| Index: source/libvpx/vp9/encoder/vp9_segmentation.c
|
| ===================================================================
|
| --- source/libvpx/vp9/encoder/vp9_segmentation.c (revision 177019)
|
| +++ source/libvpx/vp9/encoder/vp9_segmentation.c (working copy)
|
| @@ -107,31 +107,15 @@
|
| int *segcounts,
|
| vp9_prob *segment_tree_probs) {
|
| int count1, count2;
|
| - int tot_count;
|
| - int i;
|
|
|
| - // Blank the strtucture to start with
|
| - vpx_memset(segment_tree_probs, 0,
|
| - MB_FEATURE_TREE_PROBS * sizeof(*segment_tree_probs));
|
| -
|
| // Total count for all segments
|
| count1 = segcounts[0] + segcounts[1];
|
| count2 = segcounts[2] + segcounts[3];
|
| - tot_count = count1 + count2;
|
|
|
| // Work out probabilities of each segment
|
| - if (tot_count)
|
| - segment_tree_probs[0] = (count1 * 255) / tot_count;
|
| - if (count1 > 0)
|
| - segment_tree_probs[1] = (segcounts[0] * 255) / count1;
|
| - if (count2 > 0)
|
| - segment_tree_probs[2] = (segcounts[2] * 255) / count2;
|
| -
|
| - // Clamp probabilities to minimum allowed value
|
| - for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
|
| - if (segment_tree_probs[i] == 0)
|
| - segment_tree_probs[i] = 1;
|
| - }
|
| + segment_tree_probs[0] = get_binary_prob(count1, count2);
|
| + segment_tree_probs[1] = get_prob(segcounts[0], count1);
|
| + segment_tree_probs[2] = get_prob(segcounts[2], count2);
|
| }
|
|
|
| // Based on set of segment counts and probabilities calculate a cost estimate
|
| @@ -157,22 +141,57 @@
|
| segcounts[3] * vp9_cost_one(probs[2]);
|
|
|
| return cost;
|
| +}
|
|
|
| +static void count_segs(VP9_COMP *cpi,
|
| + MODE_INFO *mi,
|
| + int *no_pred_segcounts,
|
| + int (*temporal_predictor_count)[2],
|
| + int *t_unpred_seg_counts,
|
| + int mb_size, int mb_row, int mb_col) {
|
| + VP9_COMMON *const cm = &cpi->common;
|
| + MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
| + const int segmap_index = mb_row * cm->mb_cols + mb_col;
|
| + const int segment_id = mi->mbmi.segment_id;
|
| +
|
| + xd->mode_info_context = mi;
|
| + xd->mb_to_top_edge = -((mb_row * 16) << 3);
|
| + xd->mb_to_left_edge = -((mb_col * 16) << 3);
|
| + xd->mb_to_bottom_edge = ((cm->mb_rows - mb_size - mb_row) * 16) << 3;
|
| + xd->mb_to_right_edge = ((cm->mb_cols - mb_size - mb_col) * 16) << 3;
|
| +
|
| + // Count the number of hits on each segment with no prediction
|
| + no_pred_segcounts[segment_id]++;
|
| +
|
| + // Temporal prediction not allowed on key frames
|
| + if (cm->frame_type != KEY_FRAME) {
|
| + // Test to see if the segment id matches the predicted value.
|
| + const int seg_predicted =
|
| + (segment_id == vp9_get_pred_mb_segid(cm, xd, segmap_index));
|
| +
|
| + // Get the segment id prediction context
|
| + const int pred_context = vp9_get_pred_context(cm, xd, PRED_SEG_ID);
|
| +
|
| + // Store the prediction status for this mb and update counts
|
| + // as appropriate
|
| + vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted);
|
| + temporal_predictor_count[pred_context][seg_predicted]++;
|
| +
|
| + if (!seg_predicted)
|
| + // Update the "unpredicted" segment count
|
| + t_unpred_seg_counts[segment_id]++;
|
| + }
|
| }
|
|
|
| void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
|
| VP9_COMMON *const cm = &cpi->common;
|
| MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
| - int i;
|
| - int tot_count;
|
| int no_pred_cost;
|
| int t_pred_cost = INT_MAX;
|
| - int pred_context;
|
|
|
| + int i;
|
| int mb_row, mb_col;
|
| - int segmap_index = 0;
|
| - unsigned char segment_id;
|
|
|
| int temporal_predictor_count[PREDICTION_PROBS][2];
|
| int no_pred_segcounts[MAX_MB_SEGMENTS];
|
| @@ -182,9 +201,8 @@
|
| vp9_prob t_pred_tree[MB_FEATURE_TREE_PROBS];
|
| vp9_prob t_nopred_prob[PREDICTION_PROBS];
|
|
|
| -#if CONFIG_SUPERBLOCKS
|
| const int mis = cm->mode_info_stride;
|
| -#endif
|
| + MODE_INFO *mi_ptr = cm->mi, *mi;
|
|
|
| // Set default state for the segment tree probabilities and the
|
| // temporal coding probabilities
|
| @@ -200,87 +218,47 @@
|
| // First of all generate stats regarding how well the last segment map
|
| // predicts this one
|
|
|
| - // Initialize macroblock decoder mode info context for the first mb
|
| - // in the frame
|
| - xd->mode_info_context = cm->mi;
|
| + for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 4, mi_ptr += 4 * mis) {
|
| + mi = mi_ptr;
|
| + for (mb_col = 0; mb_col < cm->mb_cols; mb_col += 4, mi += 4) {
|
| + if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X64) {
|
| + count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count,
|
| + t_unpred_seg_counts, 4, mb_row, mb_col);
|
| + } else {
|
| + for (i = 0; i < 4; i++) {
|
| + int x_idx = (i & 1) << 1, y_idx = i & 2;
|
| + MODE_INFO *sb_mi = mi + y_idx * mis + x_idx;
|
|
|
| - for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 2) {
|
| - for (mb_col = 0; mb_col < cm->mb_cols; mb_col += 2) {
|
| - for (i = 0; i < 4; i++) {
|
| - static const int dx[4] = { +1, -1, +1, +1 };
|
| - static const int dy[4] = { 0, +1, 0, -1 };
|
| - int x_idx = i & 1, y_idx = i >> 1;
|
| -
|
| - if (mb_col + x_idx >= cm->mb_cols ||
|
| - mb_row + y_idx >= cm->mb_rows) {
|
| - goto end;
|
| - }
|
| -
|
| - xd->mb_to_top_edge = -((mb_row * 16) << 3);
|
| - xd->mb_to_left_edge = -((mb_col * 16) << 3);
|
| -
|
| - segmap_index = (mb_row + y_idx) * cm->mb_cols + mb_col + x_idx;
|
| - segment_id = xd->mode_info_context->mbmi.segment_id;
|
| -#if CONFIG_SUPERBLOCKS
|
| - if (xd->mode_info_context->mbmi.encoded_as_sb) {
|
| - if (mb_col + 1 < cm->mb_cols)
|
| - segment_id = segment_id &&
|
| - xd->mode_info_context[1].mbmi.segment_id;
|
| - if (mb_row + 1 < cm->mb_rows) {
|
| - segment_id = segment_id &&
|
| - xd->mode_info_context[mis].mbmi.segment_id;
|
| - if (mb_col + 1 < cm->mb_cols)
|
| - segment_id = segment_id &&
|
| - xd->mode_info_context[mis + 1].mbmi.segment_id;
|
| + if (mb_col + x_idx >= cm->mb_cols ||
|
| + mb_row + y_idx >= cm->mb_rows) {
|
| + continue;
|
| }
|
| - xd->mb_to_bottom_edge = ((cm->mb_rows - 2 - mb_row) * 16) << 3;
|
| - xd->mb_to_right_edge = ((cm->mb_cols - 2 - mb_col) * 16) << 3;
|
| - } else {
|
| -#endif
|
| - xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
|
| - xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
|
| -#if CONFIG_SUPERBLOCKS
|
| - }
|
| -#endif
|
|
|
| - // Count the number of hits on each segment with no prediction
|
| - no_pred_segcounts[segment_id]++;
|
| + if (sb_mi->mbmi.sb_type) {
|
| + assert(sb_mi->mbmi.sb_type == BLOCK_SIZE_SB32X32);
|
| + count_segs(cpi, sb_mi, no_pred_segcounts, temporal_predictor_count,
|
| + t_unpred_seg_counts, 2, mb_row + y_idx, mb_col + x_idx);
|
| + } else {
|
| + int j;
|
|
|
| - // Temporal prediction not allowed on key frames
|
| - if (cm->frame_type != KEY_FRAME) {
|
| - // Test to see if the segment id matches the predicted value.
|
| - int seg_predicted =
|
| - (segment_id == vp9_get_pred_mb_segid(cm, xd, segmap_index));
|
| + for (j = 0; j < 4; j++) {
|
| + const int x_idx_mb = x_idx + (j & 1), y_idx_mb = y_idx + (j >> 1);
|
| + MODE_INFO *mb_mi = mi + x_idx_mb + y_idx_mb * mis;
|
|
|
| - // Get the segment id prediction context
|
| - pred_context =
|
| - vp9_get_pred_context(cm, xd, PRED_SEG_ID);
|
| + if (mb_col + x_idx_mb >= cm->mb_cols ||
|
| + mb_row + y_idx_mb >= cm->mb_rows) {
|
| + continue;
|
| + }
|
|
|
| - // Store the prediction status for this mb and update counts
|
| - // as appropriate
|
| - vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted);
|
| - temporal_predictor_count[pred_context][seg_predicted]++;
|
| -
|
| - if (!seg_predicted)
|
| - // Update the "unpredicted" segment count
|
| - t_unpred_seg_counts[segment_id]++;
|
| + assert(mb_mi->mbmi.sb_type == BLOCK_SIZE_MB16X16);
|
| + count_segs(cpi, mb_mi, no_pred_segcounts,
|
| + temporal_predictor_count, t_unpred_seg_counts,
|
| + 1, mb_row + y_idx_mb, mb_col + x_idx_mb);
|
| + }
|
| + }
|
| }
|
| -
|
| -#if CONFIG_SUPERBLOCKS
|
| - if (xd->mode_info_context->mbmi.encoded_as_sb) {
|
| - assert(!i);
|
| - xd->mode_info_context += 2;
|
| - break;
|
| - }
|
| -#endif
|
| - end:
|
| - xd->mode_info_context += dx[i] + dy[i] * cm->mode_info_stride;
|
| }
|
| }
|
| -
|
| - // this is to account for the border in mode_info_context
|
| - xd->mode_info_context -= mb_col;
|
| - xd->mode_info_context += cm->mode_info_stride * 2;
|
| }
|
|
|
| // Work out probability tree for coding segments without prediction
|
| @@ -297,21 +275,9 @@
|
|
|
| // Add in the cost of the signalling for each prediction context
|
| for (i = 0; i < PREDICTION_PROBS; i++) {
|
| - tot_count = temporal_predictor_count[i][0] +
|
| - temporal_predictor_count[i][1];
|
| + t_nopred_prob[i] = get_binary_prob(temporal_predictor_count[i][0],
|
| + temporal_predictor_count[i][1]);
|
|
|
| - // Work out the context probabilities for the segment
|
| - // prediction flag
|
| - if (tot_count) {
|
| - t_nopred_prob[i] = (temporal_predictor_count[i][0] * 255) /
|
| - tot_count;
|
| -
|
| - // Clamp to minimum allowed value
|
| - if (t_nopred_prob[i] < 1)
|
| - t_nopred_prob[i] = 1;
|
| - } else
|
| - t_nopred_prob[i] = 1;
|
| -
|
| // Add in the predictor signaling cost
|
| t_pred_cost += (temporal_predictor_count[i][0] *
|
| vp9_cost_zero(t_nopred_prob[i])) +
|
|
|