)) {
|
| + fp_c_flag_ = true;
|
| + fp_v_flag_ = true;
|
| + } else if (dd_val == dm_val) {
|
| + fp_z_flag_ = true;
|
| + fp_c_flag_ = true;
|
| + } else if (dd_val < dm_val) {
|
| + fp_n_flag_ = true;
|
| + } else {
|
| + fp_c_flag_ = true;
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case 7: { // vcvt between double-precision and single-precision
|
| + if (instr->Bit(8) == 0) {
|
| + // Format(instr, "vcvtds'cond 'dd, 'sm");
|
| + dd = instr->DdField();
|
| + set_dregister(dd, static_cast<double>(get_sregister(sm)));
|
| + } else {
|
| + // Format(instr, "vcvtsd'cond 'sd, 'dm");
|
| + sd = instr->SdField();
|
| + set_sregister(sd, static_cast<float>(get_dregister(dm)));
|
| + }
|
| + break;
|
| + }
|
| + case 8: { // vcvt, vcvtr between floating-point and integer
|
| + sm = instr->SmField();
|
| + float sm_val = get_sregister(sm);
|
| + uint32_t ud_val = 0;
|
| + int32_t id_val = 0;
|
| + if (instr->Bit(7) == 0) { // vcvtsu, vcvtdu
|
| + ud_val = bit_cast<uint32_t, float>(sm_val);
|
| + } else { // vcvtsi, vcvtdi
|
| + id_val = bit_cast<int32_t, float>(sm_val);
|
| + }
|
| + if (instr->Bit(8) == 0) {
|
| + float sd_val;
|
| + if (instr->Bit(7) == 0) {
|
| + // Format(instr, "vcvtsu'cond 'sd, 'sm");
|
| + sd_val = static_cast<float>(ud_val);
|
| + } else {
|
| + // Format(instr, "vcvtsi'cond 'sd, 'sm");
|
| + sd_val = static_cast<float>(id_val);
|
| + }
|
| + set_sregister(sd, sd_val);
|
| + } else {
|
| + double dd_val;
|
| + if (instr->Bit(7) == 0) {
|
| + // Format(instr, "vcvtdu'cond 'dd, 'sm");
|
| + dd_val = static_cast<double>(ud_val);
|
| + } else {
|
| + // Format(instr, "vcvtdi'cond 'dd, 'sm");
|
| + dd_val = static_cast<double>(id_val);
|
| + }
|
| + set_dregister(dd, dd_val);
|
| + }
|
| + break;
|
| + }
|
| + case 12:
|
| + case 13: { // vcvt, vcvtr between floating-point and integer
|
| + // We do not need to record exceptions in the FPSCR cumulative
|
| + // flags, because we do not use them.
|
| + if (instr->Bit(7) == 0) {
|
| + // We only support round-to-zero mode
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + int32_t id_val = 0;
|
| + uint32_t ud_val = 0;
|
| + if (instr->Bit(8) == 0) {
|
| + float sm_val = get_sregister(sm);
|
| + if (instr->Bit(16) == 0) {
|
| + // Format(instr, "vcvtus'cond 'sd, 'sm");
|
| + if (sm_val >= INT_MAX) {
|
| + ud_val = INT_MAX;
|
| + } else if (sm_val > 0.0) {
|
| + ud_val = static_cast<uint32_t>(sm_val);
|
| + }
|
| + } else {
|
| + // Format(instr, "vcvtis'cond 'sd, 'sm");
|
| + if (sm_val <= INT_MIN) {
|
| + id_val = INT_MIN;
|
| + } else if (sm_val >= INT_MAX) {
|
| + id_val = INT_MAX;
|
| + } else {
|
| + id_val = static_cast<int32_t>(sm_val);
|
| + }
|
| + ASSERT((id_val >= 0) || !(sm_val >= 0.0));
|
| + }
|
| + } else {
|
| + sd = instr->SdField();
|
| + double dm_val = get_dregister(dm);
|
| + if (instr->Bit(16) == 0) {
|
| + // Format(instr, "vcvtud'cond 'sd, 'dm");
|
| + if (dm_val >= INT_MAX) {
|
| + ud_val = INT_MAX;
|
| + } else if (dm_val > 0.0) {
|
| + ud_val = static_cast<uint32_t>(dm_val);
|
| + }
|
| + } else {
|
| + // Format(instr, "vcvtid'cond 'sd, 'dm");
|
| + if (dm_val <= INT_MIN) {
|
| + id_val = INT_MIN;
|
| + } else if (dm_val >= INT_MAX) {
|
| + id_val = INT_MAX;
|
| + } else {
|
| + id_val = static_cast<int32_t>(dm_val);
|
| + }
|
| + ASSERT((id_val >= 0) || !(dm_val >= 0.0));
|
| + }
|
| + }
|
| + float sd_val;
|
| + if (instr->Bit(16) == 0) {
|
| + sd_val = bit_cast<float, uint32_t>(ud_val);
|
| + } else {
|
| + sd_val = bit_cast<float, int32_t>(id_val);
|
| + }
|
| + set_sregister(sd, sd_val);
|
| + break;
|
| + }
|
| + case 2: // vcvtb, vcvtt
|
| + case 3: // vcvtb, vcvtt
|
| + case 9: // undefined
|
| + case 10: // vcvt between floating-point and fixed-point
|
| + case 11: // vcvt between floating-point and fixed-point
|
| + case 14: // vcvt between floating-point and fixed-point
|
| + case 15: // vcvt between floating-point and fixed-point
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + } else {
|
| + // 8, 16, or 32-bit Transfer between ARM Core and VFP
|
| + if ((instr->Bits(21, 3) == 0) && (instr->Bit(8) == 0)) {
|
| + Register rd = instr->RdField();
|
| + SRegister sn = instr->SnField();
|
| + if (instr->Bit(20) == 0) {
|
| + // Format(instr, "vmovs'cond 'sn, 'rd");
|
| + set_sregister(sn, bit_cast<float, int32_t>(get_register(rd)));
|
| + } else {
|
| + // Format(instr, "vmovr'cond 'rd, 'sn");
|
| + set_register(rd, bit_cast<int32_t, float>(get_sregister(sn)));
|
| + }
|
| + } else if ((instr->Bits(20, 4) == 0xf) && (instr->Bit(8) == 0) &&
|
| + (instr->Bits(12, 4) == 0xf)) {
|
| + // Format(instr, "vmstat'cond");
|
| + n_flag_ = fp_n_flag_;
|
| + z_flag_ = fp_z_flag_;
|
| + c_flag_ = fp_c_flag_;
|
| + v_flag_ = fp_v_flag_;
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + }
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| +}
|
| +
|
| +
|
| +// Executes the current instruction.
|
| +void Simulator::InstructionDecode(Instr* instr) {
|
| + pc_modified_ = false;
|
| + if (FLAG_trace_sim) {
|
| + const uword start = reinterpret_cast<uword>(instr);
|
| + const uword end = start + Instr::kInstrSize;
|
| + Disassembler::Disassemble(start, end);
|
| + }
|
| + if (instr->ConditionField() == kSpecialCondition) {
|
| + if (instr->InstructionBits() == static_cast<int32_t>(0xf57ff01f)) {
|
| + // Format(instr, "clrex");
|
| + ClearExclusive();
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + } else if (ConditionallyExecute(instr)) {
|
| + switch (instr->TypeField()) {
|
| + case 0:
|
| + case 1: {
|
| + DecodeType01(instr);
|
| + break;
|
| + }
|
| + case 2: {
|
| + DecodeType2(instr);
|
| + break;
|
| + }
|
| + case 3: {
|
| + DecodeType3(instr);
|
| + break;
|
| + }
|
| + case 4: {
|
| + DecodeType4(instr);
|
| + break;
|
| + }
|
| + case 5: {
|
| + DecodeType5(instr);
|
| + break;
|
| + }
|
| + case 6: {
|
| + DecodeType6(instr);
|
| + break;
|
| + }
|
| + case 7: {
|
| + DecodeType7(instr);
|
| + break;
|
| + }
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if (!pc_modified_) {
|
| + set_register(PC, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize);
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::Execute() {
|
| + static StatsCounter counter_instructions("Simulated instructions");
|
| +
|
| + // Get the PC to simulate. Cannot use the accessor here as we need the
|
| + // raw PC value and not the one used as input to arithmetic instructions.
|
| + uword program_counter = get_pc();
|
| +
|
| + if (FLAG_stop_sim_at == 0) {
|
| + // Fast version of the dispatch loop without checking whether the simulator
|
| + // should be stopping at a particular executed instruction.
|
| + while (program_counter != kEndSimulatingPC) {
|
| + Instr* instr = reinterpret_cast<Instr*>(program_counter);
|
| + icount_++;
|
| + counter_instructions.Increment();
|
| + if (IsIllegalAddress(program_counter)) {
|
| + HandleIllegalAccess(program_counter, instr);
|
| + } else {
|
| + InstructionDecode(instr);
|
| + }
|
| + program_counter = get_pc();
|
| + }
|
| + } else {
|
| + // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
|
| + // we reach the particular instruction count.
|
| + while (program_counter != kEndSimulatingPC) {
|
| + Instr* instr = reinterpret_cast<Instr*>(program_counter);
|
| + icount_++;
|
| + counter_instructions.Increment();
|
| + if (icount_ == FLAG_stop_sim_at) {
|
| + SimulatorDebugger dbg(this);
|
| + dbg.Debug();
|
| + } else if (IsIllegalAddress(program_counter)) {
|
| + HandleIllegalAccess(program_counter, instr);
|
| + } else {
|
| + InstructionDecode(instr);
|
| + }
|
| + program_counter = get_pc();
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +int64_t Simulator::Call(int32_t entry,
|
| + int32_t parameter0,
|
| + int32_t parameter1,
|
| + int32_t parameter2,
|
| + int32_t parameter3,
|
| + int32_t parameter4) {
|
| + // Save the SP register before the call so we can restore it.
|
| + int32_t sp_before_call = get_register(SP);
|
| +
|
| + // Setup parameters.
|
| + set_register(R0, parameter0);
|
| + set_register(R1, parameter1);
|
| + set_register(R2, parameter2);
|
| + set_register(R3, parameter3);
|
| +
|
| + // Reserve room for one stack parameter.
|
| + int32_t stack_pointer = sp_before_call;
|
| + stack_pointer -= kWordSize;
|
| +
|
| + // Make sure the activation frames are properly aligned.
|
| + static const int kFrameAlignment = OS::ActivationFrameAlignment();
|
| + if (kFrameAlignment > 0) {
|
| + stack_pointer = Utils::RoundDown(stack_pointer, kFrameAlignment);
|
| + }
|
| +
|
| + // Write the fourth parameter to the stack and update register SP.
|
| + *reinterpret_cast<int32_t*>(stack_pointer) = parameter4;
|
| + set_register(SP, stack_pointer);
|
| +
|
| + // Prepare to execute the code at entry.
|
| + set_register(PC, entry);
|
| + // Put down marker for end of simulation. The simulator will stop simulation
|
| + // when the PC reaches this value. By saving the "end simulation" value into
|
| + // the LR the simulation stops when returning to this call point.
|
| + set_register(LR, kEndSimulatingPC);
|
| +
|
| + // Remember the values of callee-saved registers.
|
| + // The code below assumes that r9 is not used as sb (static base) in
|
| + // simulator code and therefore is regarded as a callee-saved register.
|
| + int32_t r4_val = get_register(R4);
|
| + int32_t r5_val = get_register(R5);
|
| + int32_t r6_val = get_register(R6);
|
| + int32_t r7_val = get_register(R7);
|
| + int32_t r8_val = get_register(R8);
|
| + int32_t r9_val = get_register(R9);
|
| + int32_t r10_val = get_register(R10);
|
| + int32_t r11_val = get_register(R11);
|
| +
|
| + // Setup the callee-saved registers with a known value. To be able to check
|
| + // that they are preserved properly across JS execution.
|
| + int32_t callee_saved_value = icount_;
|
| + set_register(R4, callee_saved_value);
|
| + set_register(R5, callee_saved_value);
|
| + set_register(R6, callee_saved_value);
|
| + set_register(R7, callee_saved_value);
|
| + set_register(R8, callee_saved_value);
|
| + set_register(R9, callee_saved_value);
|
| + set_register(R10, callee_saved_value);
|
| + set_register(R11, callee_saved_value);
|
| +
|
| + // Start the simulation
|
| + Execute();
|
| +
|
| + // Check that the callee-saved registers have been preserved.
|
| + ASSERT(callee_saved_value == get_register(R4));
|
| + ASSERT(callee_saved_value == get_register(R5));
|
| + ASSERT(callee_saved_value == get_register(R6));
|
| + ASSERT(callee_saved_value == get_register(R7));
|
| + ASSERT(callee_saved_value == get_register(R8));
|
| + ASSERT(callee_saved_value == get_register(R9));
|
| + ASSERT(callee_saved_value == get_register(R10));
|
| + ASSERT(callee_saved_value == get_register(R11));
|
| +
|
| + // Restore callee-saved registers with the original value.
|
| + set_register(R4, r4_val);
|
| + set_register(R5, r5_val);
|
| + set_register(R6, r6_val);
|
| + set_register(R7, r7_val);
|
| + set_register(R8, r8_val);
|
| + set_register(R9, r9_val);
|
| + set_register(R10, r10_val);
|
| + set_register(R11, r11_val);
|
| +
|
| + // Restore the SP register and return R1:R0.
|
| + set_register(SP, sp_before_call);
|
| + return Utils::LowHighTo64Bits(get_register(R0), get_register(R1));
|
| +}
|
| +
|
| +
|
| +void Simulator::Longjmp(
|
| + int32_t pc, int32_t sp, int32_t fp, const Instance& object) {
|
| + set_register(SP, sp);
|
| + set_register(FP, fp);
|
| + set_register(PC, pc);
|
| + SimulatorSetjmpBuffer* buf = last_setjmp_buffer();
|
| +
|
| + // Walk over all setjmp buffers (simulated --> C++ transitions)
|
| + // and try to find the setjmp associated with the stack pointer.
|
| + while (buf->link() != NULL && buf->link()->sp() <= sp) {
|
| + buf = buf->link();
|
| + }
|
| + ASSERT(buf != NULL);
|
| +
|
| + // Clean up stack memory of C++ frames.
|
| + // TODO(regis): Revisit.
|
| + // isolate->PrepareForUnwinding(reinterpret_cast<uword>(buf));
|
| + // isolate->ChangeStateToGeneratedCode();
|
| + set_register(kExceptionObjectReg, bit_cast<int32_t>(object.raw()));
|
| + buf->Longjmp();
|
| +}
|
| +
|
| +} // namespace dart
|
| +
|
| +#endif // !defined(HOST_ARCH_ARM)
|
| +
|
| +#endif // defined TARGET_ARCH_ARM
|
|
|