Index: gdb/tilegx-tdep.c |
diff --git a/gdb/tilegx-tdep.c b/gdb/tilegx-tdep.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..9ec3aaa53fd23201afb21af91d65c8b027b64840 |
--- /dev/null |
+++ b/gdb/tilegx-tdep.c |
@@ -0,0 +1,1017 @@ |
+/* Target-dependent code for the Tilera TILE-Gx processor. |
+ |
+ Copyright (C) 2012 Free Software Foundation, Inc. |
+ |
+ This file is part of GDB. |
+ |
+ This program is free software; you can redistribute it and/or modify |
+ it under the terms of the GNU General Public License as published by |
+ the Free Software Foundation; either version 3 of the License, or |
+ (at your option) any later version. |
+ |
+ This program is distributed in the hope that it will be useful, |
+ but WITHOUT ANY WARRANTY; without even the implied warranty of |
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
+ GNU General Public License for more details. |
+ |
+ You should have received a copy of the GNU General Public License |
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
+ |
+#include "defs.h" |
+#include "frame.h" |
+#include "frame-base.h" |
+#include "frame-unwind.h" |
+#include "dwarf2-frame.h" |
+#include "trad-frame.h" |
+#include "symtab.h" |
+#include "gdbtypes.h" |
+#include "gdbcmd.h" |
+#include "gdbcore.h" |
+#include "value.h" |
+#include "dis-asm.h" |
+#include "inferior.h" |
+#include "gdb_string.h" |
+#include "gdb_assert.h" |
+#include "arch-utils.h" |
+#include "floatformat.h" |
+#include "regcache.h" |
+#include "regset.h" |
+#include "doublest.h" |
+#include "osabi.h" |
+#include "linux-tdep.h" |
+#include "objfiles.h" |
+#include "solib-svr4.h" |
+#include "symtab.h" |
+#include "tilegx-tdep.h" |
+#include "opcode/tilegx.h" |
+ |
+struct tilegx_frame_cache |
+{ |
+ /* Base address. */ |
+ CORE_ADDR base; |
+ /* Function start. */ |
+ CORE_ADDR start_pc; |
+ |
+ /* Table of saved registers. */ |
+ struct trad_frame_saved_reg *saved_regs; |
+}; |
+ |
+/* Register state values used by analyze_prologue. */ |
+enum reverse_state |
+ { |
+ REVERSE_STATE_REGISTER, |
+ REVERSE_STATE_VALUE, |
+ REVERSE_STATE_UNKNOWN |
+ }; |
+ |
+/* Register state used by analyze_prologue(). */ |
+struct tilegx_reverse_regs |
+{ |
+ LONGEST value; |
+ enum reverse_state state; |
+}; |
+ |
+static const struct tilegx_reverse_regs |
+template_reverse_regs[TILEGX_NUM_PHYS_REGS] = |
+ { |
+ { TILEGX_R0_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R1_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R2_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R3_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R4_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R5_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R6_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R7_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R8_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R9_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R10_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R11_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R12_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R13_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R14_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R15_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R16_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R17_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R18_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R19_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R20_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R21_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R22_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R23_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R24_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R25_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R26_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R27_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R28_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R29_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R30_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R31_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R32_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R33_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R34_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R35_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R36_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R37_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R38_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R39_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R40_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R41_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R42_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R43_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R44_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R45_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R46_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R47_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R48_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R49_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R50_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R51_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_R52_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_TP_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_SP_REGNUM, REVERSE_STATE_REGISTER }, |
+ { TILEGX_LR_REGNUM, REVERSE_STATE_REGISTER }, |
+ { 0, REVERSE_STATE_UNKNOWN }, |
+ { 0, REVERSE_STATE_UNKNOWN }, |
+ { 0, REVERSE_STATE_UNKNOWN }, |
+ { 0, REVERSE_STATE_UNKNOWN }, |
+ { 0, REVERSE_STATE_UNKNOWN }, |
+ { 0, REVERSE_STATE_UNKNOWN }, |
+ { 0, REVERSE_STATE_UNKNOWN }, |
+ { TILEGX_ZERO_REGNUM, REVERSE_STATE_VALUE } |
+ }; |
+ |
+/* Implement the "register_name" gdbarch method. */ |
+ |
+static const char * |
+tilegx_register_name (struct gdbarch *gdbarch, int regnum) |
+{ |
+ static const char *const register_names[TILEGX_NUM_REGS] = |
+ { |
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
+ "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
+ "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
+ "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", |
+ "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", |
+ "r48", "r49", "r50", "r51", "r52", "tp", "sp", "lr", |
+ "sn", "idn0", "idn1", "udn0", "udn1", "udn2", "udn3", "zero", |
+ "pc" |
+ }; |
+ |
+ if (regnum < 0 || regnum >= TILEGX_NUM_REGS) |
+ internal_error (__FILE__, __LINE__, |
+ "tilegx_register_name: invalid register number %d", |
+ regnum); |
+ |
+ return register_names[regnum]; |
+} |
+ |
+/* This is the implementation of gdbarch method register_type. */ |
+ |
+static struct type * |
+tilegx_register_type (struct gdbarch *gdbarch, int regnum) |
+{ |
+ if (regnum == TILEGX_PC_REGNUM) |
+ return builtin_type (gdbarch)->builtin_func_ptr; |
+ else |
+ return builtin_type (gdbarch)->builtin_uint64; |
+} |
+ |
+/* This is the implementation of gdbarch method dwarf2_reg_to_regnum. */ |
+ |
+static int |
+tilegx_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) |
+{ |
+ return num; |
+} |
+ |
+/* Makes the decision of whether a given type is a scalar type. |
+ Scalar types are returned in the registers r2-r11 as they fit. */ |
+ |
+static int |
+tilegx_type_is_scalar (struct type *t) |
+{ |
+ return (TYPE_CODE(t) != TYPE_CODE_STRUCT |
+ && TYPE_CODE(t) != TYPE_CODE_UNION |
+ && TYPE_CODE(t) != TYPE_CODE_ARRAY); |
+} |
+ |
+/* Returns non-zero if the given struct type will be returned using |
+ a special convention, rather than the normal function return method. |
+ Used in the context of the "return" command, and target function |
+ calls from the debugger. */ |
+ |
+static int |
+tilegx_use_struct_convention (struct type *type) |
+{ |
+ /* Only scalars which fit in R0 - R9 can be returned in registers. |
+ Otherwise, they are returned via a pointer passed in R0. */ |
+ return (!tilegx_type_is_scalar (type) |
+ && (TYPE_LENGTH (type) > (1 + TILEGX_R9_REGNUM - TILEGX_R0_REGNUM) |
+ * tilegx_reg_size)); |
+} |
+ |
+/* Find a function's return value in the appropriate registers (in |
+ REGCACHE), and copy it into VALBUF. */ |
+ |
+static void |
+tilegx_extract_return_value (struct type *type, struct regcache *regcache, |
+ gdb_byte *valbuf) |
+{ |
+ int len = TYPE_LENGTH (type); |
+ int i, regnum = TILEGX_R0_REGNUM; |
+ |
+ for (i = 0; i < len; i += tilegx_reg_size) |
+ regcache_raw_read (regcache, regnum++, valbuf + i); |
+} |
+ |
+/* Copy the function return value from VALBUF into the proper |
+ location for a function return. |
+ Called only in the context of the "return" command. */ |
+ |
+static void |
+tilegx_store_return_value (struct type *type, struct regcache *regcache, |
+ const void *valbuf) |
+{ |
+ if (TYPE_LENGTH (type) < tilegx_reg_size) |
+ { |
+ /* Add leading zeros to the (little-endian) value. */ |
+ gdb_byte buf[tilegx_reg_size] = { 0 }; |
+ |
+ memcpy (buf, valbuf, TYPE_LENGTH (type)); |
+ regcache_raw_write (regcache, TILEGX_R0_REGNUM, buf); |
+ } |
+ else |
+ { |
+ int len = TYPE_LENGTH (type); |
+ int i, regnum = TILEGX_R0_REGNUM; |
+ |
+ for (i = 0; i < len; i += tilegx_reg_size) |
+ regcache_raw_write (regcache, regnum++, (gdb_byte *) valbuf + i); |
+ } |
+} |
+ |
+/* This is the implementation of gdbarch method return_value. */ |
+ |
+static enum return_value_convention |
+tilegx_return_value (struct gdbarch *gdbarch, struct value *function, |
+ struct type *type, struct regcache *regcache, |
+ gdb_byte *readbuf, const gdb_byte *writebuf) |
+{ |
+ if (tilegx_use_struct_convention (type)) |
+ return RETURN_VALUE_STRUCT_CONVENTION; |
+ if (writebuf) |
+ tilegx_store_return_value (type, regcache, writebuf); |
+ else if (readbuf) |
+ tilegx_extract_return_value (type, regcache, readbuf); |
+ return RETURN_VALUE_REGISTER_CONVENTION; |
+} |
+ |
+/* This is the implementation of gdbarch method frame_align. */ |
+ |
+static CORE_ADDR |
+tilegx_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
+{ |
+ return addr & -8; |
+} |
+ |
+ |
+/* Implement the "push_dummy_call" gdbarch method. */ |
+ |
+static CORE_ADDR |
+tilegx_push_dummy_call (struct gdbarch *gdbarch, |
+ struct value *function, |
+ struct regcache *regcache, |
+ CORE_ADDR bp_addr, int nargs, |
+ struct value **args, |
+ CORE_ADDR sp, int struct_return, |
+ CORE_ADDR struct_addr) |
+{ |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ CORE_ADDR stack_dest = sp; |
+ int argreg = TILEGX_R0_REGNUM; |
+ int i, j; |
+ int typelen, slacklen, alignlen; |
+ static const gdb_byte two_zero_words[8] = { 0 }; |
+ |
+ /* If struct_return is 1, then the struct return address will |
+ consume one argument-passing register. */ |
+ if (struct_return) |
+ regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); |
+ |
+ /* Arguments are passed in R0 - R9, and as soon as an argument |
+ will not fit completely in the remaining registers, then it, |
+ and all remaining arguments, are put on the stack. */ |
+ for (i = 0; i < nargs && argreg <= TILEGX_R9_REGNUM; i++) |
+ { |
+ const gdb_byte *val; |
+ typelen = TYPE_LENGTH (value_enclosing_type (args[i])); |
+ |
+ if (typelen > (TILEGX_R9_REGNUM - argreg + 1) * tilegx_reg_size) |
+ break; |
+ |
+ /* Put argument into registers wordwise. */ |
+ val = value_contents (args[i]); |
+ for (j = 0; j < typelen; j += tilegx_reg_size) |
+ { |
+ /* ISSUE: Why special handling for "typelen = 4x + 1"? |
+ I don't ever see "typelen" values except 4 and 8. */ |
+ int n = (typelen - j == 1) ? 1 : tilegx_reg_size; |
+ ULONGEST w = extract_unsigned_integer (val + j, n, byte_order); |
+ |
+ regcache_cooked_write_unsigned (regcache, argreg++, w); |
+ } |
+ } |
+ |
+ /* Align SP. */ |
+ stack_dest = tilegx_frame_align (gdbarch, stack_dest); |
+ |
+ /* Loop backwards through arguments to determine stack alignment. */ |
+ alignlen = 0; |
+ |
+ for (j = nargs - 1; j >= i; j--) |
+ { |
+ typelen = TYPE_LENGTH (value_enclosing_type (args[j])); |
+ alignlen += (typelen + 3) & (~3); |
+ } |
+ |
+ if (alignlen & 0x4) |
+ stack_dest -= 4; |
+ |
+ /* Loop backwards through remaining arguments and push them on |
+ the stack, word aligned. */ |
+ for (j = nargs - 1; j >= i; j--) |
+ { |
+ gdb_byte *val; |
+ |
+ typelen = TYPE_LENGTH (value_enclosing_type (args[j])); |
+ slacklen = ((typelen + 3) & (~3)) - typelen; |
+ val = alloca (typelen + slacklen); |
+ memcpy (val, value_contents (args[j]), typelen); |
+ memset (val + typelen, 0, slacklen); |
+ |
+ /* Now write data to the stack. The stack grows downwards. */ |
+ stack_dest -= typelen + slacklen; |
+ write_memory (stack_dest, val, typelen + slacklen); |
+ } |
+ |
+ /* Add 2 words for linkage space to the stack. */ |
+ stack_dest = stack_dest - 8; |
+ write_memory (stack_dest, two_zero_words, 8); |
+ |
+ /* Update stack pointer. */ |
+ regcache_cooked_write_unsigned (regcache, TILEGX_SP_REGNUM, stack_dest); |
+ |
+ /* Set the return address register to point to the entry point of |
+ the program, where a breakpoint lies in wait. */ |
+ regcache_cooked_write_unsigned (regcache, TILEGX_LR_REGNUM, bp_addr); |
+ |
+ return stack_dest; |
+} |
+ |
+ |
+/* Decode the instructions within the given address range. |
+ Decide when we must have reached the end of the function prologue. |
+ If a frame_info pointer is provided, fill in its saved_regs etc. |
+ Returns the address of the first instruction after the prologue. |
+ NOTE: This is often called with start_addr being the start of some |
+ function, and end_addr being the current PC. */ |
+ |
+static CORE_ADDR |
+tilegx_analyze_prologue (struct gdbarch* gdbarch, |
+ CORE_ADDR start_addr, CORE_ADDR end_addr, |
+ struct tilegx_frame_cache *cache, |
+ struct frame_info *next_frame) |
+{ |
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
+ CORE_ADDR next_addr; |
+ CORE_ADDR prolog_end = end_addr; |
+ ULONGEST inst, inst2; |
+ LONGEST offset; |
+ int regnum; |
+ gdb_byte instbuf[32 * TILEGX_BUNDLE_SIZE_IN_BYTES]; |
+ CORE_ADDR instbuf_start; |
+ unsigned int instbuf_size; |
+ int status; |
+ bfd_uint64_t bundle; |
+ struct tilegx_decoded_instruction |
+ decoded[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE]; |
+ int num_insns; |
+ struct tilegx_reverse_regs reverse_frame[TILEGX_NUM_PHYS_REGS]; |
+ struct tilegx_reverse_regs |
+ new_reverse_frame[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE]; |
+ int dest_regs[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE]; |
+ int reverse_frame_valid, prolog_done, branch_seen; |
+ LONGEST prev_sp_value; |
+ int i, j; |
+ |
+ if (start_addr >= end_addr |
+ || (start_addr % TILEGX_BUNDLE_ALIGNMENT_IN_BYTES) != 0) |
+ return end_addr; |
+ |
+ /* Initialize the reverse frame. This maps the CURRENT frame's |
+ registers to the outer frame's registers (the frame on the |
+ stack goes the other way). */ |
+ memcpy (&reverse_frame, &template_reverse_regs, sizeof (reverse_frame)); |
+ |
+ prolog_done = 0; |
+ branch_seen = 0; |
+ prev_sp_value = 0; |
+ |
+ /* To cut down on round-trip overhead, we fetch multiple bundles |
+ at once. These variables describe the range of memory we have |
+ prefetched. */ |
+ instbuf_start = 0; |
+ instbuf_size = 0; |
+ |
+ for (next_addr = start_addr; |
+ next_addr < end_addr; |
+ next_addr += TILEGX_BUNDLE_SIZE_IN_BYTES) |
+ { |
+ /* Retrieve the next instruction. */ |
+ if (next_addr - instbuf_start >= instbuf_size) |
+ { |
+ /* Figure out how many bytes to fetch. Don't span a page |
+ boundary since that might cause an unnecessary memory |
+ error. */ |
+ unsigned int size_on_same_page = 4096 - (next_addr & 4095); |
+ |
+ instbuf_size = sizeof instbuf; |
+ |
+ if (instbuf_size > size_on_same_page) |
+ instbuf_size = size_on_same_page; |
+ instbuf_start = next_addr; |
+ |
+ status = safe_frame_unwind_memory (next_frame, instbuf_start, |
+ instbuf, instbuf_size); |
+ if (status == 0) |
+ memory_error (status, next_addr); |
+ } |
+ |
+ reverse_frame_valid = 0; |
+ |
+ bundle = extract_unsigned_integer (&instbuf[next_addr - instbuf_start], |
+ 8, byte_order); |
+ |
+ num_insns = parse_insn_tilegx (bundle, next_addr, decoded); |
+ |
+ for (i = 0; i < num_insns; i++) |
+ { |
+ struct tilegx_decoded_instruction *this_insn = &decoded[i]; |
+ int64_t *operands = (int64_t *) this_insn->operand_values; |
+ const struct tilegx_opcode *opcode = this_insn->opcode; |
+ |
+ switch (opcode->mnemonic) |
+ { |
+ case TILEGX_OPC_ST: |
+ if (cache |
+ && reverse_frame[operands[0]].state == REVERSE_STATE_VALUE |
+ && reverse_frame[operands[1]].state |
+ == REVERSE_STATE_REGISTER) |
+ { |
+ LONGEST saved_address = reverse_frame[operands[0]].value; |
+ unsigned saved_register |
+ = (unsigned) reverse_frame[operands[1]].value; |
+ |
+ /* realreg >= 0 and addr != -1 indicates that the |
+ value of saved_register is in memory location |
+ saved_address. The value of realreg is not |
+ meaningful in this case but it must be >= 0. |
+ See trad-frame.h. */ |
+ cache->saved_regs[saved_register].realreg = saved_register; |
+ cache->saved_regs[saved_register].addr = saved_address; |
+ } |
+ break; |
+ case TILEGX_OPC_ADDI: |
+ case TILEGX_OPC_ADDLI: |
+ if (cache |
+ && operands[0] == TILEGX_SP_REGNUM |
+ && operands[1] == TILEGX_SP_REGNUM |
+ && reverse_frame[operands[1]].state == REVERSE_STATE_REGISTER) |
+ { |
+ /* Special case. We're fixing up the stack frame. */ |
+ uint64_t hopefully_sp |
+ = (unsigned) reverse_frame[operands[1]].value; |
+ short op2_as_short = (short) operands[2]; |
+ signed char op2_as_char = (signed char) operands[2]; |
+ |
+ /* Fix up the sign-extension. */ |
+ if (opcode->mnemonic == TILEGX_OPC_ADDI) |
+ op2_as_short = op2_as_char; |
+ prev_sp_value = (cache->saved_regs[hopefully_sp].addr |
+ - op2_as_short); |
+ |
+ new_reverse_frame[i].state = REVERSE_STATE_VALUE; |
+ new_reverse_frame[i].value |
+ = cache->saved_regs[hopefully_sp].addr; |
+ trad_frame_set_value (cache->saved_regs, |
+ hopefully_sp, prev_sp_value); |
+ } |
+ else |
+ { |
+ short op2_as_short = (short) operands[2]; |
+ signed char op2_as_char = (signed char) operands[2]; |
+ |
+ /* Fix up the sign-extension. */ |
+ if (opcode->mnemonic == TILEGX_OPC_ADDI) |
+ op2_as_short = op2_as_char; |
+ |
+ new_reverse_frame[i] = reverse_frame[operands[1]]; |
+ if (new_reverse_frame[i].state == REVERSE_STATE_VALUE) |
+ new_reverse_frame[i].value += op2_as_short; |
+ else |
+ new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN; |
+ } |
+ reverse_frame_valid |= 1 << i; |
+ dest_regs[i] = operands[0]; |
+ break; |
+ case TILEGX_OPC_ADD: |
+ if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE |
+ && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE) |
+ { |
+ /* We have values -- we can do this. */ |
+ new_reverse_frame[i] = reverse_frame[operands[2]]; |
+ new_reverse_frame[i].value |
+ += reverse_frame[operands[i]].value; |
+ } |
+ else |
+ { |
+ /* We don't know anything about the values. Punt. */ |
+ new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN; |
+ } |
+ reverse_frame_valid |= 1 << i; |
+ dest_regs[i] = operands[0]; |
+ break; |
+ case TILEGX_OPC_MOVE: |
+ new_reverse_frame[i] = reverse_frame[operands[1]]; |
+ reverse_frame_valid |= 1 << i; |
+ dest_regs[i] = operands[0]; |
+ break; |
+ case TILEGX_OPC_MOVEI: |
+ case TILEGX_OPC_MOVELI: |
+ new_reverse_frame[i].state = REVERSE_STATE_VALUE; |
+ new_reverse_frame[i].value = operands[1]; |
+ reverse_frame_valid |= 1 << i; |
+ dest_regs[i] = operands[0]; |
+ break; |
+ case TILEGX_OPC_ORI: |
+ if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE) |
+ { |
+ /* We have a value in A -- we can do this. */ |
+ new_reverse_frame[i] = reverse_frame[operands[1]]; |
+ new_reverse_frame[i].value |
+ = reverse_frame[operands[1]].value | operands[2]; |
+ } |
+ else if (operands[2] == 0) |
+ { |
+ /* This is a move. */ |
+ new_reverse_frame[i] = reverse_frame[operands[1]]; |
+ } |
+ else |
+ { |
+ /* We don't know anything about the values. Punt. */ |
+ new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN; |
+ } |
+ reverse_frame_valid |= 1 << i; |
+ dest_regs[i] = operands[0]; |
+ break; |
+ case TILEGX_OPC_OR: |
+ if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE |
+ && reverse_frame[operands[1]].value == 0) |
+ { |
+ /* This is a move. */ |
+ new_reverse_frame[i] = reverse_frame[operands[2]]; |
+ } |
+ else if (reverse_frame[operands[2]].state == REVERSE_STATE_VALUE |
+ && reverse_frame[operands[2]].value == 0) |
+ { |
+ /* This is a move. */ |
+ new_reverse_frame[i] = reverse_frame[operands[1]]; |
+ } |
+ else |
+ { |
+ /* We don't know anything about the values. Punt. */ |
+ new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN; |
+ } |
+ reverse_frame_valid |= 1 << i; |
+ dest_regs[i] = operands[0]; |
+ break; |
+ case TILEGX_OPC_SUB: |
+ if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE |
+ && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE) |
+ { |
+ /* We have values -- we can do this. */ |
+ new_reverse_frame[i] = reverse_frame[operands[1]]; |
+ new_reverse_frame[i].value |
+ -= reverse_frame[operands[2]].value; |
+ } |
+ else |
+ { |
+ /* We don't know anything about the values. Punt. */ |
+ new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN; |
+ } |
+ reverse_frame_valid |= 1 << i; |
+ dest_regs[i] = operands[0]; |
+ break; |
+ |
+ case TILEGX_OPC_FNOP: |
+ case TILEGX_OPC_INFO: |
+ case TILEGX_OPC_INFOL: |
+ /* Nothing to see here, move on. |
+ Note that real NOP is treated as a 'real' instruction |
+ because someone must have intended that it be there. |
+ It therefore terminates the prolog. */ |
+ break; |
+ |
+ case TILEGX_OPC_J: |
+ case TILEGX_OPC_JAL: |
+ |
+ case TILEGX_OPC_BEQZ: |
+ case TILEGX_OPC_BEQZT: |
+ case TILEGX_OPC_BGEZ: |
+ case TILEGX_OPC_BGEZT: |
+ case TILEGX_OPC_BGTZ: |
+ case TILEGX_OPC_BGTZT: |
+ case TILEGX_OPC_BLBC: |
+ case TILEGX_OPC_BLBCT: |
+ case TILEGX_OPC_BLBS: |
+ case TILEGX_OPC_BLBST: |
+ case TILEGX_OPC_BLEZ: |
+ case TILEGX_OPC_BLEZT: |
+ case TILEGX_OPC_BLTZ: |
+ case TILEGX_OPC_BLTZT: |
+ case TILEGX_OPC_BNEZ: |
+ case TILEGX_OPC_BNEZT: |
+ |
+ case TILEGX_OPC_IRET: |
+ case TILEGX_OPC_JALR: |
+ case TILEGX_OPC_JALRP: |
+ case TILEGX_OPC_JR: |
+ case TILEGX_OPC_JRP: |
+ case TILEGX_OPC_SWINT0: |
+ case TILEGX_OPC_SWINT1: |
+ case TILEGX_OPC_SWINT2: |
+ case TILEGX_OPC_SWINT3: |
+ /* We're really done -- this is a branch. */ |
+ branch_seen = 1; |
+ prolog_done = 1; |
+ break; |
+ default: |
+ /* We don't know or care what this instruction is. |
+ All we know is that it isn't part of a prolog, and if |
+ there's a destination register, we're trashing it. */ |
+ prolog_done = 1; |
+ for (j = 0; j < opcode->num_operands; j++) |
+ { |
+ if (this_insn->operands[j]->is_dest_reg) |
+ { |
+ dest_regs[i] = operands[j]; |
+ new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN; |
+ reverse_frame_valid |= 1 << i; |
+ break; |
+ } |
+ } |
+ break; |
+ } |
+ } |
+ |
+ /* Now update the reverse frames. */ |
+ for (i = 0; i < num_insns; i++) |
+ { |
+ /* ISSUE: Does this properly handle "network" registers? */ |
+ if ((reverse_frame_valid & (1 << i)) |
+ && dest_regs[i] != TILEGX_ZERO_REGNUM) |
+ reverse_frame[dest_regs[i]] = new_reverse_frame[i]; |
+ } |
+ |
+ if (prev_sp_value != 0) |
+ { |
+ /* GCC uses R52 as a frame pointer. Have we seen "move r52, sp"? */ |
+ if (reverse_frame[TILEGX_R52_REGNUM].state == REVERSE_STATE_REGISTER |
+ && reverse_frame[TILEGX_R52_REGNUM].value == TILEGX_SP_REGNUM) |
+ { |
+ reverse_frame[TILEGX_R52_REGNUM].state = REVERSE_STATE_VALUE; |
+ reverse_frame[TILEGX_R52_REGNUM].value = prev_sp_value; |
+ } |
+ |
+ prev_sp_value = 0; |
+ } |
+ |
+ if (prolog_done && prolog_end == end_addr) |
+ { |
+ /* We found non-prolog code. As such, _this_ instruction |
+ is the one after the prolog. We keep processing, because |
+ there may be more prolog code in there, but this is what |
+ we'll return. */ |
+ /* ISSUE: There may not have actually been a prologue, and |
+ we may have simply skipped some random instructions. */ |
+ prolog_end = next_addr; |
+ } |
+ if (branch_seen) |
+ { |
+ /* We saw a branch. The prolog absolutely must be over. */ |
+ break; |
+ } |
+ } |
+ |
+ if (prolog_end == end_addr && cache) |
+ { |
+ /* We may have terminated the prolog early, and we're certainly |
+ at THIS point right now. It's possible that the values of |
+ registers we need are currently actually in other registers |
+ (and haven't been written to memory yet). Go find them. */ |
+ for (i = 0; i < TILEGX_NUM_PHYS_REGS; i++) |
+ { |
+ if (reverse_frame[i].state == REVERSE_STATE_REGISTER |
+ && reverse_frame[i].value != i) |
+ { |
+ unsigned saved_register = (unsigned) reverse_frame[i].value; |
+ |
+ cache->saved_regs[saved_register].realreg = i; |
+ cache->saved_regs[saved_register].addr = (LONGEST) -1; |
+ } |
+ } |
+ } |
+ |
+ return prolog_end; |
+} |
+ |
+/* This is the implementation of gdbarch method skip_prologue. */ |
+ |
+static CORE_ADDR |
+tilegx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
+{ |
+ struct symtab_and_line sal; |
+ CORE_ADDR func_start, func_end; |
+ |
+ /* This is the preferred method, find the end of the prologue by |
+ using the debugging information. */ |
+ if (find_pc_partial_function (pc, NULL, &func_start, &func_end)) |
+ { |
+ sal = find_pc_line (func_start, 0); |
+ |
+ if (sal.end < func_end && pc <= sal.end) |
+ return sal.end; |
+ } |
+ |
+ /* Otherwise, try to skip prologue the hard way. */ |
+ return tilegx_analyze_prologue (gdbarch, |
+ pc, pc + 8 * TILEGX_BUNDLE_SIZE_IN_BYTES, |
+ NULL, NULL); |
+} |
+ |
+/* This is the implementation of gdbarch method in_function_epilogue_p. */ |
+ |
+static int |
+tilegx_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
+{ |
+ CORE_ADDR func_addr = 0, func_end = 0; |
+ |
+ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
+ { |
+ ULONGEST inst, inst2; |
+ CORE_ADDR addr = func_end - TILEGX_BUNDLE_SIZE_IN_BYTES; |
+ |
+ /* FIXME: Find the actual epilogue. */ |
+ /* HACK: Just assume the final bundle is the "ret" instruction". */ |
+ if (pc > addr) |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* This is the implementation of gdbarch method breakpoint_from_pc. */ |
+ |
+static const unsigned char * |
+tilegx_breakpoint_from_pc (struct gdbarch *gdbarch, |
+ CORE_ADDR *pcptr, int *lenptr) |
+{ |
+ /* 64-bit pattern for a { bpt ; nop } bundle. */ |
+ static const unsigned char breakpoint[] = |
+ { 0x00, 0x50, 0x48, 0x51, 0xae, 0x44, 0x6a, 0x28 }; |
+ |
+ *lenptr = sizeof (breakpoint); |
+ return breakpoint; |
+} |
+ |
+/* Normal frames. */ |
+ |
+static struct tilegx_frame_cache * |
+tilegx_frame_cache (struct frame_info *this_frame, void **this_cache) |
+{ |
+ struct gdbarch *gdbarch = get_frame_arch (this_frame); |
+ struct tilegx_frame_cache *cache; |
+ CORE_ADDR current_pc; |
+ int i; |
+ |
+ if (*this_cache) |
+ return *this_cache; |
+ |
+ cache = FRAME_OBSTACK_ZALLOC (struct tilegx_frame_cache); |
+ *this_cache = cache; |
+ cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
+ cache->base = 0; |
+ cache->start_pc = get_frame_func (this_frame); |
+ current_pc = get_frame_pc (this_frame); |
+ |
+ cache->base = get_frame_register_unsigned (this_frame, TILEGX_SP_REGNUM); |
+ trad_frame_set_value (cache->saved_regs, TILEGX_SP_REGNUM, cache->base); |
+ |
+ cache->saved_regs[TILEGX_PC_REGNUM] = cache->saved_regs[TILEGX_LR_REGNUM]; |
+ if (cache->start_pc) |
+ tilegx_analyze_prologue (gdbarch, cache->start_pc, current_pc, |
+ cache, this_frame); |
+ |
+ return cache; |
+} |
+ |
+/* Retrieve the value of REGNUM in FRAME. */ |
+ |
+static struct value* |
+tilegx_frame_prev_register (struct frame_info *this_frame, |
+ void **this_cache, |
+ int regnum) |
+{ |
+ struct tilegx_frame_cache *info = |
+ tilegx_frame_cache (this_frame, this_cache); |
+ |
+ return trad_frame_get_prev_register (this_frame, info->saved_regs, |
+ regnum); |
+} |
+ |
+/* Build frame id. */ |
+ |
+static void |
+tilegx_frame_this_id (struct frame_info *this_frame, void **this_cache, |
+ struct frame_id *this_id) |
+{ |
+ struct tilegx_frame_cache *info = |
+ tilegx_frame_cache (this_frame, this_cache); |
+ |
+ /* This marks the outermost frame. */ |
+ if (info->base == 0) |
+ return; |
+ |
+ (*this_id) = frame_id_build (info->base, info->start_pc); |
+} |
+ |
+static CORE_ADDR |
+tilegx_frame_base_address (struct frame_info *this_frame, void **this_cache) |
+{ |
+ struct tilegx_frame_cache *cache = |
+ tilegx_frame_cache (this_frame, this_cache); |
+ |
+ return cache->base; |
+} |
+ |
+static const struct frame_unwind tilegx_frame_unwind = { |
+ NORMAL_FRAME, |
+ default_frame_unwind_stop_reason, |
+ tilegx_frame_this_id, |
+ tilegx_frame_prev_register, |
+ NULL, /* const struct frame_data *unwind_data */ |
+ default_frame_sniffer, /* frame_sniffer_ftype *sniffer */ |
+ NULL /* frame_prev_pc_ftype *prev_pc */ |
+}; |
+ |
+static const struct frame_base tilegx_frame_base = { |
+ &tilegx_frame_unwind, |
+ tilegx_frame_base_address, |
+ tilegx_frame_base_address, |
+ tilegx_frame_base_address |
+}; |
+ |
+static CORE_ADDR |
+tilegx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) |
+{ |
+ return frame_unwind_register_unsigned (next_frame, TILEGX_SP_REGNUM); |
+} |
+ |
+static CORE_ADDR |
+tilegx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
+{ |
+ return frame_unwind_register_unsigned (next_frame, TILEGX_PC_REGNUM); |
+} |
+ |
+static struct frame_id |
+tilegx_unwind_dummy_id (struct gdbarch *gdbarch, |
+ struct frame_info *this_frame) |
+{ |
+ CORE_ADDR sp; |
+ |
+ sp = get_frame_register_unsigned (this_frame, TILEGX_SP_REGNUM); |
+ return frame_id_build (sp, get_frame_pc (this_frame)); |
+} |
+ |
+ |
+/* We cannot read/write the "special" registers. */ |
+ |
+static int |
+tilegx_cannot_reference_register (struct gdbarch *gdbarch, int regno) |
+{ |
+ if (regno >= 0 && regno < TILEGX_NUM_EASY_REGS) |
+ return 0; |
+ else if (regno == TILEGX_PC_REGNUM) |
+ return 0; |
+ else |
+ return 1; |
+} |
+ |
+static struct gdbarch * |
+tilegx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
+{ |
+ struct gdbarch *gdbarch; |
+ int arch_size = 64; |
+ |
+ /* Handle arch_size == 32 or 64. Default to 64. */ |
+ if (info.abfd) |
+ arch_size = bfd_get_arch_size (info.abfd); |
+ |
+ /* Try to find a pre-existing architecture. */ |
+ for (arches = gdbarch_list_lookup_by_info (arches, &info); |
+ arches != NULL; |
+ arches = gdbarch_list_lookup_by_info (arches->next, &info)) |
+ { |
+ /* We only have two flavors -- just make sure arch_size matches. */ |
+ if (gdbarch_ptr_bit (arches->gdbarch) == arch_size) |
+ return (arches->gdbarch); |
+ } |
+ |
+ gdbarch = gdbarch_alloc (&info, NULL); |
+ |
+ /* Basic register fields and methods, datatype sizes and stuff. */ |
+ |
+ /* There are 64 physical registers which can be referenced by |
+ instructions (although only 56 of them can actually be |
+ debugged) and 1 magic register (the PC). The other three |
+ magic registers (ex1, syscall, orig_r0) which are known to |
+ "ptrace" are ignored by "gdb". Note that we simply pretend |
+ that there are 65 registers, and no "pseudo registers". */ |
+ set_gdbarch_num_regs (gdbarch, TILEGX_NUM_REGS); |
+ set_gdbarch_num_pseudo_regs (gdbarch, 0); |
+ |
+ set_gdbarch_sp_regnum (gdbarch, TILEGX_SP_REGNUM); |
+ set_gdbarch_pc_regnum (gdbarch, TILEGX_PC_REGNUM); |
+ |
+ set_gdbarch_register_name (gdbarch, tilegx_register_name); |
+ set_gdbarch_register_type (gdbarch, tilegx_register_type); |
+ |
+ set_gdbarch_char_signed (gdbarch, 0); |
+ set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
+ set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
+ set_gdbarch_long_bit (gdbarch, arch_size); |
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
+ |
+ set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); |
+ set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
+ set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
+ |
+ set_gdbarch_ptr_bit (gdbarch, arch_size); |
+ set_gdbarch_addr_bit (gdbarch, arch_size); |
+ |
+ set_gdbarch_cannot_fetch_register (gdbarch, |
+ tilegx_cannot_reference_register); |
+ set_gdbarch_cannot_store_register (gdbarch, |
+ tilegx_cannot_reference_register); |
+ |
+ /* Stack grows down. */ |
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
+ |
+ /* Frame Info. */ |
+ set_gdbarch_unwind_sp (gdbarch, tilegx_unwind_sp); |
+ set_gdbarch_unwind_pc (gdbarch, tilegx_unwind_pc); |
+ set_gdbarch_dummy_id (gdbarch, tilegx_unwind_dummy_id); |
+ set_gdbarch_frame_align (gdbarch, tilegx_frame_align); |
+ frame_base_set_default (gdbarch, &tilegx_frame_base); |
+ |
+ set_gdbarch_skip_prologue (gdbarch, tilegx_skip_prologue); |
+ |
+ set_gdbarch_in_function_epilogue_p (gdbarch, |
+ tilegx_in_function_epilogue_p); |
+ |
+ /* Map debug registers into internal register numbers. */ |
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, tilegx_dwarf2_reg_to_regnum); |
+ |
+ /* These values and methods are used when gdb calls a target function. */ |
+ set_gdbarch_push_dummy_call (gdbarch, tilegx_push_dummy_call); |
+ set_gdbarch_breakpoint_from_pc (gdbarch, tilegx_breakpoint_from_pc); |
+ set_gdbarch_return_value (gdbarch, tilegx_return_value); |
+ |
+ set_gdbarch_print_insn (gdbarch, print_insn_tilegx); |
+ |
+ gdbarch_init_osabi (info, gdbarch); |
+ |
+ dwarf2_append_unwinders (gdbarch); |
+ frame_unwind_append_unwinder (gdbarch, &tilegx_frame_unwind); |
+ |
+ return gdbarch; |
+} |
+ |
+/* Provide a prototype to silence -Wmissing-prototypes. */ |
+extern initialize_file_ftype _initialize_tilegx_tdep; |
+ |
+void |
+_initialize_tilegx_tdep (void) |
+{ |
+ register_gdbarch_init (bfd_arch_tilegx, tilegx_gdbarch_init); |
+} |