| Index: gdb/ada-varobj.c
|
| diff --git a/gdb/ada-varobj.c b/gdb/ada-varobj.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8623876641801836134df07cb44e92277796e705
|
| --- /dev/null
|
| +++ b/gdb/ada-varobj.c
|
| @@ -0,0 +1,888 @@
|
| +/* varobj support for Ada.
|
| +
|
| + Copyright (C) 2012 Free Software Foundation, Inc.
|
| +
|
| + This file is part of GDB.
|
| +
|
| + This program is free software; you can redistribute it and/or modify
|
| + it under the terms of the GNU General Public License as published by
|
| + the Free Software Foundation; either version 3 of the License, or
|
| + (at your option) any later version.
|
| +
|
| + This program is distributed in the hope that it will be useful,
|
| + but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| + GNU General Public License for more details.
|
| +
|
| + You should have received a copy of the GNU General Public License
|
| + along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| +
|
| +#include "defs.h"
|
| +#include "ada-varobj.h"
|
| +#include "ada-lang.h"
|
| +#include "language.h"
|
| +#include "valprint.h"
|
| +
|
| +/* Implementation principle used in this unit:
|
| +
|
| + For our purposes, the meat of the varobj object is made of two
|
| + elements: The varobj's (struct) value, and the varobj's (struct)
|
| + type. In most situations, the varobj has a non-NULL value, and
|
| + the type becomes redundant, as it can be directly derived from
|
| + the value. In the initial implementation of this unit, most
|
| + routines would only take a value, and return a value.
|
| +
|
| + But there are many situations where it is possible for a varobj
|
| + to have a NULL value. For instance, if the varobj becomes out of
|
| + scope. Or better yet, when the varobj is the child of another
|
| + NULL pointer varobj. In that situation, we must rely on the type
|
| + instead of the value to create the child varobj.
|
| +
|
| + That's why most functions below work with a (value, type) pair.
|
| + The value may or may not be NULL. But the type is always expected
|
| + to be set. When the value is NULL, then we work with the type
|
| + alone, and keep the value NULL. But when the value is not NULL,
|
| + then we work using the value, because it provides more information.
|
| + But we still always set the type as well, even if that type could
|
| + easily be derived from the value. The reason behind this is that
|
| + it allows the code to use the type without having to worry about
|
| + it being set or not. It makes the code clearer. */
|
| +
|
| +/* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
|
| + If there is a value (*VALUE_PTR not NULL), then perform the decoding
|
| + using it, and compute the associated type from the resulting value.
|
| + Otherwise, compute a static approximation of *TYPE_PTR, leaving
|
| + *VALUE_PTR unchanged.
|
| +
|
| + The results are written in place. */
|
| +
|
| +static void
|
| +ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
|
| +{
|
| + if (*value_ptr)
|
| + {
|
| + *value_ptr = ada_get_decoded_value (*value_ptr);
|
| + *type_ptr = ada_check_typedef (value_type (*value_ptr));
|
| + }
|
| + else
|
| + *type_ptr = ada_get_decoded_type (*type_ptr);
|
| +}
|
| +
|
| +/* Return a string containing an image of the given scalar value.
|
| + VAL is the numeric value, while TYPE is the value's type.
|
| + This is useful for plain integers, of course, but even more
|
| + so for enumerated types.
|
| +
|
| + The result should be deallocated by xfree after use. */
|
| +
|
| +static char *
|
| +ada_varobj_scalar_image (struct type *type, LONGEST val)
|
| +{
|
| + struct ui_file *buf = mem_fileopen ();
|
| + struct cleanup *cleanups = make_cleanup_ui_file_delete (buf);
|
| + char *result;
|
| +
|
| + ada_print_scalar (type, val, buf);
|
| + result = ui_file_xstrdup (buf, NULL);
|
| + do_cleanups (cleanups);
|
| +
|
| + return result;
|
| +}
|
| +
|
| +/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
|
| + a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
|
| + corresponding to the field number FIELDNO. */
|
| +
|
| +static void
|
| +ada_varobj_struct_elt (struct value *parent_value,
|
| + struct type *parent_type,
|
| + int fieldno,
|
| + struct value **child_value,
|
| + struct type **child_type)
|
| +{
|
| + struct value *value = NULL;
|
| + struct type *type = NULL;
|
| +
|
| + if (parent_value)
|
| + {
|
| + value = value_field (parent_value, fieldno);
|
| + type = value_type (value);
|
| + }
|
| + else
|
| + type = TYPE_FIELD_TYPE (parent_type, fieldno);
|
| +
|
| + if (child_value)
|
| + *child_value = value;
|
| + if (child_type)
|
| + *child_type = type;
|
| +}
|
| +
|
| +/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
|
| + reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
|
| + to the dereferenced value. */
|
| +
|
| +static void
|
| +ada_varobj_ind (struct value *parent_value,
|
| + struct type *parent_type,
|
| + struct value **child_value,
|
| + struct type **child_type)
|
| +{
|
| + struct value *value = NULL;
|
| + struct type *type = NULL;
|
| +
|
| + if (ada_is_array_descriptor_type (parent_type))
|
| + {
|
| + /* This can only happen when PARENT_VALUE is NULL. Otherwise,
|
| + ada_get_decoded_value would have transformed our parent_type
|
| + into a simple array pointer type. */
|
| + gdb_assert (parent_value == NULL);
|
| + gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF);
|
| +
|
| + /* Decode parent_type by the equivalent pointer to (decoded)
|
| + array. */
|
| + while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
|
| + parent_type = TYPE_TARGET_TYPE (parent_type);
|
| + parent_type = ada_coerce_to_simple_array_type (parent_type);
|
| + parent_type = lookup_pointer_type (parent_type);
|
| + }
|
| +
|
| + /* If parent_value is a null pointer, then only perform static
|
| + dereferencing. We cannot dereference null pointers. */
|
| + if (parent_value && value_as_address (parent_value) == 0)
|
| + parent_value = NULL;
|
| +
|
| + if (parent_value)
|
| + {
|
| + value = ada_value_ind (parent_value);
|
| + type = value_type (value);
|
| + }
|
| + else
|
| + type = TYPE_TARGET_TYPE (parent_type);
|
| +
|
| + if (child_value)
|
| + *child_value = value;
|
| + if (child_type)
|
| + *child_type = type;
|
| +}
|
| +
|
| +/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
|
| + array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
|
| + pair corresponding to the element at ELT_INDEX. */
|
| +
|
| +static void
|
| +ada_varobj_simple_array_elt (struct value *parent_value,
|
| + struct type *parent_type,
|
| + int elt_index,
|
| + struct value **child_value,
|
| + struct type **child_type)
|
| +{
|
| + struct value *value = NULL;
|
| + struct type *type = NULL;
|
| +
|
| + if (parent_value)
|
| + {
|
| + struct value *index_value =
|
| + value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index);
|
| +
|
| + value = ada_value_subscript (parent_value, 1, &index_value);
|
| + type = value_type (value);
|
| + }
|
| + else
|
| + type = TYPE_TARGET_TYPE (parent_type);
|
| +
|
| + if (child_value)
|
| + *child_value = value;
|
| + if (child_type)
|
| + *child_type = type;
|
| +}
|
| +
|
| +/* Given the decoded value and decoded type of a variable object,
|
| + adjust the value and type to those necessary for getting children
|
| + of the variable object.
|
| +
|
| + The replacement is performed in place. */
|
| +
|
| +static void
|
| +ada_varobj_adjust_for_child_access (struct value **value,
|
| + struct type **type)
|
| +{
|
| + /* Pointers to struct/union types are special: Instead of having
|
| + one child (the struct), their children are the components of
|
| + the struct/union type. We handle this situation by dereferencing
|
| + the (value, type) couple. */
|
| + if (TYPE_CODE (*type) == TYPE_CODE_PTR
|
| + && (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT
|
| + || TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION)
|
| + && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
|
| + && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
|
| + ada_varobj_ind (*value, *type, value, type);
|
| +}
|
| +
|
| +/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
|
| + (any type of array, "simple" or not), return the number of children
|
| + that this array contains. */
|
| +
|
| +static int
|
| +ada_varobj_get_array_number_of_children (struct value *parent_value,
|
| + struct type *parent_type)
|
| +{
|
| + LONGEST lo, hi;
|
| +
|
| + if (!get_array_bounds (parent_type, &lo, &hi))
|
| + {
|
| + /* Could not get the array bounds. Pretend this is an empty array. */
|
| + warning (_("unable to get bounds of array, assuming null array"));
|
| + return 0;
|
| + }
|
| +
|
| + /* Ada allows the upper bound to be less than the lower bound,
|
| + in order to specify empty arrays... */
|
| + if (hi < lo)
|
| + return 0;
|
| +
|
| + return hi - lo + 1;
|
| +}
|
| +
|
| +/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
|
| + union, return the number of children this struct contains. */
|
| +
|
| +static int
|
| +ada_varobj_get_struct_number_of_children (struct value *parent_value,
|
| + struct type *parent_type)
|
| +{
|
| + int n_children = 0;
|
| + int i;
|
| +
|
| + gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
|
| + || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
|
| +
|
| + for (i = 0; i < TYPE_NFIELDS (parent_type); i++)
|
| + {
|
| + if (ada_is_ignored_field (parent_type, i))
|
| + continue;
|
| +
|
| + if (ada_is_wrapper_field (parent_type, i))
|
| + {
|
| + struct value *elt_value;
|
| + struct type *elt_type;
|
| +
|
| + ada_varobj_struct_elt (parent_value, parent_type, i,
|
| + &elt_value, &elt_type);
|
| + if (ada_is_tagged_type (elt_type, 0))
|
| + {
|
| + /* We must not use ada_varobj_get_number_of_children
|
| + to determine is element's number of children, because
|
| + this function first calls ada_varobj_decode_var,
|
| + which "fixes" the element. For tagged types, this
|
| + includes reading the object's tag to determine its
|
| + real type, which happens to be the parent_type, and
|
| + leads to an infinite loop (because the element gets
|
| + fixed back into the parent). */
|
| + n_children += ada_varobj_get_struct_number_of_children
|
| + (elt_value, elt_type);
|
| + }
|
| + else
|
| + n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
|
| + }
|
| + else if (ada_is_variant_part (parent_type, i))
|
| + {
|
| + /* In normal situations, the variant part of the record should
|
| + have been "fixed". Or, in other words, it should have been
|
| + replaced by the branch of the variant part that is relevant
|
| + for our value. But there are still situations where this
|
| + can happen, however (Eg. when our parent is a NULL pointer).
|
| + We do not support showing this part of the record for now,
|
| + so just pretend this field does not exist. */
|
| + }
|
| + else
|
| + n_children++;
|
| + }
|
| +
|
| + return n_children;
|
| +}
|
| +
|
| +/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
|
| + a pointer, return the number of children this pointer has. */
|
| +
|
| +static int
|
| +ada_varobj_get_ptr_number_of_children (struct value *parent_value,
|
| + struct type *parent_type)
|
| +{
|
| + struct type *child_type = TYPE_TARGET_TYPE (parent_type);
|
| +
|
| + /* Pointer to functions and to void do not have a child, since
|
| + you cannot print what they point to. */
|
| + if (TYPE_CODE (child_type) == TYPE_CODE_FUNC
|
| + || TYPE_CODE (child_type) == TYPE_CODE_VOID)
|
| + return 0;
|
| +
|
| + /* All other types have 1 child. */
|
| + return 1;
|
| +}
|
| +
|
| +/* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
|
| + pair. */
|
| +
|
| +int
|
| +ada_varobj_get_number_of_children (struct value *parent_value,
|
| + struct type *parent_type)
|
| +{
|
| + ada_varobj_decode_var (&parent_value, &parent_type);
|
| + ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
|
| +
|
| + /* A typedef to an array descriptor in fact represents a pointer
|
| + to an unconstrained array. These types always have one child
|
| + (the unconstrained array). */
|
| + if (ada_is_array_descriptor_type (parent_type)
|
| + && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
|
| + return 1;
|
| +
|
| + if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
|
| + return ada_varobj_get_array_number_of_children (parent_value,
|
| + parent_type);
|
| +
|
| + if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
|
| + || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
|
| + return ada_varobj_get_struct_number_of_children (parent_value,
|
| + parent_type);
|
| +
|
| + if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
|
| + return ada_varobj_get_ptr_number_of_children (parent_value,
|
| + parent_type);
|
| +
|
| + /* All other types have no child. */
|
| + return 0;
|
| +}
|
| +
|
| +/* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
|
| + whose index is CHILD_INDEX:
|
| +
|
| + - If CHILD_NAME is not NULL, then a copy of the child's name
|
| + is saved in *CHILD_NAME. This copy must be deallocated
|
| + with xfree after use.
|
| +
|
| + - If CHILD_VALUE is not NULL, then save the child's value
|
| + in *CHILD_VALUE. Same thing for the child's type with
|
| + CHILD_TYPE if not NULL.
|
| +
|
| + - If CHILD_PATH_EXPR is not NULL, then compute the child's
|
| + path expression. The resulting string must be deallocated
|
| + after use with xfree.
|
| +
|
| + Computing the child's path expression requires the PARENT_PATH_EXPR
|
| + to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
|
| + CHILD_PATH_EXPR is NULL.
|
| +
|
| + PARENT_NAME is the name of the parent, and should never be NULL. */
|
| +
|
| +static void ada_varobj_describe_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name,
|
| + const char *parent_path_expr,
|
| + int child_index,
|
| + char **child_name,
|
| + struct value **child_value,
|
| + struct type **child_type,
|
| + char **child_path_expr);
|
| +
|
| +/* Same as ada_varobj_describe_child, but limited to struct/union
|
| + objects. */
|
| +
|
| +static void
|
| +ada_varobj_describe_struct_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name,
|
| + const char *parent_path_expr,
|
| + int child_index,
|
| + char **child_name,
|
| + struct value **child_value,
|
| + struct type **child_type,
|
| + char **child_path_expr)
|
| +{
|
| + int fieldno;
|
| + int childno = 0;
|
| +
|
| + gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT);
|
| +
|
| + for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++)
|
| + {
|
| + if (ada_is_ignored_field (parent_type, fieldno))
|
| + continue;
|
| +
|
| + if (ada_is_wrapper_field (parent_type, fieldno))
|
| + {
|
| + struct value *elt_value;
|
| + struct type *elt_type;
|
| + int elt_n_children;
|
| +
|
| + ada_varobj_struct_elt (parent_value, parent_type, fieldno,
|
| + &elt_value, &elt_type);
|
| + if (ada_is_tagged_type (elt_type, 0))
|
| + {
|
| + /* Same as in ada_varobj_get_struct_number_of_children:
|
| + For tagged types, we must be careful to not call
|
| + ada_varobj_get_number_of_children, to prevent our
|
| + element from being fixed back into the parent. */
|
| + elt_n_children = ada_varobj_get_struct_number_of_children
|
| + (elt_value, elt_type);
|
| + }
|
| + else
|
| + elt_n_children =
|
| + ada_varobj_get_number_of_children (elt_value, elt_type);
|
| +
|
| + /* Is the child we're looking for one of the children
|
| + of this wrapper field? */
|
| + if (child_index - childno < elt_n_children)
|
| + {
|
| + if (ada_is_tagged_type (elt_type, 0))
|
| + {
|
| + /* Same as in ada_varobj_get_struct_number_of_children:
|
| + For tagged types, we must be careful to not call
|
| + ada_varobj_describe_child, to prevent our element
|
| + from being fixed back into the parent. */
|
| + ada_varobj_describe_struct_child
|
| + (elt_value, elt_type, parent_name, parent_path_expr,
|
| + child_index - childno, child_name, child_value,
|
| + child_type, child_path_expr);
|
| + }
|
| + else
|
| + ada_varobj_describe_child (elt_value, elt_type,
|
| + parent_name, parent_path_expr,
|
| + child_index - childno,
|
| + child_name, child_value,
|
| + child_type, child_path_expr);
|
| + return;
|
| + }
|
| +
|
| + /* The child we're looking for is beyond this wrapper
|
| + field, so skip all its children. */
|
| + childno += elt_n_children;
|
| + continue;
|
| + }
|
| + else if (ada_is_variant_part (parent_type, fieldno))
|
| + {
|
| + /* In normal situations, the variant part of the record should
|
| + have been "fixed". Or, in other words, it should have been
|
| + replaced by the branch of the variant part that is relevant
|
| + for our value. But there are still situations where this
|
| + can happen, however (Eg. when our parent is a NULL pointer).
|
| + We do not support showing this part of the record for now,
|
| + so just pretend this field does not exist. */
|
| + continue;
|
| + }
|
| +
|
| + if (childno == child_index)
|
| + {
|
| + if (child_name)
|
| + {
|
| + /* The name of the child is none other than the field's
|
| + name, except that we need to strip suffixes from it.
|
| + For instance, fields with alignment constraints will
|
| + have an __XVA suffix added to them. */
|
| + const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
|
| + int child_name_len = ada_name_prefix_len (field_name);
|
| +
|
| + *child_name = xstrprintf ("%.*s", child_name_len, field_name);
|
| + }
|
| +
|
| + if (child_value && parent_value)
|
| + ada_varobj_struct_elt (parent_value, parent_type, fieldno,
|
| + child_value, NULL);
|
| +
|
| + if (child_type)
|
| + ada_varobj_struct_elt (parent_value, parent_type, fieldno,
|
| + NULL, child_type);
|
| +
|
| + if (child_path_expr)
|
| + {
|
| + /* The name of the child is none other than the field's
|
| + name, except that we need to strip suffixes from it.
|
| + For instance, fields with alignment constraints will
|
| + have an __XVA suffix added to them. */
|
| + const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
|
| + int child_name_len = ada_name_prefix_len (field_name);
|
| +
|
| + *child_path_expr =
|
| + xstrprintf ("(%s).%.*s", parent_path_expr,
|
| + child_name_len, field_name);
|
| + }
|
| +
|
| + return;
|
| + }
|
| +
|
| + childno++;
|
| + }
|
| +
|
| + /* Something went wrong. Either we miscounted the number of
|
| + children, or CHILD_INDEX was too high. But we should never
|
| + reach here. We don't have enough information to recover
|
| + nicely, so just raise an assertion failure. */
|
| + gdb_assert_not_reached ("unexpected code path");
|
| +}
|
| +
|
| +/* Same as ada_varobj_describe_child, but limited to pointer objects.
|
| +
|
| + Note that CHILD_INDEX is unused in this situation, but still provided
|
| + for consistency of interface with other routines describing an object's
|
| + child. */
|
| +
|
| +static void
|
| +ada_varobj_describe_ptr_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name,
|
| + const char *parent_path_expr,
|
| + int child_index,
|
| + char **child_name,
|
| + struct value **child_value,
|
| + struct type **child_type,
|
| + char **child_path_expr)
|
| +{
|
| + if (child_name)
|
| + *child_name = xstrprintf ("%s.all", parent_name);
|
| +
|
| + if (child_value && parent_value)
|
| + ada_varobj_ind (parent_value, parent_type, child_value, NULL);
|
| +
|
| + if (child_type)
|
| + ada_varobj_ind (parent_value, parent_type, NULL, child_type);
|
| +
|
| + if (child_path_expr)
|
| + *child_path_expr = xstrprintf ("(%s).all", parent_path_expr);
|
| +}
|
| +
|
| +/* Same as ada_varobj_describe_child, limited to simple array objects
|
| + (TYPE_CODE_ARRAY only).
|
| +
|
| + Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
|
| + This is done by ada_varobj_describe_child before calling us. */
|
| +
|
| +static void
|
| +ada_varobj_describe_simple_array_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name,
|
| + const char *parent_path_expr,
|
| + int child_index,
|
| + char **child_name,
|
| + struct value **child_value,
|
| + struct type **child_type,
|
| + char **child_path_expr)
|
| +{
|
| + struct type *index_desc_type;
|
| + struct type *index_type;
|
| + int real_index;
|
| +
|
| + gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY);
|
| +
|
| + index_desc_type = ada_find_parallel_type (parent_type, "___XA");
|
| + ada_fixup_array_indexes_type (index_desc_type);
|
| + if (index_desc_type)
|
| + index_type = TYPE_FIELD_TYPE (index_desc_type, 0);
|
| + else
|
| + index_type = TYPE_INDEX_TYPE (parent_type);
|
| + real_index = child_index + ada_discrete_type_low_bound (index_type);
|
| +
|
| + if (child_name)
|
| + *child_name = ada_varobj_scalar_image (index_type, real_index);
|
| +
|
| + if (child_value && parent_value)
|
| + ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
|
| + child_value, NULL);
|
| +
|
| + if (child_type)
|
| + ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
|
| + NULL, child_type);
|
| +
|
| + if (child_path_expr)
|
| + {
|
| + char *index_img = ada_varobj_scalar_image (index_type, real_index);
|
| + struct cleanup *cleanups = make_cleanup (xfree, index_img);
|
| +
|
| + /* Enumeration litterals by themselves are potentially ambiguous.
|
| + For instance, consider the following package spec:
|
| +
|
| + package Pck is
|
| + type Color is (Red, Green, Blue, White);
|
| + type Blood_Cells is (White, Red);
|
| + end Pck;
|
| +
|
| + In this case, the litteral "red" for instance, or even
|
| + the fully-qualified litteral "pck.red" cannot be resolved
|
| + by itself. Type qualification is needed to determine which
|
| + enumeration litterals should be used.
|
| +
|
| + The following variable will be used to contain the name
|
| + of the array index type when such type qualification is
|
| + needed. */
|
| + const char *index_type_name = NULL;
|
| +
|
| + /* If the index type is a range type, find the base type. */
|
| + while (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
|
| + index_type = TYPE_TARGET_TYPE (index_type);
|
| +
|
| + if (TYPE_CODE (index_type) == TYPE_CODE_ENUM
|
| + || TYPE_CODE (index_type) == TYPE_CODE_BOOL)
|
| + {
|
| + index_type_name = ada_type_name (index_type);
|
| + if (index_type_name)
|
| + index_type_name = ada_decode (index_type_name);
|
| + }
|
| +
|
| + if (index_type_name != NULL)
|
| + *child_path_expr =
|
| + xstrprintf ("(%s)(%.*s'(%s))", parent_path_expr,
|
| + ada_name_prefix_len (index_type_name),
|
| + index_type_name, index_img);
|
| + else
|
| + *child_path_expr =
|
| + xstrprintf ("(%s)(%s)", parent_path_expr, index_img);
|
| + do_cleanups (cleanups);
|
| + }
|
| +}
|
| +
|
| +/* See description at declaration above. */
|
| +
|
| +static void
|
| +ada_varobj_describe_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name,
|
| + const char *parent_path_expr,
|
| + int child_index,
|
| + char **child_name,
|
| + struct value **child_value,
|
| + struct type **child_type,
|
| + char **child_path_expr)
|
| +{
|
| + /* We cannot compute the child's path expression without
|
| + the parent's path expression. This is a pre-condition
|
| + for calling this function. */
|
| + if (child_path_expr)
|
| + gdb_assert (parent_path_expr != NULL);
|
| +
|
| + ada_varobj_decode_var (&parent_value, &parent_type);
|
| + ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
|
| +
|
| + if (child_name)
|
| + *child_name = NULL;
|
| + if (child_value)
|
| + *child_value = NULL;
|
| + if (child_type)
|
| + *child_type = NULL;
|
| + if (child_path_expr)
|
| + *child_path_expr = NULL;
|
| +
|
| + if (ada_is_array_descriptor_type (parent_type)
|
| + && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
|
| + {
|
| + ada_varobj_describe_ptr_child (parent_value, parent_type,
|
| + parent_name, parent_path_expr,
|
| + child_index, child_name,
|
| + child_value, child_type,
|
| + child_path_expr);
|
| + return;
|
| + }
|
| +
|
| + if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
|
| + {
|
| + ada_varobj_describe_simple_array_child
|
| + (parent_value, parent_type, parent_name, parent_path_expr,
|
| + child_index, child_name, child_value, child_type,
|
| + child_path_expr);
|
| + return;
|
| + }
|
| +
|
| + if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT)
|
| + {
|
| + ada_varobj_describe_struct_child (parent_value, parent_type,
|
| + parent_name, parent_path_expr,
|
| + child_index, child_name,
|
| + child_value, child_type,
|
| + child_path_expr);
|
| + return;
|
| + }
|
| +
|
| + if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
|
| + {
|
| + ada_varobj_describe_ptr_child (parent_value, parent_type,
|
| + parent_name, parent_path_expr,
|
| + child_index, child_name,
|
| + child_value, child_type,
|
| + child_path_expr);
|
| + return;
|
| + }
|
| +
|
| + /* It should never happen. But rather than crash, report dummy names
|
| + and return a NULL child_value. */
|
| + if (child_name)
|
| + *child_name = xstrdup ("???");
|
| +}
|
| +
|
| +/* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
|
| + PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT.
|
| +
|
| + The result should be deallocated after use with xfree. */
|
| +
|
| +char *
|
| +ada_varobj_get_name_of_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name, int child_index)
|
| +{
|
| + char *child_name;
|
| +
|
| + ada_varobj_describe_child (parent_value, parent_type, parent_name,
|
| + NULL, child_index, &child_name, NULL,
|
| + NULL, NULL);
|
| + return child_name;
|
| +}
|
| +
|
| +/* Return the path expression of the child number CHILD_INDEX of
|
| + the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
|
| + of the parent, and PARENT_PATH_EXPR is the parent's path expression.
|
| + Both must be non-NULL.
|
| +
|
| + The result must be deallocated after use with xfree. */
|
| +
|
| +char *
|
| +ada_varobj_get_path_expr_of_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name,
|
| + const char *parent_path_expr,
|
| + int child_index)
|
| +{
|
| + char *child_path_expr;
|
| +
|
| + ada_varobj_describe_child (parent_value, parent_type, parent_name,
|
| + parent_path_expr, child_index, NULL,
|
| + NULL, NULL, &child_path_expr);
|
| +
|
| + return child_path_expr;
|
| +}
|
| +
|
| +/* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
|
| + PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
|
| +
|
| +struct value *
|
| +ada_varobj_get_value_of_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + const char *parent_name, int child_index)
|
| +{
|
| + struct value *child_value;
|
| +
|
| + ada_varobj_describe_child (parent_value, parent_type, parent_name,
|
| + NULL, child_index, NULL, &child_value,
|
| + NULL, NULL);
|
| +
|
| + return child_value;
|
| +}
|
| +
|
| +/* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
|
| + PARENT_TYPE) pair. */
|
| +
|
| +struct type *
|
| +ada_varobj_get_type_of_child (struct value *parent_value,
|
| + struct type *parent_type,
|
| + int child_index)
|
| +{
|
| + struct type *child_type;
|
| +
|
| + ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
|
| + child_index, NULL, NULL, &child_type, NULL);
|
| +
|
| + return child_type;
|
| +}
|
| +
|
| +/* Return a string that contains the image of the given VALUE, using
|
| + the print options OPTS as the options for formatting the result.
|
| +
|
| + The resulting string must be deallocated after use with xfree. */
|
| +
|
| +static char *
|
| +ada_varobj_get_value_image (struct value *value,
|
| + struct value_print_options *opts)
|
| +{
|
| + char *result;
|
| + struct ui_file *buffer;
|
| + struct cleanup *old_chain;
|
| +
|
| + buffer = mem_fileopen ();
|
| + old_chain = make_cleanup_ui_file_delete (buffer);
|
| +
|
| + common_val_print (value, buffer, 0, opts, current_language);
|
| + result = ui_file_xstrdup (buffer, NULL);
|
| +
|
| + do_cleanups (old_chain);
|
| + return result;
|
| +}
|
| +
|
| +/* Assuming that the (VALUE, TYPE) pair designates an array varobj,
|
| + return a string that is suitable for use in the "value" field of
|
| + the varobj output. Most of the time, this is the number of elements
|
| + in the array inside square brackets, but there are situations where
|
| + it's useful to add more info.
|
| +
|
| + OPTS are the print options used when formatting the result.
|
| +
|
| + The result should be deallocated after use using xfree. */
|
| +
|
| +static char *
|
| +ada_varobj_get_value_of_array_variable (struct value *value,
|
| + struct type *type,
|
| + struct value_print_options *opts)
|
| +{
|
| + char *result;
|
| + const int numchild = ada_varobj_get_array_number_of_children (value, type);
|
| +
|
| + /* If we have a string, provide its contents in the "value" field.
|
| + Otherwise, the only other way to inspect the contents of the string
|
| + is by looking at the value of each element, as in any other array,
|
| + which is not very convenient... */
|
| + if (value
|
| + && ada_is_string_type (type)
|
| + && (opts->format == 0 || opts->format == 's'))
|
| + {
|
| + char *str;
|
| + struct cleanup *old_chain;
|
| +
|
| + str = ada_varobj_get_value_image (value, opts);
|
| + old_chain = make_cleanup (xfree, str);
|
| + result = xstrprintf ("[%d] %s", numchild, str);
|
| + do_cleanups (old_chain);
|
| + }
|
| + else
|
| + result = xstrprintf ("[%d]", numchild);
|
| +
|
| + return result;
|
| +}
|
| +
|
| +/* Return a string representation of the (VALUE, TYPE) pair, using
|
| + the given print options OPTS as our formatting options. */
|
| +
|
| +char *
|
| +ada_varobj_get_value_of_variable (struct value *value,
|
| + struct type *type,
|
| + struct value_print_options *opts)
|
| +{
|
| + char *result = NULL;
|
| +
|
| + ada_varobj_decode_var (&value, &type);
|
| +
|
| + switch (TYPE_CODE (type))
|
| + {
|
| + case TYPE_CODE_STRUCT:
|
| + case TYPE_CODE_UNION:
|
| + result = xstrdup ("{...}");
|
| + break;
|
| + case TYPE_CODE_ARRAY:
|
| + result = ada_varobj_get_value_of_array_variable (value, type, opts);
|
| + break;
|
| + default:
|
| + if (!value)
|
| + result = xstrdup ("");
|
| + else
|
| + result = ada_varobj_get_value_image (value, opts);
|
| + break;
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +
|
|
|